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Abstract. This study has been designed to fine tune a
method for evaluating the contribution of the sweep-
back angle and the aerodynamic induction of the wing
on the dihedral effect, that is the derivative of the
rolling moment coefficient with respect to the side-slip
angle. This aerodynamic derivative, determined by at
least other four contributions, is important, as widely
known, in the study of the side-directional motion of
the aircraft, and in particular in the determination of
its dynamic characteristics concerning Dutch roll and
spiral mode.

We have evaluated these two contributions to Cy,,
in two different ways. For the sweep-back angle con-
tribution we have used a simple integration method
along the span of the single infinitesimal wing ele-
ment, obviously evaluating the different influences on
the two semi-wings when the aircraft is invested by
a side-slip angle. For the aerodynamic induction we
have used a method which takes into account, also
through integration along the span, the different cir-
culation of the two semi-wings each with a different
flow situation, again in the presence of a side-slip an-
gle.

This method is Anderson’s method modified by us
for wings of whatever plant form and with any geo-
metric twist. The effect of the U-vortices, as is well
known, consists in inducing a speed at the wing in
an orthogonal direction to that of the upstream flow.
This induced speed changes both the module and the
direction of the upstream speed, thus provoking a re-
duction of the angle of attack: the induced angle of
attack. Anderson’s work is based on the solution of
Prandtl’s integral-differential equation and permits to
calculate the circulation on the wing, so that it is pos-
sible to define the induced angle of attack along the
wing span.

Anderson’s method doesn’t provide for high swept
angle wings and so, as mentioned above for the sweep-
back angle contribution, a simple integration along
the wing span have been done; it is however our pur-
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Figure 1: Dihedral wing angle contribution.

pose to extend Anderson’s method to sweep-back or
sweep-forward angle wings.

The results are presented in shape of curves as a
function of lift coefficient, being as we know these two
contributions to C;, dependent on the different circu-
lation of the two semi-wings and therefore dependent
on the angle of attack.

Introduction

The derivative C1, = 6C1/0f3 goes under the name
of Dihedral Effect. The dihedral angle of the wing,
even if it gives its name to this derivative (which ac-
tually only explains the fact that the aircraft is sub-
jected to a rolling moment L when it is invested by
a sideslip angle ) it is only one of the elements con-
tributing to Ci,.

The dihedral angle v of the wing, infact, sup-
plies a component of speed, V,, normal for a quar-
ter line chord and of opposite sign on the two semi-
wings. This determines a lift difference between the
two semi-wings thus creating a rolling moment L (see
Fig.1). For the positive dihedral angle and sideslip
angle, this contribution to Cj, is negative.

Another wing element contribution is the interfer-
ence with the fuselage (Fig.2). According to the wing-
body relative position, due to the effect of a sideslip
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Figure 2: Wing-body relative position contribution.

Figure 3: Swept wing angle contribution.

angle, a side flow is generated giving it normal compo-
nents for the wing. These components then bind with
the speed V; according to the body-axis z, generating
a lift variation of opposite sign on the two semi-wings.
Therefore, another rolling moment is generated that
has the opposite sign, according to the wing-body
relative position and obviously according to the di-
rection of the sideslip angle, that means according to
its sign.

The swept wings also contribute to Ci, (Fig.3).
A sweep-back angle A supplies a speed component
Va, that is useful aerodynamicly because is normal
for the quarter line chord, and is different on the two
semi-wings. This situation generates, like the cases
above-mentioned, a lift difference for the two semi-
wings and therefore a rolling moment. Cj, in this
case is negative with sweep-back angles.

Even if a straight wing is invested by a sideslip
angle 1t can produce a rolling moment (Fig.4). In-
fact, two wing sections equidistant from the symmet-
rical plane, have different distances from the global
U-vortex wing system and particularly from the vor-
tices of the tip wing. This is the reason why the
induced speed and therefore the induced angle of at-
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Figure 4: Aerodynamic induction contribution.
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Figure 5: Vertical tail contribution.

tack is averagly different on the two semi-wings. This
event always causes a lift difference of the two semi-
wings and, therefore generating a rolling moment. In
this case the contribution to C, is positive together
with a positive sideslip angle.

Another wing element contribution to Ci, is the
shape of the tip of the wing. Anyway, this contribu-
tion can be omitted even when the wing has winglets.

