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Abstract

The theory presented herein is related to
the supersonic lifting line one (SLLT). It is
based on the small perturbations
assumptions for potential linearized
subsonic flows.

A constant distribution of bound vortices
is assumed along the chord. By imposing the
kinematic condition, which requires the flow
to be attached to the wing skeleton, an
integral equation involving the spanwise
loading is obtained. This equation is solved
by means of a numerical functional
collocation methad.

Results are presented concerning the
chordwise pasition of the collocation point
which yields agreement with reference
theoretical and experimental data.

Nomenclature
A=b2/S8 aspect ratio
A i-th coefficient in the

i
trigonometrical series expansion
of the circulation

b wing span
c wing chord
L
CL lift coefficient = —————
2
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30,
c 1ift slope coefficient = ——
Lot P 3
Mach number
Cy
q taper coefficient = 1 - -
Ct
§ wing surface
Ueo free stream velocity
Xy ¥ wing plane coordinates (see
Fig.1)
ok wing incidence
N sweep angle {(see Fig.1)
r circulation
P non-dimensional circulation
P- r
2 b UgedX
subscripts

LE leading edge
M control point
p current point
r root
t tip
T tail
TE  trailing edge

i. Introduction

The present paper deals with a Constant
Pressure Lifting Line Theory (CPLLT) which
extends the supersonic one (SLLTD) to the
case of subsonic incompressible flows.
Besides the obvious interest of having an
integrated subsonic—supersonic lifting line
method, the investigation aims also to
gather analytical data regarding the control
point position. This is of interest also for
the study of related constant pressure ({CPM)
panel methods (e.g. Woodward{2)) based on
the Boundary Element Method.
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Fig.{ CPLLT Wing Geometry

For incompressible flow conditions the
integral equation relating spanwise loading
and angle of attack takes the form(®)

[2 r'(yn) Hixy % 7y
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For the solution of integral equation (1)
the usual trigonometrical series

development is used

N
Mg =20 de'zlﬁi sin i® (3)
i=

where the angular spanwise coordinate # is
related to v by the relation
y = - (b/2) cos@ (4
Even if the flow is assumed to be
incompressible (M=0), some compressibility
effects can be accounted for by means of the
Prandtl-Glavert correction,

The choice of the control point

2.1, General

The basic agssumption that led to the
present lifting line theory is the constant
pressure (vorticity) distribution along the
chord. This is by no means a natural choice
for subsonic flow, but enables a unified
approach for both subsonic and supersanic
regimes.

The main error is due to the infringement
of the Kutta-JouKowski condition requiring
the trailing edge vorticity to be zero. The
constant distribution of vorticity implies an
infinite trailing edge induced velocity.
Therefore, the trailing edge behaves like an
error emitter and this effect is of special
importance for the near field properties.

Special care should be taken in finding a
suitable position of the collocation point in
order to ensure correct results for the
present theory.

Both global and local corrections of the
chordwise control point position will be
examined,

These corrections will be useful not only
for the constant pressure SLLT lifting line
model, but also for the related panel
methods of Woodward type.

2.2, Glabal control point position
2.2.1. Small aspect ratio wings

In the analysis concerning the limiting
case A +»0 it will be assumed that all the
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spanwise control points have the same
abscissa xy and are located at the same
relative chordwise position p, where

[XN - XLEQYM)} (5

From (2) it follows that

H(x Yy =2 p (4)

M? M1 %

The integral equation (1) becomes

b2
dr’ d)’p

P — = 2T Uy &k (7)
dy, Y. -¥
by2 P MP

The integral in (7 is calculated according
to Cauchy’s principal part. The solution of
(7) is the elliptic span loading, Known to
generate a constant downwash in the lifting
line approximation™), It results

b Uy ok Y \%
— i -( ——-) (8
p b/s2
The corresponding lift slope coefficient
becomes

F(y) =

CPLLT T A
c = — (9)
L

A 2 p

The target value is{®

Theory T &
c = — (10D
L

o 2

and thus we obtain

p=1 (113

2.2.2. Large aspect ratio wings

This limiting case refers to infinite
(two-dimensional) aspect ratio wings. The
spanwise variation of parameters will be
neglected and, accordingly, the induced
velocity may be calculated by a simple
chordwise integral

c
r dxp
—_— % = Yool cosi\ (2
2T c Xp~Xp
i}

Formula (12} yields the circulation as

Te Uy cos
[ = (13
1 P
- in —
2 1-p

The lift slope coefficient can be written
as

CPLLT 2T cosA

CLo( =
1 p

- ]n ——

2 1-p

(14

Since the exact theoretical value for this
case is(é)

Theory
CL = 2WcosA (15
&
the chordwise position of the control point
results

{14)
e +1

2.2.3. General case

Finding a control point position to ensure
good correlation between the present lifting
line theory and proven theoretical and
experimental data for the case of usual
aspect ratio wings is a rather complicated
problem. Moreover, no "exact" theoretical
data are available for wings of general
planform, implying that the applicability of
any analytical solution would be restricted.

