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Summary
The present work was carried out in the context of Cij
an Independent Flight Test Facility (IFTF) in Portugal, )
based on international (AGARD, NRL, DLR, BTU) and Di

national (FAP, INICT, OGMA, IST) cooperation; the -
Sflying element is the Basic Aircraft for Flight Research -
(BAFR), a CASA 212 Aviocar twin-turboprop light G

transport, fitted with a flight test instrumentation FTI Hij
system, from which smaller dedicated FTIs were Ix
. Y,z
developed for several aircraft. The present paper i
describes a part of one of the research projects carried -
out with BAFR, viz. a linear longitudinal stability 11\\;[
model, including propeller splistream effects (§2-3); the N !
model is reduced from 3x5 - form to a 4x4 - T
autonomous system of differential equations, from U
which the frequency and damping of the phugoid and Up
short period modes are determined (§4-5). The results W
presented here are a part of a larger set including Xj
control and simulation studies, mentioned briefly in the —
conclusion (§6). Xj
Yi
ist of symbols
Yi

c mean aerodynamic chord
€x,€y,€;  umit vectors in x, y, z -directions Zi
g acceleration of gravity yA
i dimensionless acceleration of gravity 7!

(24b) 1
m aircraft mass o
q pitch rate Be
s variable in Laplace transform 813
u longitudinal velocity perturbation 18
w transverse velocity perturbation v
X longitudinal coordinate ®
y transverse horizontal coordinate Q
z transverse coordinate in vertical plane 13
Ajj 3x5 stability matrix in dimensional form T

(14a) Xph
B 3-control vector in dimensional form Xsp

(14b)

Cp, CL drag and lift coefficients
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3x5 stability matrix in dimensionless
form (24a, 25)

3-control vector in dimensionless form
(22)

total force

gravity force

4x4 stability matrix in autonomous
system

principal moments of inertia

angular momentum

moment of forces

4- control vector in autonomous system
reference area

decay time to half-amplitude

total longitudinal airspeed

longitudinal airspeed in steady state

total transverse airspeed

vector of 5 independent dimensional
variables (2)

vector of 5 independent dimensionless
variables (19)

vector of 3 dependent dimensional
variables (1)

vector of 3 dependent dimensionless

variables (20)

4-vector of autonomous system (26)
Laplace transform of Z;

time derivative of Z;
angle-of-attack
angle-of-deflection of elevator
identity matrix

reduced mass (23a)

reduced inertia (23b)

frequency

angular velocity

damping

period

quantity X for phugoid mode
quantity X for short-period mode



§1- Introduction

The present paper is related to the creation (Figure
1) in Portugal, of an independent flight test facility
(IFTF) initially based on the BAFR (Basic Aircraft for
Flight Research). The latter (Figure 2) is a CASA 212
Aviocar, of the Portuguese Air Force, converted to
flight test aircraft, using instrumentation offered by the
NLR in Amsterdam, and coming from the Fokker F.27
Friendship twin-turboprop, and F.28 Fellowship twin-
jet airliner, and the Dutch-Canadian Northrop NF-5
freedom fighter program. The project was managed by
the Aeronautics Laboratory of Instituto Superior
Técnico, at Lisbon Technical University, and was
supported by the group of Professor Gunther Schinzer,
at the Institiit fiir Flugfuhrung, of Braunschweig
Technical University. The project is a good example of
international, and national cooperation, e.g. many of the
contacts were made through the Flight Mechanics Panel
(FMP) of AGARD (Advisory Group for Aerospace
Research and Development), and the installation in the
aircraft was performed by OGMA (Oficinas Gerais de
Material Aeronaitico), which is Portugal's largest
aerospace company.

The creation of the IFTF was motivated by pratical
needs concerning aircraft testing, modification and
certification, and has been supported by a fundamental
research programme on dynamics of flight in perturbed
atmospheres and non-linear airplane stability. We
started with an outline of the research activities, which
were started in advance of availability of the aircraft,
i.e. in parallel with the design of the flight test
instrumentation system; in this way, as soon as the
installation of the latter was completed, its was possible
to implement both practical application and
fundamental research programmes. Starting with the
latter three areas of research, of current interest, have
been adressed: (i) concerning flight in perturbed
atmospheres!1-3], an disturbance intensity indicator#
has been applied to aerodynamicl®] and flight(6-7] data;
(ii) concerning aircraft stability[8-10] non-linearl11-12]
and unsteady!13-15] theories have been developed, and
compared with flight test datall6-19]: (iii) the more
conventional approach to linear, steady-state airplane
stability, using Laplace transforms{19-20], has also been
used, and a small part of our results is reported here.