Besides the wing, the vertical tail (Fig.5) con-
tributes considerably to the Cj,. When the aircraft
collides with a sideslip angle, the vertical tail gener-
ates a side force. If the mean aerodynamic center,
that is the point where the side force is applied, is
fairly distant from the rolling axis, the side force it-
self generates a rolling moment. Also in this case the
contribution to Ci, is negative with positive sideslip
angles.

If external bodies, like nacelles or floats, which
differ from the fuselage, are fastened to the aircraft,
when a sideslip angle is present they are subjected
to a side force. If it has a lever arm with a certain
entity from the x-axis, even in this case a rolling mo-
ment will be generated. However, these contributions
are usually omitted, except when the aircraft has a
particular shape.
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Amoung these contributions, three of them have
the same order of size: swept wing angle, dihedral
wing angle and vertical tail which can reach at the
most same tenth (obviously with angles of a certain
entity and conventional vertical tail). The wing aero-
dynamic induction contribution is of a smaller size
(and in any case it depends on the Cy, of flight), while
the wing-body relative position contribution is of two
order smaller and the contribution of the shape of the
tip of the wing is even of three order smaller.

Various authors [2, 3, 5] have worked out simple
formulas in order to estimate at least three of the
contributions that really count, that are: the con-
tribution of the dihedral wing angle, the wing-body
relative position and the vertical tail. Even if it does
exist, it is easy to estimate, in the same way of that
for the vertical tail, also the contribution of the exter-
nal bodies fastened to the aircraft. The Etkin [2] also
reports, unless a constant, a relation to estimate the
swept wing angle contribution (which also depends
on the Cr of flight).

During these studies, a complete formula was
reached, even if very simple and approximate, for
the swept angle contribution to Ci, and we estimat-
ed, through Anderson’s method, the contribution to
the C, of different aerodynamic induction of the two
semi-wings which are invested with a sideslip angle.

Anderson’s method, as explained in the following
paragraph, has been extended in order to be applied
to wings having any plant form and any twist, but at
the moment it can only be applied straight wings or
with low swept angles.

A swept-tapered wing was used for our calcula-
tions and as a numerical example, therefore the swept
angle contribution and the tapered wing contribution
were considered distinctively and then added, even
if, for the tapered wing contribution, the wing could
have been straight, but with any plant form and any
twist.

Anderson’s Method and its Improvements

Anderson’s work is based on the solution of
Prandtl integral-differential equation, wich originates
from the following relation between the angle of at-
tack, the induced angle of attack and the section lift
coefficient: c

1
o = ag — o (1)
Recalling the circulation expression on the wing, wich
is:
I(y) = 26V ¢(9) (2)

Figure 6: Reference system used by Anderson.

and introducing Fourier series instead of g(#), we ob-
tain the following expression:

I'(y) = 26V f: Ap sin(nf) (3)

n=1,385...

Everything is known in it, but coefficients A, are
the values we want to find. For this purpose we ex-
press a; and ¢ in function of I'(y) and replace a,
with a simple geometric relation, obtained suppos-
ing the law of the aerodynamic twist to be linear:
aq = Qg5 + €7% | cosf |. It results in the following
expression:

= n 4b
Z A, sin(nf) [—-——— + ] = 0gs+€™? | cosf |
n=1,35... sinf -~ cmo
(4)

The term on the right represents the linear law of
twist mentioned before. All terms, except the val-
ues A, are known. The method correctness depends
upon the number of terms of the series we consider.
Anderson has taken the first four terms. Consequent-
ly, the equation has four unknown quantities (A, As,
As and A7) whose values can be found if we write it
in correspondence of four different wing sections (or
of three wing sections with reference to the Fig.6).

The resulting system is defined and linear and, if
we considere only three sections (r, s and t), it could
be schematized as follows:

Arerr + Ascip + Asers = gy +€7%% | cos b, |
Arcar + Ascap + Ascas = s +67%% | cost, | (5)
Arcs1 + Ascsy + Ascas = @as +€7%% | cost, |

where ¢;; represents the quantity we can find on the
left hand side of the expression (4), obviously except
Arn. Anyway, locking at the system itself, we can
observe that values of unknown quantity like A, are
linked to the incidence of the wing (e,,) and to its
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angle of twist (¢). For each value they assume, we
find a different solution of the system wich, of course,
brings to a different expression of I'(y). To avoid re-
doing the whole process for each configuration (once
that the wing geometry has been established), An-
derson has introduced the following substitution:

An = Bpag, + Cnsmd (6)

Once that the six values (B, and C,) have been
found, they can be inserted into the expression of I'(y)
which, in the meanwhile, has been written in function
of them. After that, starting from I'(y), we can ob-
tain all the other quantities concerning the wing (c;3
and ¢, distributions, z4., Cp; and so on; refer to
Anderson’s report).