Therefore, an empirical formula was
derived for the dimensionless parameter p
{(5) giving the chordwise position of the
control point

p=0.88 + 0.12 / exp (A/coshy)  (17)
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Fig.3 Lift slope coefficient of rectangular wings
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Obviously, formula (17) leade to the
analytical results (11) and (18) for small and
large aspect ratics A, respectively.

Based on formula (17) a comparison is
presented in Fig.2 concerning the lift slope
coefficient of triangular wings as a function
of aspect ratio,

Similar data are plotted in Fig.3 for
rectangular wings.

Finally, the results of the present lifting
line theory are compared in Fig.4 for the
case of untapered swept wings. The
reference data for Figs.2-4 have been taken
from Schlichting and Truckenbrodt (122,

4

C 2
Lo

0 1 2 3 4 5

Fig.4 Lift coefficient slope of untapered swept
wings vs, aspect ratio

2.3, Local correctians of the contral
point position

2:3.1. Infinite cranked wing

In this section it will be discussed the
influence of a sweep discontinuity on the
induced velocity for an infinite wing, see
Fig.5.

It will be assumed that both circulation
and chord are constant which implies that
the effect of the trailing (downstream)
vortices will be neglected.

Ydxp T (x,=%x_)sinl +y cosA
My | g4 P " +
18
e (xM—xP)sinj\.~yMcosA]
4 eme— 14
awd, - MP
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where x\ is the distributed vorticity,

} =T7/¢

Z0

W +upwards

Fig.5

4T wiM) cosA

1)

where,
BM = £ - XM
bM = M tg/\
*M * PLE
El =
ay * Mg
2 2 2
FLE= Mt M
2 2 2
TTE = 8y + ¥M

Xm"r'LES inA &M"PTESi n]\_

<7

X

Infinite crarked wing

The integration of (18) yields

+ 2 sin/\ 1In |E1| + In 'Ezl

2 2
*M ~ by
= ipnp |——| ¢

2 4

M T M
{19a)
{19b)
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(19d)
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In the limit vy —>» 0, for points situated
on the wing surface (i.e. 0<xy<c) the induced
velocity takes the form

{ 2T wiM) cosA XM
tim |- = In +
yn—>0 XL [ XM
4 X {C = ¥Xm)
M M
+ 2 sin 1In +
2
Y
M (20
1 - sin/A
+ In
1 + sin/

We shall notice first that for straight
wings formula (20) leads an equivalent of the
correlation already established (16) between
the chordwise position of the control point p
(5) and the local distribution of vorticity

¢ =% U X (21)
which is valid only for the no sweep case
considered.

Nesxt, it will be observed that according
to formula (20) the induced velocity becomes
infinite along the center line. The same
result has been observed by Kuchemann and
Weber(8) in a somewhat different analysis.

This behaviour of the induced velocity
will clearly affect the loading along each
line where the sweep is discontinuous
{center line, tip, cranks). Either a local
modification of the chordwise control point
position "p" or & wing singularity may be
used in order to tackle this problem.

2 Control point position correction

Based on the analysis presented before,
an attempt will be made at defining a
suitable carrection formula for the
chordwise position of the collocation point
in the regions where discontinuities of the
sweep angle occur,

For positive (see Fig.5) angles of sweep
formula (20) vields

€1

, *M ('M ) €2
lim — = —]- K
M c 2c
--..>0

c

(22)
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where,
1

6y = ———— (23)
1 + IsinAl

ey = 2 IsinAi € (24)
2 l+sinA

K=e (25)
i-sinA

For negative sweep angles, it results

€1
) XM M —&2
lim —~ = | -]~} K (263
M C Z2c
— iy U
c

To Keep the induced velocity constant
when approaching a crank line, formulas (22)
and (26) indicate that the control point must
move towards the leading edge or trailing
edge according to the "sign” (see Fig.5) of
the Kink. Starting from these analytical
results the following empirical formula has
been derived

p=p- Ap. - D py (27)
where P is given by (17) and
£
92 M
App. = £y / exp Hz-k (‘-'-\) ] {283
2c
8n Y E
2/'M
Apy = f53 7/ exp [f4 K -(——~) 1 (29)
2c
P for A 30
£y =4 _ (30)
p-1  for A <0
p-1  for N >0
f3=4 _ (31)
p for AXO
1.8 f54 / p for A0
fo = (32)

1.3 f4 /C1-p)  for A<0

4 /C1-p)  for A >0
fq = _ (33)
foa 7 p  for N <0
2
fa=1+2/4 (34)
2.3.3. Contr aint position validation

Since formula (27) is not entirely
supported by a theoretical analysis, it must
be tested against a number of reference
cases.