-__Force an mentym Balan

For linear stability, the transverse and longitudinal
motions decouple, and the latter are specified by the
variations in longitudinal Fx and normal F; force, and
pitching moment My:

i=123%  Y;={aF,,AF, aM,}. 1)

The independent variables would normally be also
three, viz. the variations in longitudinal U and normal
W velocity and in pitch angle 6:

i=12,3,4,5  X;={AU,AW,AW’,48,40'}, (2
but for a propeller-driven airplane, adequate modelling

of slipstream effects, requires also the time derivatives
of the latter two W' =dW /dt, 8’ =d6/dt.

If we take for reference state, straight and level
flight at uniform airspeed Ug:

U(t)=Ug+u(t), W(t)=w(t), (3a,b)
the vertical velocity is related to angle-of-attack o
W="UgAa, W’'=UgAa’, (4a,b)
and likewise for time derivatives (4b), so that:
Xj={Au,Aa,Ac’,A6,A8'}, ®

is the state vector, with the five independent variables.

Turning now to the dependent variables, i.e.
moment M and force F, we consider(21-23] first the
latter:

F=m ﬁ+ﬁ/xﬁ),

( )
including the acceleration due to translation and
rotation:

U=Ugey, Q=q8;, 0 =u8yx+w &. (Tabo

Thus the longitudional (8a) and normal (8b)
components of force are given by:

Fxy=m u’, Fy=m(w-Ugq). (8a,b)

Concerning the rotation, we write the angular
momentum Ly in terms of angular velocity Qk and
principal moments of inertia Iy:

{LyLy Lo} = {1000 1,0y, 1,0, }, ©)
and note, on account of (7b), that only pitching inertia is
relevant here:

I=I;: L=Iqg,. 10)

The Euler equation for the moment of forces:

M=L'+QaL=1q"gy, 11
specifies the third dependent variable in (1), viz:
Yi={m v, m(w'-Ugq)1q}, (12)

with the other two coming from (8a,b).

83, Lin ility Th

The basic empirical assumption of stability theory
is a linear relation between independent (5) and
dependent (12) variables:
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5

Y;= 2 Ainj +B; 8¢, (13)

=1
where Ajj is a 3x5 response matrix (14a):
Aij EaYi /GXJ . Bij = aYi /aﬁe N (14a,b)
and the control vector B i (14b) relates to elevator
deflection 8. The 3-components of the control vector:
B; ={0Fy /3¢ , OF, /33, .aM, /38, }. (15)
have to be identified from flight test data, as well as 12
linear stability derivatives:
Aj1=0dY;/du, Aj;=9Y;/d(An),
Ai3 = aYi /a(A(l') s AiS = aYi /a(AG');
the remaining 3 components Aj4 of the 15 elements of

the stability matrix, can be calculated from the
longitudinal and normal components of weight (Figure

3):
Gx =-mgsin8, G,=mgcosh, (17a,b)

which are the only dependet variables influenced by
pitch angle:

(16a,b,c,d)

A14=0Fx /90=0Gx /00=-m g cos8, (18a)
Agy =0dF; /06=0G, /00 =-mgsind, (18b)
A34 = aMy /89 =, (18C)

Thus the mathematical model of linear longitudinal
stability (13), has 15 parameters to be determined (15;
16a,b,c,d).

We can write the system in dimensionless form,
starting with the five independent variables (5), using
airspeed U() and mean aerodynamic chord c:

X;j={u/Uo,Aa,cAa’/Up, 48,c A8"/Up};  (19)

concerning the dependent variables (1), forces are made
dimensionless dividing by dynamic pressure

1 .
> ) U(2) times reference area S:

Y, = {21:x 1pUS, 2F, 1 pUS, 2M,, 1 pURS c} . (0)

and for the moment we use the chord as well.