Values of B, and C,, have been calculated by An-
derson for a number of a straight-tapered wings and
substituted in the dimensionless quantities L, and L,
which represent ¢;; and ¢;; respectively. Besides all
the other quantities have been taken into account,
but we don’t mention them. Results form groups in
tables or graphics that are easy to read and by which
you can obtain the information you need quite rapid-
ly. The wings studied have rounded tips, their aspect
ratios are included between 2 and 20 and their taper
ratios are included between 0 and 1.

Figure 7: Position of vortex axis in presence of 3.

the one obtained whith the wing secion distribution
chosen by us. After this, we took a wing of any shape
and, in correspondence of chosen sections, we calcu-
lated the b/c ratios putting them in the correspondent
equation of the system (4). A comparison whith an
empiric relation of L, given by Anderson, has proved
the correctiveness of the procedure. Secondly, new
laws of twist have been introduced: exponential law
or, dividing the semi-wing in two parts (chosen at
pleasure) each of them characterized by different a
linear law or by different exponential laws. To ob-
tain this, we had to modificate the equations used;
now let’s see how the law of twist actually changes
the expressions in math. The math expressions are
contained in Table 1.

law resulting equation
linear Qa = Qas+ g'adlcosq Ci-eil + Cierz + Cs-az=|cosd
exponential Qo = G5+ €005 " Cirein + Cyerz + Cserz=|cosd]”
bilinear ad ad  |cos
1 aa=aas+e’“d%;ﬁ- Crrenn + Czenz + C5'013=:,;T||m;%|
E{ad‘*' 2adX—Xl 8{ad+ éad_%
2)aa = ags+ £ gmdl"’Xl Crrenn + Cyraz + Cseeiz= ad

Tab. 1: Law of wing twist for different configurations and consequent modifications.

The possibility given to us through the comput-
er, to resolve many complicated systems in a short
time, has allowed us to make some improvments on
the method. Essentially they have been made in two
directions: extension of it to wings of every shape
(not only straight-tapered), and the possibility to use
a twist charaterized by different laws.

First of all, anyway, it is necessary to look for the
correct position of the sections of the wing taken into
consideration. This research was based on the com-
parison between the L; state given by Anderson and

Aerodynamic Induction Contribution

Our approach in order to take into account the
contribution of aerodynamic induction to Ci,, is to
consider the wing characterized by the usual group
of vortex, shaped like a "U’, with their lateral axis
oriented parallely to the wind, as the image shows,
therefore forming an angle # whith the wing x-axis
(Fig.7).

This changement has an important consequence:
the corresponding distribution of section angle of at-
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Figure 8: Scheme which represents how a,, remains
unchanged with £.

tack changes, being translated on the left of a quan-
tity dependent from beta and from the chord of the
section we consider, as we will see later. Once that we
have found the new induced angle of attack in corre-
spondence of a section, we subtract it to the apparent
angle of attack its value obtaining the true angle of
attack. Then, multiping it by the wing section lift-
curve slope,we find the section lift-curve coefficient:
4
e = Qg — 05 = —
[4
and so:
= my (0 — o) (M

The fact is that in presence of angle 8, the wing’s
apparent angle of attack is invariated which can be
easily understood looking at the scheme below. The
horizontal plane is the plane on which all wing chords
lie (there is neither aerodynamic twist nor dihedral).
The inclined plane represents the direction of thewind
in two cases: when 8 equals zero and when 3 is dif-
ferent from zero. It is easy to see that a,; is always
the same (Fig.8).

Once that we know the section lift coefficient,
through an integration we can determine the rolling
moment which ought to be the new distribution. Now
let see how the calculations ares pratically done. First
of all we take into consideration the expression of a;
as it appears in Anderson’s method:

= sin(nf
Za SlEl 6 ) (8)

With the computer program realized to use and im-
prouve Anderson’s method, we can determine coef-
ficients A,, consequently we are able to know, for
different angle of attack, the distribution of a; along
the span. Than we have to consider the translation
caused by £ explained before. If we had a wing char-
acterized by a taper ratio equal to one, the situation
would be that illustrated in Fig.9.

