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Abstract

An Extended Kalman Filter (EKF) is developed to estimate the state of a jet transport
aircraft. The EKF is based on the nonlinear longitudinal aircraft equations of motion, and it is
designed to provide estimates of horizontal and vertical atmospheric wind inputs. The
optimal state and disturbance estimates are incorporated in feedback control laws based on the
aircraft’s nonlinear inverse dynamics. The EKF produces accurate estimates, and the resultant
flight trajectories are very similar to those obtained with perfect state feedback. The EKF is
sensitive to uncertainty in the dynamic model, but much of the lost performance can be
restored by treating the uncertainty as a random disturbance input.

Nomenclature
D Drag
E() Expected value
E; Specific Energy
F Nondimensional wind shear hazard index
g Acceleration due to gravity
h Altitude
Iy Moment of Inertia about body y-axis
L Lift
m mass
M Pitching Moment
q Pitch rate
r Rate of climb
R Radius of downdraft column
s Laplace variable
t Time
T Engine Thrust
u Aircraft control vector
Umax ~Maximum horizontal wind speed
Va Airspeed
Wy Wind component along the x-axis
Wh Wind component along the h-axis
w Weight
x Distance along x-axis
X Aircraft state vector
y Control system command vector
Zmax  Altitude of maximum outflow
o Angle of attack
Y Hlight Path Angle
or Elevator deflection
or Throttle setting
9 Pitch Attitude
Superscripts
" Time derivative
(”~)  Estimated quantity
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* Professor

Subscripts
4,A  Air-mass-referenced quantity
c Commanded value

il Inertially referenced quantity

Introduction

Severe low-altitude wind variability represents an
infrequent but significant hazard to aircraft taking off or
landing. During the period from 1964 to 1985, microburst
wind shear was a contributing factor in at least 26 civil
aviation accidents involving nearly 500 fatalities and over
200 injuries [1). A microburst is a strong localized
downdraft that strikes the ground, creating winds that
diverge radially from the impact point. The effects of
microburst wind shear on airplane dynamics have only
recently been understood in detail, and it has been found
that effective recovery from inadvertent encounters may
require counterintuitive piloting techniques [2].

The aviation community has initiated an extensive
research effort to solve the wind shear problem. The
Federal Aviation Administration (FAA) and the National
Aeronautics and Space Administration have established
an integrated program to address the wind shear problem
through focused research and development programs
[3,4]. The FAA's Wind Shear Training Aid [5] recommends
that on recognizing an encounter with severe wind shear,
the pilot should command maximum thrust and rotate
the aircraft to an initial target pitch angle of 15°. This
pitch target was identified through rigorous analyses
using full six-degree-of-freedom flight simulators and
wind models representative of actual accident cases [6].

Optimal trajectory analysis (OTA) has been used to
identify the limits of aircraft performance in wind shear
and to determine the control strategies required to
achieve such performance [7-13]. Computation of these
trajectories requires global knowledge of the flow field.
Since this is not possible in practice, OTA results are not
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immediately useful for real-time aircraft control.
Consequently, feedback control laws employing local
wind-field knowledge have been developed for near-
optimal flight control {7, 14-16].

The goal of this research is to bridge the gap between
the performance achieved using OTA and that attainable
using feedback control based on local (and possibly
forward-look) wind field knowledge. In a recent paper
{17] we presented the design of a feedback control law
based on the aircraft’s nonlinear inverse dynamics (NID)
[18-23]. The NID controller demonstrated safe flight
through severe microbursts encountered on the final
approach. It was assumed that the aircraft state was
known exactly, as were horizontal and vertical wind
inputs. The issue of estimating the aircraft state and
disturbance inputs from available sensor outputs is the
focus of this paper. The Extended Kalman Filter (EKF) is
postulated as a suitable estimator structure, and it is
evaluated in concert with the NID control laws.