In order to make this comparison
possible, the "direct" approach which allows
the calculation of spanwise loading for a
wing of given planform and for an imposed
distribution of control points xy (yy) by
means of the integral equation (1) has been
inversed. In the "inversed" procedure, the
planform and span loading are Known and the
spanwise distribution of collocation points
xply ! results.

For this purpose, equation (1) is solved
iteratively using a Newton-Raphson type
method.

In Figs.6 and 7 are presented the results
for two wings of aspect ratio A=2.75 and
taper coefficient g=0.3, one straight, the
other swept (./‘L2_5=50°).

1
\ o
0\
0 .
09 1——= e —
©
p A=275% -— Egn. (27)
0.7
—-—Eqn. (17)
0.6 1 o Inversed procedure @ —
Source data: ref, (11)

0 02 04 06 08 1
) 4

b/2

Fig.é Control point distribution for the straight
tapered wing of ref.(11)
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Fig.7 Control point distribution for the swept
tapered wing of ref.(ii)

Similar comparisons are presented in
Figs.8 and 9 for a triangular clipped wing of
aspect ratio A=3 and for an untapered swept
wing of aspect ratic A=5. Both have the
leading edge sweep angle A =45° and have
been extracted from ref.(2),

0.9r——__‘;_°_.2__r.__ — — ——— b —

SVAN

p j -— Egqn. (27)
07— 477
————— Egn. (17)
0.6 o Inversed procedure

Source data: ref. (5)

Fig.8 Control point distribution for the
triangular clipped wing of aspect ratioc A=3 from
ref.(5)

1 O]
/
0.9 —
) o O o © _1
9 ©
08 4>
P
0.71 A=5 — Egn. (27)
-—-— Eqn, (17)

[+

0.6 H—

° Inversed procedure
Source data: ref. (5)

T T T

0 02 04 06 08 1
Y

b/2

Fig.9 Control point distribution for the swept
untapered wing of aspect ratio A=5 from ref.(5)

The comparisons in the preceding
diagrams show a reasonable correlation
between the proposed formula (27) for the
collocation point spanwise distribution and
reference theoretical results. It seems that
a better formula could be derived, especially
concerning the tip region, which has been
treated in formula (27) like the center of a
wing with reversed sweep (see ref.(5)),

However, it should be realised that a
total agreement is almost impossible to be
reached because of the intricate local
aspects involved, which preclude an explicit
solution,

3. Results

A convergence test is presented in Fig.10
for the case of the untapered swept wing of
aspect ratio A=3 in Fig.?. The firet
coefficient in the trigonometrical series
development (3) of the circulation A, and the
spanwise position of the load application
point on a semi-wing are showed to converge
very fast. The required computer time refers
to BASIC program run on Apple IIe (8-bit
microprocessor).

The comparisons in Figs.11-14 are
intended to complement those of Figs.6-9.
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Fig.i1 Loading on straight tapered wing of Fig.é
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Fig.12 Loading on swept tapered wing of Fig.7
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Fig.13 Loading on clipped triangular wing of
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Fig.i4 Loading on swept untapered wing of Fig.?

They refer to the same wings, and enable us
to examine the sensitivity of Constant
Pressure Lifting Line Theory (CPLLT)
relative to changes in the chordwise position
of the control points.

The agreement of CPLLT with reference
data is generally satisfactory.

A test case for wing-fuselage
interference is presented in Fig.13. It
toncerns & straight tapered (q=0.5%) wing of
aspect ratio A=4.83 at Mach number M=0.3
mid-mounted without incidence on a circular
fuselage of relative radius R/b=0.1

The reference theoretical data have been
calculated according to the theory of
Multhopp!!® by FerrarillS), The present
approach is broadly similar to these.

Finally, a downwash comparison is
presented in Fig.14.
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Fig.15 Wing-fuselage interference
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Fig.16 Downwash field induced by straight wings
of different taper coefficients

4. Conclusions

The main result of the present paper
refers to the chordwise position of the
control point for the constant pressure
approximation. A formula (27) is presented
which has been derived starting from
analytical considerations and extended
empirically to accomodate finite aspect ratio
effects.

1t is shown that the control point is
largely influenced by sweep discontinuities.
For instance, it reaches the leading edge for
the center line of a swept wing, although
normally it is situated in the vicinity of the
trailing edge.

From the examination of Figs.6-% and
Figs.11-14 it can be inferred that the
relative differences in terms of loading are
roughly of the same order as those in terms
of control point position. Since for swept
wings the chordwise control point position p
(5) exhibit large variations, it appears that
the precision of CPLLT based on formula (27)
decreases.,

The Constant Pressure Lifting Line
Theory (CPLLT) presented seem to enable
satisfactory results concerning span loading.
However, the local correction devised for the
cthordwise control point position does not
fully compensate the singular behaviour due
to sweep discontinuities and thisg is
reflected in the rather unsatisfactory
estimation of downwash, see Fig.1é.

Further investigations are necessary to
assess if a completely satisfactory lifting
line theory based on the constant pressure
assumption is feasible.
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