(7( 7§Al

Figure 9: Translation of o; on the trailing edge in the
case of r = 1.

Figure 10: a; along the span with and without 3.

We consider that in presence of side sleep angle the
section wing induced angle of attack in A is the same
as that we have in A; in case of symmetrical flow;
so the new situation can be showed with a graphic
in which each value of o; is translated on the left of
a quantity equal to f, whose value is given by this
relation: ¢ = 3/4c tan B (see Fig.10), and it is the
same for each abscissa y.

If our wing has a taper ratio smaller than one,
the situation changes quite a lot. In fact in this case
the chord changes linearly along the semispan, con-
sequently the segment ¢ will the same (see Fig.11).

The result in @;/y graphic, is similar to the pre-
vious one, but not equal. Besides it is clear too that
on the right tip there is a little portion of surface (de-
limited by k) which lies on the right of the axis of the

Figure 11: Translation of a; on the trailing edge in
case of r < 1.
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Figure 12: Portion of trailing edge of the right tip.
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Figure 13: Situation on the right tip in the case it is
tapered.

last vortex, so the value of o4 in it remains undeter-
mined. Its amplitude is linked obviously to 8, and to
the taper ratio too (see Fig.12).

In fact if we observe from nearby the wing tip, it
Is easy to understand that the dimension of segment
k is approximately equal to: k = 3/4c, tanB. In
spite of its small dimension, it is giving much impor-
tance because of the long distance which separates it
from x-axis around which we calculate the resulting
moment.

Some attempts have proved that, calculating the
moment considering a law of oy distribution instead
of another, brings to a completely different result.
The problem has been resolved as follows: first of all
we have to consider that the tip is rounded and so
the segment k is ulteriorly reduced as the drawing
confirmes (see Fig.13).

In presence of taper the segment k becomes k’
with the conseguent reduction of the area which is

Figure 14: Situation on the left tip.

interested by the undetermined law. Than we must
think that the point B lies on the same vortex axis on
which B’ lies too; consequentely, in both points the
induced angle must be the same. Necessarily in the
space between B and B’ the angle o; can’t change
in a radical way, so we can say it is an acceptable
approximation if we consider it constant.

The fact of having introduced rounded tips has a
consequence also on the left tip. Going back to the
previous situation, considering its extreme point C,
the corresponding value of «o; is the one which, In
case of symmetrical flow, belongs to the point C1.
Consequently it is smaller, and on the left wing the
maximum value of «; is lost while it continues to be
present on the right one (see Fig.14).

Introducing the rounded tip, the situation on it
changes quite a lot. In fact the segment t whose
a; graph we have to translate, becomes smaller and
smaller till the left end where its value is equal to ze-
ro. So the corresponding induced angle in that point
is the same we have in the symmetrical situation. The
graphic can show the difference (see Fig.15).

Now that we have the value of o; for each section,
using the passages mentioned before, we can obtain
the corresponding values of C;.

From this, with reference to Fig.15, it is possible to
calculate the value of the rolling moment coefficient.
The moment is given by the following expression:

1 b/2
Lia = 3oV* [ acydy) @
~b/2

and consequently the coeflicient becomes:

b/2
- Y locqafy
o= [ mros () w0
and with the position: y/(b/2) = t the integral be-
comes:

1
Cline = -1—/ tczzc—di (11)

2 J m
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Figure 15: Left tapered tip: reduction of t and con-
sequent oy distribution.

Figure 16: Calculation of the swept wing contribu-
tion.

The ratio ¢/em can be expressed in function of the
taper ratio and the aspect ratio in this way:

2

c —
em  (1+7)

1+ (r-1)] (12)

Taking origin from this expression the computer cal-
culates the value of the coefficient of rolling moment.

Sweep-Back Angle Contribution

As aforementioned in the Introduction, a wing
swept angle determines, when the wing is invested
by a sideslip angle 3, a rolling moment L.