The linear longitudinal stability system (13) now
becomes:

=1-Cit C2 C3 -Cy -C5 po
-Ca1 —Cp2 p-Cy3 ~Cpq -p-Cy5 0 0
—C31 ~C33 -C33 -C3y -C35 0 j

u/ U()
Ao
cAa’ /Uy

A , @n
cA®’ /Uy
u'c/ U(2)
26" /UG |

where: (i) the Dj relate the dimensionless forces and
moments (20) to elevator deflection:

{D1.D,,D3} = (2/pUfs)
{apx 138 ,3F, 135, , ™' M /ase};

(i) we have made the mass m and moment of inertia Iy
dimensionless, by introducing the specific mass pt and
specific inertia v:

w=2m/pSc, v=2I,/pSc’; (23a,b)
(iii) of the coefficients Cj j» three (18a,b,c) are
determined"a priori”.
{C14,C24,C34} = j{cosB,sin8, 0},
j=2mg/pU3S = uge/ U3

where we introduce the dimensionless gravity j. (iv) the
remaining 12 coefficients involve stability derivatives:

22

(24a,b)

Cn
Cr2

(2/pUgS) aFy /du,

(2 / pU%s) 3F, 13(Aa),
C13 =(2¢/pU3S) aFx / 3(40)),
Cis =(2¢/pU3S) aF /3(49"),
Cp1 =(2/pUgS) oF / du,

Ca =(2/pUBS) 9F / 3(Aa),
Ca3 =(2¢/pURS) 3F, 13(Aw),
Cas =(2¢/pU3S) 3F, / 3(a®’),

C31 =(2/pUgSc) aMy / du,
Cap = (2 /pUGSC) M, /3(Aa)

25
Caz = (2/pUgs) oM, / 3(sa’), @

Cys = (2 / pU?,s) M, /3(A8").
to be identified from flight tests.
- i i f

The system(21) appears as a 3x7 matrix, but it can
can be written as a 4x4 autonomous system of ordinary

906



differential equations(?4-26]. For this purpose we
choose as independent variables the longitudinal
velocity perturbation u, the change in angle-of-attack
Aaq, the change in pitch angle AD, and the pitch rate or
angular velocity in pith ¢ = AD’:

i=1,2,3,4  Z;={u,A0,A8,q}. (26)

The autonomous system specifies the time rates of
the variables in terms of the variables:

4

Zi=3 Hjj Zj+N; 8, 27
=1

where: (i) because q = A®', one row of the matrix Hjj is

a unit vector;

H3; =H3p =H33=0=N3,Hyy =1, (28)
and one component of Nj as well; (ii) the remaining
components of the vector Nj are:

Ny =(U§/¢}{D2 Ci3 + Dy (- Cas)}/ fu(n—Caa)},
Ny =(U/c) Dy /(n~Ca3),

2
N3 E(UO /c) {Dz Cas +D3(u—C23)}/j;

(29a,b,0)
(iii) the remaining components of Hj; are:

u'(p’_c23) {Hll’ le, H13, H14} ::
= {(Uo /C) [C13 Ca1 +C1 (- Ca3)].
(Ufz) /C) [C13 C22 + C12 (- Ca3)].

(30a)
(U(Z) /C) [-C13 Ca4 ~ Cra (1—C23)).
Up [C13 (1 +C25)+Cy5 (u~C23)]},
(r~Ca3){Ha1, Hyp, Hyz Hog } =

= {Cn 1e(Ug/¢)Caa, (30b)

—(UO /C)C24, ~Cos + u} R

j(1—C23){Ha1, Hap, Hy3, Hsg } =

-{(e103)fes ey u-cal]

(c/ U0)2 [c33, Cap +Cyp (it -c23)],
(300

(c/UO)2C33, Caas(c/ Uy
[(333 (Cas+1)+Cas +(p- Cza)]}'

The values of the parameters for our aircraft lead
to the matrix Hij and vector Ni:

Hj=[ -0.024 12385 -19.118 0 ],
~0.00225 -116 0  0.987
0 0 0 1
0.0004 —2.928 0  -0.709
N;=[ 0 |
~0.0576
0
~2.796

