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Abstract

A class of singular perturbation method
developed by B.Porter and A.Bradshaw is one
of the most practical method to design flight
tracking control system . If the rank of matrix
[CB] is deficient , it must introduce
measurement matrix M to complete the system
design , but there is arbitraty in selecting ma-
trix M . In general , the high—gain control
law can make closed loop system robust. The
main contributions of this paper are
followings:

(1) The eigenstructure assignment meth-
od has been applied to select measurement ma-
trix M and it is calculated according to partial
eigenvalues and eigenvectors of closed loop
system (slow mode) .

(2) In the computation of null space of
matrix, it uses singular value decomposition
in complex domain rather than real domain to
select some eigenvectors of closed loop system
. This simplify the computation complexity.

(3) It analyzes the robustness of designed
flight control system quantitatively by calcula-
ting the minimum singular values of
invers—difference matrix.,

In the last part of this paper, an example
of direct lift control is presented to verify pro-
posed method. It points out that not only the
robustness of closed loop system designed by
using above method is very good ., but the
system’s response is excellent also.

1. Introduction

710072 P.R.China

There are many methods to design flight
control system. Eigenstructure assignment
method ( EAM) has the properties of less
computationlily and assigned
eigenvalue / eigenvectors of closed loop sys-
tem to decouple modes directly, but it is nec-
essary to verify the robustness of closed loop
system. Control laws designed by singular
perturbation method (SPM) in corporating
high— gain, error— actuated controller make
system have good robustness. If rank of ma-
trix /CBJis deficient , it is necessary to intro-
duce measurement matrx M, there is arbitra-
ry in selecting matrix M. Reference[l] suggests
that matrix Mshould choose as sparse as pos-
sible , if and only if martix [FB] is full rank.
Reference[2] utilizes pole assignment to com-
pute matrix Mand suggests that eigenvectors
should be considered in computiug matrix M.
The objective of this paper is to design flight
control system by taking the advantges of
SPMand EAM. The designed controllers not
only make closed loop system heve good re-
sponse (modes decouple ), but have good
robustness also ¢ . At last , it gives the
robustness comparisions between this two
methods .

2. Singular Perturbation Methods in
Design of Tracking System

Through linear translation, any com-
pletely controllable and observable linear
time—invariant system may be represented by
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following state equations.
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To design tracking system which makes
output y () track input command v (1) ,
extra measurement matrix Mmust be intro-
duced if fCB] is rank deficient ** , thatis

w()=y+Mx,

X
=[C,+MA, C, +MA]2][ ’ J

%,

X
=[F, F,] (3)
X,

The control law equation is of the form

u(t) = g{K e() + K, z(1)} C))

where
e(t) = v()— w(1) &)
z(t) = z(0) + [} e(r)dt (6)

In the steady —state,%, — 0,then,

lim(w(t) — y(1)) = Iim(M)'cl)-—*O N

it requires
lime(t) = lim(v(t) — w(1)) =0 (8)

tm o

So, e (1) is the difference between out-
put y (1) and input command v (1) in
steady—state . Inequation (1) ~ (6), xe
R x,e Rue R ye R've R',ze R' ge R*\w
€ R, Ay, A Ay, Ay By Cp, €y Fy, Fy,
M, K,, K, are the matrices of appropriate
dimensions and rank [C,B,/< [, rank
[F,B,] = I. After substituting equations (3)
~ (6) into (1), (2), closed loop system
may be written as follows :
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When g—o0, poles of closed loop system
are consisted of Z,UZ,UZ,, the system can be
asymptotic described by slow mode and fast
mode.

Poles of slow mode are Z,UZ,

Z,={1eC|iK +K,|=0} an

Z,={ieC:|Al__ —A +A_,F,7'F |=0}(12)

Poles of fast mode are Z;

Z, ={AeCi|Al, + gF,B K, | = 0} (13)

From referencef[3], there are/ assignable
poles in Z; set, Z, set contains all transmis-
sion zeros of system. When g-~oo, [ poles
become asymptotic uncontrollable in Z; set,
(n—1) poles in Z, set become asymptotic
unobservable. The locations of transmission
zeroes can be changed by selecting output ma-
trix C or measurement matrix M. In order to
make system work stable , it requires

Z ,UZ,UZ,cC" (14)

letting
F,B,K,=diag{c,,0, 0} (15)

the matrix K, can be calculated from equation
(15), if ¢;> 0,i=1, 2, =1l poles of fast
mode in Z; set are —gag; when g—o0,

If condition (14) may be satisfied and
selected matrix Mmake [F,B,/full rank , the
closed loop system (9) will work stable.