Effect of Wind Shear on Airplane Dynamics
Aircraft Model and Equations of Motion

A three degree-of-freedom model of a twin-jet
transport aircraft is used for this study. The aircraft has a
gross weight of 85,000 Ib and maximum takeoff thrust of
24,000 1b. Its aerodynamic coefficients are complex
nonlinear functions of altitude, Mach number, incidence
angles, rotation rates, control deflections, configuration
changes (such as gear and flap deflection), and ground
proximity. Effects of wind shear on aircraft motion and
aerodynamics are modeled using the technique described
in [24, 25]. The relevant reference frames used to describe
the aircraft’s position, orientation, and velocity are
presented in Fig. 1. Flight is assumed to take place in a
vertical plane over a flat Earth, and a coordinate system
fixed to the ground is defined as the inertial reference
frame. On the basis of these assumptions, the equations
of motion are:
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The effect of wind shear on airplane energy state can be
described compactly. First define the specific energy
(energy per unit weight) as the sum of air-mass relative
kinetic energy and inertial potential energy:
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Differentiating this expression and substituting from eqs.
1-3,
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Figure 1. Coordinate Systems and Reference Frames.
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The first term is recognizable as the airplane’s specific
excess power. The three wind terms describe wind shear
impact on airplane energy state, and they may be
combined into a single scalar quantity called the “F-
Factor” [3] as follows:
F= —‘f‘—‘-cosya +ﬁsin’y,, -2h ©
g 8 Va
The vertical shear term is typically quite small and often
neglected. The effect of wind shear on airplane
performance is thus expressed as an effective reduction in
available specific excess power due to horizontal and
vertical shears and downdrafts. Regions where F is
negative are considered to be performance-increasing
shears, while regions where F is positive are performance-
decreasing. F values of more than 0.15 cancel the climb
gradient capability of most jet transports.

The aircraft’s lift, drag, pitching moment and thrust
are expressed as,

L=75,4CL (10)
D =73S,;Cp an
T=Toax(Va)dr  0<8p<1 12)
M =3S,;Cy 13

The wind components and spatial gradients used in
the equations of motion are obtained from the Oseguera-
Bowles downburst model [26]. This analytic time-
invariant model represents an axisymmetric stagnation
point flow, and it permits simulation of microbursts of
varying size and strength through specification of the
radius of the downdraft column, the maximum outflow,
and the altitude of maximum outflow.

Nonlinear Flight Control

This description of nonlinear control methods is
necessarily brief. More complete treatments can be found
in [27, 28]. The following derivation is from [29]. Given a
system of the form,

X = f(x) + G(x)u (14)

where xisn x 1 and u is m x 1, we define an m-
dimensional output vector,

y = H(x) (15)
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It is possible to construct a nonlinear feedback control law
that provides output decoupling of the elements of y or
their derivatives such that y@ = v. The new control input
v can be chosen to place the system poles in desired
locations (for example, to achieve desired specifications
on response overshoot and settling time). The vector y{9
is expressed as,

Y9 =1*x)+G*x)u=v (16)
and d is the relative degree of differentiation required to
identify a direct control effect on each element of the
output vector. The inverse control law then is

u=[G*)[ Y v-*(x)] a7
and the closed-loop dynamics of the system take the form,
X = £(x) + GG * ()] [v-1*(x)] (18)

While the expression of the inverse control law
appears simple, its implementation can be quite complex.
Evaluation of the functions f*(x) and G*(x) requires that a
full, d-differentiable model of the aircraft dynamics be
included in the control system. The controller can be
simplified if the system can be partitioned into slow and
fast-time-scale subsystems [30]. The separation of the
dynamics into fast and slow time-scales is a natural
consequence of the underlying physics. For the aircraft
problem, it is assumed that the pitch rate evolves faster
than the flight path and velocity. This is consistent with
the time-scale separation between the phugoid and short-
period modes of an aircraft’s longitudinal dynamics [31].
This technique has been applied to the flight control
problem {17, 19 -23]. In the present study, the effects of
wind shear are explicitly considered in the inversion.

Three sets of output vectors are considered for
approach encounters with wind shear: airspeed/climb
rate, groundspeed/climb rate, and throttle/climb rate
[17]. A combination of airspeed, groundspeed, and climb-
rate regulation [32] is employed during glide slope
tracking on the final approach. When the wind shear F-
Factor (eq. 9) exceeds a certain threshold, the controller
commands an aborted-landing maneuver using full
throttle and a nominal positive climb rate. The controller
demonstrates good recovery performance in a variety of
microburst encounters when perfect state feedback is
used as the basis of the control. Such full-state feedback
would not be available in practice — it would be necessary
to estimate the aircraft state and disturbance components
from noisy sensor outputs. An Extended Kalman Filter
has been developed to accomplish this task, and it is now
described.