(31a,b)

in the system?), This data was obtained from a
collaborative parameter identification work between
DLR and INTA. It was used as initial estimate in our
parameter identification work, in a procedure which
consisted of the following steps: (i) obtaining Bode
diagrams, to determine the frequency ranges allowing
higher accuracy in the identification of parameters; (ii)
designing control schedules, whose spectra have larger
amplitude in these frequency ranges, to be used a inputs
for flight tests; (iii) sampling the flight test data, and
using a parameter identification routine, to obtain the
parameters of the mathematical model; (iv) using the
mathematical model, with these parameters, to re-
construct the flight manouevers flown, and compare
with flight data records, as a vallidation. The vallidated
mathematical model was used to design control
systems, for pitch and altitude, taking into account the
full fourth-order control system, with short-period and
phugoid modes, or a reduced second-order system.
Since we have no space to detail all this work here, we
conclude with a discussion of the two longitudinal
modes, from the data given before.
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- ing of Longitudinal S

Since we have a linear autonomous system of
ordinary differential equations with constant
parameters, it is convenient to use the Laplace
transform[27-29];

Zi(s)= [, Zi(v) e a, (32)

which leads from the system of differential
equations(27), to a linear algebraic system of equations:

-~ 4 i~
Z;(0)-sZ;(s) = X, Hyj Z;(s)+s7IN;8,. (33)
j=1

In the absence of control inputs or initial
disturbances, the system is homogeneous:

4
3e =0=27Z;(0): Z (Hij +$ 81.]) Zj(s)=0, 34
=1

where we have introduced the identity matrix:
5 0 if i#j

Y i=j. @5)

The system (34) has non-trivial solution:
{Zi). 22(5).23(5). 24 (5)} # {0,0,0,0}, (36)
if and only if the determinant of coefficients vanishes:
4
0=Det(Hjj +58;)= Yays", G7)
n=0

leading to a polynomial of the fourth-degree, ,with
coefficients:

n=0,1,273,4:

ap = 0.00637, 0.00527, 0.179, 0.0895, 0.0473. 38)

Note that -s are the eigenvalues of the matrix Hj;
(31a), and hence the roots of (37, 38).

The polynomial (37) may be factorized:
0= a4(s2 +2Epps + mrz,h ) (52 +28ps + cogp ) (39)

emphasizing the damping & and natural frequency ® of
the phugoid and short-period modes[30-32], In the
present case, the phugoid has frequency (40a) and
period (40b):

Oph =0.19157, top =21/ @y, = 32.85, (40ab)

and damping (41a) and decay time (41b):
Eph =0.0314, T, =0.693/ wE =116, (41a,b)

where the latier is the time for the amplitude to decay to
half the initial value. The frequency and period are one
order of magnitude apart from those of the short-period
mode:

0gp =1.903571, 7y, = 3.30s, (42a,b)

and the damping and decay time:
Esp=0.467s7", Ty, = 0.780 s, (43a,)
show even greater conftrast.

The present paper has described Part I of a linear,
longitudinal stability study of BAFR, viz. the
mathematical model. In this conclusion we mention
briefly related work on parameter estimation (Part II)
and control system design (Part I1I).

The study of parameter identification (Part II)
comprised several stages: (i) the use of Bode diagrams
to select the frequency range of optimum identifiability;
(ii) the comparison of several excitation signals, such as
the step, doublet and 3211 inputs, as regards power
spectral density at various times; (iii) aspects related to
data handling, like choice of sampling rate, calibration
and offsets, high-frequency noise and low-frequency
perturbation; (iv) the carrying out of the flight test
manouvers, and use of the data record for parameter
identification by the maximum likelihood[33] method;
(v) the validation of the mathematical model, by re-
construction of the responses to manouevers recorded in
flight.

We do not go into detail in either this or Part III
concerning control system design. The latter used state
space methods in several application: (i) control of the
full fourth-order system using either pitch rate or pitch
angle in the feedback loop; (ii) altitude control by
choice of eigenvalues in the closed-loop system; (iii)
comparison of the fourth-order phugoid+short period
mode model with the reduced short period-only second-
order system, again for pitch rate or pitch angle
feedback; (iv) optimal altitude control using a quadratic
merit function; (v) control using a Luneberg observer;
(vi) response to simulated atmospheric turbulence
represented by a Dryden spectrum. This work is not
complete, since aspects such as Kalman filtering, flight
path reconstruction[34] and handling qualities(33] are
yet to be considered.
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Legends for the Figures

Figure 1 - Bar chart of major tasks in setting up IFTF

Figure 2 Location of sensors in BAFR (Basic

Aircraft for Flight Research)

Figure 3 - Components of aircraft weight for stability
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