With reference to Fig.16 and considering the two
semi-wings invested by the wind effective component

Vn, that is, by the component of the wind normal to
the quarter line chord, we can write the relation of
rolling moment L, caused by the sweep-back angle
A, when the wing is invested by 8. The contributions
of the two semi-wings must be considered separate-
ly, because each (of the two semi-wings) presents a
different effective component of the wind V;;:

6/21
Ly = _/ Esz cosz(A—ﬂ) Creyd(y) +
0

b/2 1
+/ §,91/2 cos? (A + B) Cr cyd(y) (13)
0

The symbols which appear in these integrals are
known; see the List of Symbols at the end of this
report for reference. The signs + and — for the con-
tributions of the two semi-wings are obviously due to
the fact that such contributions are opposite and we
have followed the usual conventions concerning the
rolling moment. For the calculation of this contri-
bution to dihedral effect we have followed the classic
method of integration along the wing span of the con-
tributions of single wing elements.

By extracting from the integral what can be con-
sidered as constant (for Cr this is only possible by
considering the wing with constant aerofoil section
and without twist), and by indicating by:

b/2
L = / cyd(y)
0

we obtain the following expression of the rolling mo-
ment:

Ly =~ %pvzcm [cos? (A — 8) — cos? (A + B)]
(14)
and, by developing the trigonometric expression in
square brackets, we cbtain the coefficient:

_ 2CpI; (4cosAsinA)
Sb

In order to get to this expression by developing the
trigonometric expression, one needs to presume that
the B angle is small,and therefore: cosf = 1 and:
sin § = f; finally, with a furter trigonometric step:

4Cp I, sin(24A)
_2Cehen(Zh) (16)

From which the contribution to dihedral effect is ob-
tained:

G, = B (15)

G, =

4CL I sin(2A
CIEA - — L 1;;’1( ) (17)

with negative sign, as already mentioned, positive f
and sweep-back angle.
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Ci, is therefore, due to the wing swept angle, a lin-
ear function of Cy with this approximate calculation
which sums up all contributions of the single wing el-
ements. In facts, the same result has been achieved
also in {2].

For the numerical examples quoted in this work,
we have considered a swept-tapered wing, so that in-
tegral I; takes on a particularly simple form:

Il=“bi(ct+£r‘)

12 2
Therefore, the (17) takes on the following shape:
_ 4CLsin(2A)(r +1/2)
Croa = = 6(r+1) (18)

See the List of Symbols for the meaning of the various
terms. It is interesting to note that, with the analyt-
ic development described above, this contribution to
Ci, does not dependon the wing aspect ratio A, but
on the wing taper ratio r only.

Results and Numerical Examples

Starting from the relations seen before, we have
done a numerical example based on a wing having an
aspect ratio equal to 7 and another equal to 5 and a
taper ratio equal to 0.5. For our wing "¢ = 0, so
g = ags. The wing firstly has been considered with-
out swept and in this configuration we have calculated
the effect of induction in case of sidesleep angle. The
angle in question assumes four values: 4°, 8°, 12° and
16°, and for each of them the corresponding value of
Ci = f(B) has been calculated. The same process
has been done with regard to four different absolute
wing angles of attack. In Figs. 17 and 18 we can
show the Ci(f) trends for the four values of a above
mentioned,

As we can see, the function C; = Cj(f) is not
linear. In consideration of our necessity to obtain a
constant value of C;, = 8C;/38, just to make some
approximative considerations around the contribute
given by the two effects taken in exam, we have to
consider the straight line which interpolates the func-
tion and to use it in the place of the function itself
(its values will use after).

Values of Cj(3) are all positive, and change also
in dependence of the wing angle of attack. These
concepts are summed up in the three-dimension graph
which follows (see Fig.19).

It is clear that the coefficient of rolling moment
can increase both in dependence of a,, that of 3.

Later we have taken into exam effects of swept
indipendently from induction and, whith a calculus

Ci

16 1l2 14 16
side-sleep angle

»
[+
bl

0.01

0.005} S — .‘._."i,,,f—"'.ff. o : .
—————————— | -7

0.015

C] 001}

0.005¢}

é 16 12 14 16
side-sleep angle

side-sleep angle

Figure 17: C as a function of 8 for A = 7 and for
different a.
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Figure 18: C; as a function of B for A = 5 and for Figure 19: Relation between C) and the two parame-
different a. ters B and ag;,.
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Figure 20: Final results: iclation between Cj, and
Cy for various configurations.

based on the relation seen before (see paragraph:
Sweep-Back Angle Contribution), we have obtained
the value of Ci,/Cr for two configurations: swept
= 30°, swept = 45°. This ratio results indipendent
from any other parameter but the taper ratio and the
swept. So, in this case, it is constant for any value of
Cr, and o4s. Naturally its sign is negative, opposite
to the sign of the same ratio regarding the effect of
induction.