Optimal State Estimation

An optimal estimator is a computation algorithm that
processes measurements to calculate a minimum-error
estimate (in accordance with some stated optimality
criterion) of the state of a dynamic system using [33]:

* Knowledge of system and measurement
dynamics

* Assumed statistics of system disturbance
inputs and measurement errors

o [Initial condition information

Such an algorithm minimizes estimation error in
some well-defined statistical manner and makes use of all
of the measurement data and prior knowledge about the
system. However, its potential drawback is sensitivity to
erroneous system models and statistics. The Extended
Kalman Filter derives optimal aircraft state and wind
component estimates for use with the NID control laws.
The EKF is an optimal filter in the sense that it minimizes
the varjance in the estimation error associated with a
nonlinear system’s linear perturbation model.

The Extended Kalman Filter computes minimum-
variance estimates for nonlinear systems described by the
ordinary differential equation

x(t) = f{x(t), u(®),t] + w(t) 19

The vector f is a nonlinear function of the state x, the
deterministic control input u, and time. The disturbance
input w is a white, zero-mean Gaussian random process:

Efw()]=0 20)

E[w(t)wT(r)] =Q,(1)5(t— 1) Q1)
where E(.) denotes the expected value of the function.
The disturbance is thus characterized by its spectral

density matrix Qc(t). The quantity J is the Dirac delta
function:

oo t= 1T
5(t—1:)={0 fer (22)
t+e
lim J‘ 6t —-vdr=1 (23)
e-)Ot_g

Both continuous-time and discrete time measurements
can be handled; considered here is the case of discrete
measurements of the form

zt)=h[xtp)]+ng  k=0,1,2,... 24)

The measurement noise n also is assumed to be a white,
zero-mean Gaussian random process that is uncorrelated
with the disturbance input:

E(ng)=0 (25)
E(nkn{) = Rk (26)
E[w(tnf|=0 forall kand all @n

The expected values of the initial state and its covariance
are assumed known:

E(xg) = %o (28)
E[(xo - %0)xo - %0)7 | =P, 29)

Before presenting the equations for the computation of
the state estimate and its covariance, it is necessary to
define the sensitivity matrices:

ofl]

F(t) = F[x(®),u(®),t]= oo (30)
x(t)=%(t)
ohl-]
H(t) = Hix(t){= (31)
bO1=5 x(t)=k(2)
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The EKF propagates (or extrapolates) both the state
estimate and its covariance using the system model. New
measurements are combined with the extrapolated
estimate to generate an “updated” estimate. The state
covariance also is updated to reflect the information
contained in the measurement. A weighting factor called
the Kalman Filter gain is used to combine the
extrapolated estimate with the new measurement. This
gain is defined in such a way that it minimizes the
estimation error covariance after the update. It is useful
to introduce notation that distinguishes state estimates
made before and after the measurement updates: X (-) is
the state estimate resulting from extrapolation alone (i.e.,
before the observation z is considered), and x;(+) is the
corrected estimate that accounts for the measurements.
The pre- and post-measurement covariance matrices Py(-)
and Pi(+) are defined similarly. The state and covariance
estimates are extrapolated using

b
M Ol=Hta)+ [Hlrolum,dar @
tg1
Pt ()] = Pt ()] +
b
_[ [Feop + PeoF@T + Qo
tr-1

(33)

The Jacobian F(7) is evaluated in the interval for
corresponding values of X[7(-)]. The state and covariance
are updated as

X[t (D] = Xe [t (O] + Kty ){z(tk) - h[i[tk(-—)]]} (39
Py [t ()] = {1, - Kt Hty)}P[t. ()] (35)

The filter gain K(#) is
Kt) = Pt (-)JHT & ){H(tk YP[t (—)]HT () + Rty )}"1 (36)

The matrix H(x) is evaluated using x = X[t(-)].
Equations 30 - 36 constitute the EKF algorithm for
continuous-time nonlinear systems with discrete
measurements.

Filter Equations for the Jet Transport

The EKF estimates the state of the jet transport
aircraft using available inertial and air-data
measurements. A key feature of the EKF in this
application is its ability to estimate the horizontal and
vertical wind components w, and wy, along with their
first and second time-derivatives. Estimates of these
quantities are used as the basis of feedback control using
the NID control laws. Before presenting the EKF
equations for the jet transport, it is worthwhile to briefly
examine conventional methods of in-flight wind
disturbance estimation.

The Federal Aviation Administration has stipulated
that all commercial aircraft be outfitted with reactive
wind shear detection systems by December, 1993.
Typically, these systems compute an estimate of the F-
Factor by differencing inertial and air-relative acceleration

signals [34, 35], since any difference between air-relative
and inertial acceleration must be due to unsteady motion
of the airmass itself. An algorithm developed by
Oseguera and Bowles [36] is based on a three-dimensional
expression of the F-Factor, and it provides good estimates
of F in many different flight conditions. This algorithm
has become a measurement standard for the evaluation of
forward-looking wind shear detectors. However, this
method is not suitable for use with the NID control laws
developed in this paper, as it does not derive wy, wy, and
their first two time-derivatives from the F estimate.