3. Computation of Measurement Matrix M

Taking
§=rF]'F, Ser™" (16)
then, the transmission zeroes of system

(1), (2) are goverened by

V‘I,._/-An""AnS’=0 (17)

QI _,—A,+4,5 =0 (18)
Letting

§+¢ =0, (19)

and substitute (19) into (18), ithas

(1.1

i“n—-1

~All)éi+A12wi=O 20
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or

<
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ml
where ¢e R"™, we R, ¢ is the eigenvectors
3
corresponding to transmission zeroes ,
w

i
lie in the null space of fA[,_~A4,, A,,], and
equations (78) ~ (2I) are satisfied for all
transmission zeroes , so

Slé]’éz’"‘én—l] = [wiamz""w.,__ll

S=[w,0, 0, E.E~¢ 1 22)
The null space vectors of
[Ad,-—A;; Ajp] can be calculated by using
singular value decomposition ‘¥ (i=1, 2,
¢,
«n-—1) . It is possible to select[ ' ] from
,
above null space to satisfy equation (22) and
have some physical meanings (for example,
mode decouple) % |
If the selected transmission zeroes are
complex, the null space vectors of
[Ad,.~A; Apjcan be calculated by using
singular vulue decomposition in complex do-
main.This Simplify the computation complexi-
ty comparision with reference[4,5], thatis,

o],
M1, —4, A,1=U 00 v 23)

and U= (U, U,], V=[V, V,], V"is the con-

jugate transpose matrix of ¥, where

I= diag{al,az,---,an__,}, O, =4, i=12n—1,
UER(»-—I)xu, VER”M, XER(n-—l)x(n--l)
VlsRn % (m =~ nxl

D,VZER .

J; are the eigenvalues of matix
[Mdyi=Ay Apl” [Ady =4y Al V, are
the eigenvectors corresponding to zero
eigenvalaes and lie in the null space
of [Ad, Ay Al

After computing matrix S, solving equa-
tion (6) and (I6) simultaneously, the ma-

trix M is obtained by

3

M=(C,5—~C )4, ~4,8"" 4)

12

4. Robustness Analysis

The block diagram of closed loop system
(9. (10) is presented in Fig.1, where the
controller transfer function is

H(s)=g{K + K,/ s} 25)
the general plant transfer function is

1

Gs)=F@EI—A) B (26)
The matrix ’
L(s) = H(s)G(s) @n

is called U node return ratio. The matrix

S(s) =1+ L(s) (28)
is cacled U node return difference matrix,
and the matrix

T ' s)=1+L""(s) (29)

is called U node inverse—diffrerence matrix.

The minimum singular value of
inverse— difference matrix have relations with
system robustness, minimum gain margins
and minimum phase margins of system can be
calcaluted from minimun sigular value of in-
verse—difference matrix as following % .

Suppose the changed loop transfer func-
tion (return ratio) due to system parameters
variation and work enviroment change has the

form of
L(s)=({ + AL(s)) * L(s) (30)

The system will be stable in frequency
range [w, w,/, if the inverse—difference ma-
trix
KL (5) has nonzero—determinant over this
frequency range and the maximum allowable
perturbation matrix AL (s) is

HaL@l <o, (T~ '(0), velo, @,] (1)

min
where ¢,,;,is the minimum singular value of in-
verse—difference matrix.