Coming back and looking to the relation between
Ci, and C given by induction, and particulary look-
ing at the function C;,/Cr = f(CL), we can easily
observe that it is almost constant (see Fig.20).

In the some Fig.20 is also reported the sweep-back
angle contribution and the sum of the two effects:
aerodynamic induction and sweep-back angle.

So, as we have done before, we take in considera-
tion a middle value of the ratio C;,/Cr to compare
it with the correspondent ratio ought to the swept.
The contribution linked to the sweep-back angle will
be constant for different values of the aspect ratios
(like must be as said before). At the same time con-
sidering the effect of the aerodynamic induction, the
contribution is the same for different angles of swept:

in fact thinking about our hypotesis, which consist in
studing the two effects separately and summing up
their contributes, this second effect has been studied
on a wing in which swept is equal to zero. We obtain
that reported in Table 2.

A=30° A=45°

A=7 A=5 =7 A=5
Cip

s 10,0857 | 0.0772 | 0.0857 | 0.0772
CL
G

/8 -3849 | -3849 | -.4444 | - 4444
CL
Cia

“Wnaen | 2992 | -3077 | -3587 | -3672
CL

Tab. 2: Final results comprehensive of aerodynamic
induction and sweep-back angle.

Conclusions

The above reportes results are quite satisfactory
if compared to [7] where diagrams are provided in
order to determine the contribution to Ci, for swept-
tapered wings (like those considered here) for differ-
ent aspect ratios and sweep-back angles. It is obvious
that the influence of the aspect ratio, in our case, de-
rives from the very aerodynamic induction, given the
fact that, as already mentioned, with the simplified
development carried out by us, the effect of swept
angles is not affected by aspect ratios.

Of course, the integration along the span has in-
volved a large approximation, in that by taking into
account the wing elements the reciprocal influence of
each other and, most of all, the effect of the wing tip.
We have taken this effect into account in the different
aerodynamic induction of the two semi-wings, and it
is interesting to note that the effect of aerodynamic
induction is far from negligible in the evaluation of
the various contributions of the wing to Cj,.

Another large approximation has been introduced
by considering the 8 angle as always small, so that, if
confounding the angle with the sine involves the great
comfort of having a Cj, independent from 3, it is also
true that cos § may become quite different from 1.

We intend to carry out a test in the wind tunnel
of our Department at the Polytechnic of Turin on
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a isolated swept-tapered wing. In this way we will
obtain an immediate confirmation of the accuracy of
our results, as well as an indication of the possible
variation range of the involved parameters, so as to
provide constant precision of the results.

The next development of this work will consist in
the attempt to extend Anderson’s method to swept
wing with dihedral angle. Twist angles can already
be taken into account thanks to the above mentioned
extension of Anderson’s method. By so doing, we will
be able to determine all contributions of the wing to
the dihedral effect and to consider wings of any shape
and geometry.

List of Symbols

A Aspect ratio

b Wing span

¢ Local chord

o Section lift coefficient

Cla Section additional 1ift coefficient
cry Section basic lift coefficient

Cm Mean geometric chord

cr Wing root chord

¢ Wing tip chord
Cpi; Wing induced drag coefficient

G Rolling moment coefficient

Ci,  Dihedral effect = 8C; /88

Cr  Wing lift coefficient

L Rolling moment

m,  Wing section lift curve slope

r Wing taper ratio = ¢;/c,

S Wing area

1% Wind speed = V

Va Normal wind speed component

Ve Wind speed component along x-axis
Ve Wind speed component along y-axis
V, Wind speed component along z-axis
z,y,z Body axes

Co-ordinate of wing aerodynamic center
Generic co-ordinate of a wing section = cos§

M 8
®

X1 Co-ordinate of a wing section of twist law
change = cosf;

ay Section apparent angle of attack

Cas Absolute wing angle of attack measured from
the zero lift direction of the root section

o, Section effective angle of attack

o Section induced angle of attack

B Sideslip angle

v Wing dihedral angle

€™ Twist in radiants from root to tip

&1 Twist from root to the section
of twist law change

€9 Twist from the section
of twist law change to tip

g Anomaly

A Swept wing angle

p Air density
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