Bossi and Bryson [37] examined the use of constant-
gain Kalman Filters for disturbance estimation and
detection of engine failure for a short-takeoff and landing
(STOL) aircraft during the landing maneuver. The
estimator is based upon a linearized model of open-loop
aircraft dynamics, and their results suggest that it is
possible to develop accurate estimates of horizontal and
vertical winds (along with their first time-derivatives) by
defining wy, wy, wy and wy as state elements and
including them in the filter. This is the approach taken in
the design of an EKF for the jet transport.

The wind-axis equations of motion (egs. 1 - 6) are
used to define the plant model for the estimator
equations. There is a first-order lag in powerplant
dynamics:

T.~-T
T
where T, is the commanded thrust, T is the actual thrust,
and 7 = 2 sec. The aircraft state vector is defined

nominally as

xXe=[x h V, v, o q T] (38)
The control input to the system is
T,
= 39
u [ SE} (39
The NID control laws also require feedback of
Wy, Wh, Wy, Wy, Wy, and @y. It is necessary to make

these six variables part of the system state vector. The
“wind state” vector is defined as

T= 37

xy=[wy wy W, wy W, @] (40
In order to construct the system model, it is necessary to
define the “dynamics” associated with the wind inputs.
Any mathematical model of the wind dynamics
represents an approximation to the conditions that exist
within a microburst. Error in the modeling can lead to
biases in the estimates and even divergence from the
actual values. The simplest approach is to use an integral-
state model [37] to represent the wind components and
their time-derivatives. The equation describing the wind
dynamics is
xg=Fpx;+w (41)
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where
0010 0 0] 07
000100 0
Fd=0 00010 we 0 @2 b)
0000O0 1 0 N
000000 w,
00000 OJ _wZJ

and w is (by assumption) a white, zero-mean Gaussian
random variable:

E[w()]=0 43)
EwywT(9]=Q.m¢ -1 )

The aircraft dynamics may thus be expressed as
Xae = £(X40,,%7) 45)

where the elements of f(°) are constructed using egs. 1 - 6.
The complete state vector for the estimator plant model is

defined as
A Xac
x= [Xd ] (46)
The combined aircraft/disturbance dynamics are then
written as
R E f(x,,,u,x3) 0
L] @
Xq Fixy w

Equation 47 describes the assumed system model used to
propagate the EKF. The disturbance input to this system
is the vector w, whose nonzero components physically
represent the third time-derivatives of w, and wy. Thus,
for the purposes of the EKF, @, and i, are modeled as
zero-mean Gaussian random variables. There is a
question of how to choose the elements of the matrix Q.
(eq. 44). Empirical data on microbursts generally include
information on wind speeds, spatial extent and (possibly)
F-Factor; it is difficult to infer anything substantive about
the third time-derivative of the wind speed components.
Consequently, it has been necessary to rely on trial-and-
error methods to identify suitable elements of Q.. In
effect, its components become design parameters that are
adjusted to tune the filter's response. The numerical
values used are presented along with the simulation
results.

The measurement vector z consists of the sensor
outputs that are available on a typical modern jet
transport aircraft. These are altitude (ft), groundspeed
(ft/sec), airspeed (ft/sec), angle of attack (deg), pitch
angle (deg) and rate (deg/sec), altitude rate (ft/sec), and
horizontal and vertical acceleration (ft/sec?). The vector z
is thus defined as

=k V; V, o 6 g ki K @9
The measurement noise covariance matrix is defined as
R =diag(52 3.62, 1.72, .52, 052, .052, .52,.3222, .3222) (49)

These values are representative of state-of-the-art inertial
and air-data systems.

The EKF is now evaluated in conjunction with the
NID control laws. The EKF/NID performance is
compared to that achieved using perfect state feedback.

This permits an assessment of how much performance is
“lost” when optimal state estimates based on noisy
measurements are used as the basis for the feedback.

Simulation Results

Aircraft encounters with microburst wind shear are
considered on the final approach, during which a decision
is made to abort the landing and execute a climb-out. A
climb rate scheduling strategy [2] is used to compute the
target climb rate during the aborted-landing maneuver as
a function of available performance. This produces
trajectories that exchange altitude for airspeed in a
manner dependent on microburst strength, similar to
previously obtained trajectory optimization results [13]).