The minimum gain margins and phase
margins in each of the plant’s control input
channel over this frequency range is described
as

GM = min(20log (1 + 0, (T '(@))  (32)

and
PM = min(2arcsin(0.50 (T o)) (33)

So, the larger the minimum singular val-
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ue of inverse—difference matrix, the better the
system robustness,

5. Design Example

The short period dynamic motion equa-
tions including actuators dynamics of an
aircrft which flies at a height of 5000m and a
Mach number of 0.5, are described by state
equations (1), where

0 0 1.7577 0.1670 0.2655
0 ~—1.5466 —24.144 —31.3147 - 154163
A=]0 1.0 - 17577 —0.1670 —0.2655
0 0 0 -20 0
0 0 0 0 -20
0 0
0 0
B=| 0 0
20 0
0 20

x=[yqad, 5,}T
u=1[5 8,1"
¥ @ o, O, Op are flight path angle, pitch
rate, angle of attack, elevator deflection an-
gle and flaperon deflection angle derived from
trim state respectively. ., Jgare input com-
mand of clevator, flaperon actuators
respectively, the angle unit is radian , the
pitch rate unit is radian / sec.

The control objective is to design a con-
trol law of the form of equation (4), which
makes the aircraft realize fuselage pointing
mode (a;mode), i.ey=0, =g, and take

10100 0
C = 5 y =
10000 ¥
In this example, n=35, [=2, the desired
eigenvalues of short period mode and y mode
are selected based on flight quality require-

ments. These eigenvalues are determined by
equation (12), ie.

A, ,=—25+ 025

3.4 4
Ag=~20

If K;= 2K,, and ;= 1 (i=1, 2, in
equation (I5)), then,

(& =07070, =3.54)
(y mode)

d
12

i, =—g  (g- o)

When g— oo, the asymptotic ecigenvalues of

closed loop system are presented above (}.f~
A9)

A - 2.0

In short period motion the main physical
variables are angle of attack o« and pitch
rate ¢g. In y mode , the main variable is flight
path angle y . The desired eigenvectors corre-
sponding to these modes must have the follow-
ing forms to decouple eachother R

l‘:.‘ 15
o0 1] [
11 0 q

x x 0 *

x x x s,
| x x| | x ] _6,_

Through singular value decomposition ,
the wvectors in the null space of
[j'iln-‘l_AII A12] (i=3s 4; 5) are

d

M, =—25%05
—0.1649 0
0.3902 + 0.7489  —0.2205 + 0.2569
0.2367F 0.2278  0.0955F 0.0073

0.1506F 0.2744  —0.3642F 0.0106
—0.0809F 0.2175 0.8612% 0.0416

A= -20

0.5262 0

—0.2542 —0.2039

0.6533  0.102

0.4774 0.3632

0.0608  0.034
4

It can choose three vectors as ,

(/]

i
which satisfy equation (22) and is as close as
poosible to the form of desired eigenvectors ,
thatis

¢ ¢, ¢,
w, @, o,
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0 0.5262 ]
~0.2205 + 0.2569 — 0.2542
=| 0.0955F 0.0073  0.6533
—0.3642F 0.0106 0.4774
| 0.8612F 0.0416  0.0608 |

Based on the chosen
eigenvalue / eigenvectors, the matrix M,
K, K, iscalculated.

[0.3913 0.0255 0.4223 ]
0.4543 0.0058 —0.0024

~0.029 —02722
K, = ., K, =2K,
~0.0664 0.5451

1 [
Letting input command v=l: j], i.e,
0

y.=0° ,0,=a,=1° ,the response of closed
loop system are illustrated in Fig.2 (g= 200)
. There is less difference between Fig.2 and
Fig.3 which is the result of reference[9]. When
simulation time is greater than 1.2 seconds ,
0 arrives its steady—state value, v is constant
» the fuselage pointing is achieved without
chaning flingt path.

The minimum singular values of
invers—difference matrix versus frequency are
presented in Fig. 4. Over the frequency
(1071,10°), the minimum gain margins, min-
imum phase margins and minimun singular
values of the system designed in this paper
{marked SPM) is 5.2174db, 48.6203° and
0.8234 respectively , the corresponding values
of the system designed in reference[9] (marked
EAM) is 0. 2727db, 1. 964° and 0. 0343
respectively. So, the system designed in this
paper has good robustness and good response.

6. Conclusions

The fight tracking control system is de-
signed by using singular perturbation method
and eigenstructure assignment method in this
paper. It is not only considering the system
transmission zeroes, but considering the
eigenvectors corresponding to them also.

The calculation results show that the de-
signed system not only has good response
(mode decouple), but good robustness also.
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Fig. 1 tracking control system block diagram
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