The disturbance input spectral density matrix Q; is
set to

Q, = diag(0,0,0,0,0.01,0.01) (50)

The zero off-diagonal components imply that the
horizontal and vertical wind inputs are uncorrelated with
one another. The nonzero diagonal elements were
determined through trial-and-error. If they were made
too large, the EKF did a poor job of attenuating
measurement noise in its derivation of state and
disturbance estimates. Very small diagonal elements
resulted in good measurement noise attenuation but
introduced significant lags into the estimates of many of
the state components. This estimator lag led to degraded
controller performance. Numerical instabilities also were
encountered in the propagation of the state and
covariance estimates when small numbers were used as
the diagonal elements of Q.. The selected numbers
provide a good balance between attenuating
measurement noise and minimizing estimator lag.

The simulation results are organized to facilitate a
comparison of the EKF/NID flight trajectory with that
obtained using perfect state feedback, and to illustrate the
estimation performance of the EKF. State estimation
errors are shown together with the “20” error estimate,
which is computed from the covariance matrix P(). The
12 6;(t) curves provide the estimated 95% confidence
interval on the error associated with the state estimate
Zi®). The aircraft is initialized on the glide slope at a
point well outside the microburst core with an initial
groundspeed of 245 ft/sec. The microburst has a core
radius of 3,000 ft, a maximum horizontal wind speed of 70
ft/sec, and a maximum outflow altitude of 150 ft. The
controller initiates the aborted-landing maneuver once the
estimate of the F-Factor exceeds a threshold of 0.075. The
initial state estimate is set equal to the actual state, so that
() =%(t,). The covariance matrix is initialized as an
identity matrix of appropriate dimension.

Figures 2 and 3 present airspeed and angle of attack
vs. range from microburst core in both the NID-only and
the EKF/NID trajectories. Figure 4 shows the horizontal
and vertical wind components experienced by the aircraft
in the EKF/NID trajectory.
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Figure 4. wy and wy, vs. Range in the EKF/NID Trajectory.

It is evident from Figs. 2 and 3 that the EKF/NID
trajectory is qualitatively similar to the one obtained using
perfect state feedback. The aborted-landing maneuver
entails the use of low attack angles early in the trajectory,
followed by a gradual increase that ceases near the end of
the microburst core region. The EKF's ability to estimate
the wind components is illustrated in Figs. 5 and 6, which

present the wy and wy, estimation errors, along with the 20
error bounds. The actual and estimated F-Factor in the
EKF/NID trajectory are shown together in Figure 7. The
peak F experienced by the aircraft is approximately 0.4,
indicating that this is a very severe microburst.
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Figure 5. wy Estimation Error in the EKF/NID Trajectory.
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Figure 7. Actual and Estimated F-Factor in the EKF/NID
Trajectory.

It is apparent that the EKF estimates the wind
components accurately. The predicted 2¢ error bounds
are good indicators of the EKF’s accuracy, implying that
the actual filter performance is consistent with the
expected performance. The F-Factor estimate derived
from the optimal state and disturbance estimates also is
quite accurate.

The results show that NID control laws can perform
quite well using optimal state estimates derived from a
realistic set of measurements. However, it has been
assumed that the initial conditions are known exactly and
that there are no modeling errors in the representation of
the aircraft aerodynamics used by the EKF/NID pair.
Initial condition errors result in a negligible reduction in
controller-estimator performance; however, uncertainty in
the aerodynamic model poses a serious problem. It has
been assumed thus far that the aerodynamic model is
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exact, and that any inaccuracies in calculating lift, drag,
and pitching moment are due only to the errors in the
state estimates themselves.

The effect of uncertainty in the aerodynamic model is
examined by intentionally adding an error to the lift and
drag estimates used by the EKF/NID pair. The
simulation is repeated using the same microburst
parameters as in Figs. 2 - 7, but now a 10% error is added
to the lift and drag estimates used by both the EKF and
the NID control laws. Figures 8 and 9 present altitude
and angle of attack vs. range in the resultant trajectory.
For comparison purposes, the response obtained using
the NID control law with perfect state feedback and an
exact aerodynamic model is also shown. Wind
component estimation errors in the EKF/NID trajectory
are shown in Figs. 10 and 11.
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Figure 9. Angle of Attack vs. Range — 10% Error in Lift
and Drag Estimates.
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It is apparent that the modeling errors produce a
dramatic departure from the nominal flight path (as
defined by the NID-only trajectory). The minimum
altitude in the EKF/NID trajectory is some 175 ft lower
than in the NID-only trajectory. The aircraft does not
track the desired approach path properly in the descent
portion of the trajectory. Figures 10 and 11 show that the
predicted 20 error bounds are not good indicators of the
EKF’s performance. The wy estimation error appears to
grow without bound.

Uncertainty in the aerodynamic model appears to be
a major stumbling block to the implementation of the
EKF/NID estimator-controller pair. Since it is unlikely
that an aircraft’s aerodynamic model will ever be known
exactly, it is necessary to devise a means of
accommodating this uncertainty into the design. One
such method is now discussed.

Effect of Adding Fictitious Process Noise

A simple solution for accommodating uncertainty
into the design of an EKF is to add fictitious process noise
w(f) [33] to the system model. In effect, uncertainty in the
model is treated as a Gaussian random input. The aircraft
state equations used by the EKF are modified by adding
fictitious disturbance inputs to those terms that depend
on lift L or drag D. The resultant model is expressed as

o Xge | [ f(Xge,uXg) | | Wy
x—[*d]-[ Faxy }L[W] b

where the fictitious input w;(t) is a Gaussian, zero mean
random variable:

E[wy(0] =0 )

E[wsow ()] = Qpvstt - (53)

The elements of Qyare chosen to reflect the uncertainty in
the time-rates-of-change of the components of X, that
depend on L or D. For the simulation results that follow,
Qr is set to

Qy = diag(0, 0, 0.2, 0.05, 0.05, 0.2, 0.05,0.05,0,0) (54
These values were chosen by trial-and-error.

The EKF/NID trajectory is now recomputed using
fictitious process noise in the EKF plant model. As in the
previous simulation, 10% errors are added to the lift and
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drag estimates used by the EKF/NID pair. Figures 12 and
13 show the resultant altitude and angle of attack
response, respectively. Once again, the profiles obtained
using the NID control law with perfect state feedback and
an exact model are shown for comparison purposes.
Horizontal and vertical wind estimation errors in the
EKF/NID flight path are shown in Figs. 14 and 15.
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Figure 12. Altitude vs. Range — 10% Error in Lift and
Drag Estimates with Fictitious Process Noise.
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Figure 13. Angle of Attack vs. Range -- 10% Error in Lift
and Drag Estimates with Fictitious Process Noise.
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Figures 12 and 13 show that the EKF/NID altitude
Lnd angle of attack profiles with fictitious process noise
are much more similar to the NID baseline than those in
Figs. 8 and 9. Figures 14 and 15 demonstrate that adding
the fictitious process noise restores the EKF's

performance. The predicted 20 error bounds are once
again good indicators of the accuracy of the wind
component estimates. The steady-state error bounds are
larger in Figs. 14 and 15 than they are in Figs. 10 and 11.
This may be expected, since the EKF plant model now
contains uncertainty in the model itself as well as in the
measurements.

The simulation results indicate that it is possible to
effectively compensate for uncertainty in the plant model
by adding fictitious process noise to the EKF equations.
The resultant flight path is similar (but not identical) to
the one obtained using perfect state feedback with an
exact aerodynamic model. The EKF/NID pair function
effectively a realistic set of measurements and an
uncertain aerodynamic model.

Conclusions

An Extended Kalman Filter has been developed to
estimate the state vector and wind disturbance inputs of a
jet transport aircraft. The EKF was evaluated in concert
with nonlinear control laws developed previously.
Simulated flight trajectories produced using the
EKF/NID pair were almost identical to those obtained
using the NID control laws with perfect state feedback.
The EKF produced accurate estimates of both horizontal
and vertical wind inputs using a simple integral-state-
model representation of the wind “system.” This
representation makes no assumptions about the structure
of the atmospheric disturbance, and it should be able to
provide accurate disturbance estimates in a variety of
atmospheric conditions.

A key difficulty for applying nonlinear control and
estimation techniques is uncertainty in the plant model.
The use of an erroneous aerodynamic model in the
EKF/NID pair led to inaccurate state estimates and poor
command tracking. The introduction of fictitious process
noise in the EKF equations, which treated the uncertainty
as a random disturbance input, restored most of the lost
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performance. This result is encouraging from a practical
standpoint, because an exact aerodynamic model is not
always available for control system design. Conse-
quently, the EKF/NID control law is a good candidate for
operational implementation.
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