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Abstract In this paper some new, original
spectral solutions for the three-dimensional
stationary, laminar, compressible boundary
layer equations on flattened flying configur-
ations in supersonic flow are obtained. The
most important applications of these spec—
tral solutions are the computation of the
total drag coefficient Cét), including the
friction effect and the performing of viscous
optimal design of the shapes of the flying
configurations via iterative optimum-opti-
morum theory of the author. The chosen
configuration for the exemplification of the
theory is the delta wing alone.

1. The Edge Solution of the Borndary
Layer

Let us refer the thick, lifting delta wing
with subsonic leading edges, with the
similarity parameter of planprojection
v=B{ ( B= 020.:—1, £=l1/h1 with ¢ the
half span, h; the maximal depth, M, the
cruising Mach number)
thogonal
having the apex of the wing O as vertex.
The Ox;-Axis has the direction of the
shockfree entrance. The undisturbed veloc-
ity f)w

Copyright © 1994 by ICAS and AIAA. All rights reserved.

to a three-or-

system of coordinates Ox;xox3

is parallel to the symmetry plane

Ox;x3. The downwashes w and w* of the
thin and thick-symmetrical wing compo-
nents are given in the form of superposi-
tions of homogeneous polynomes in X; and

]'\éz ie.:
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The corresponding axial disturbance veloc-
ities u and u* for the delta wing compo-

m=

nents with subsonic leading edges, as in

[1]-[7] for the outer inviscid flow are
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Here is '}Vq = xl/h1, }Ntz = X2/£1, ;(3 = X3/h1,

vV = BZ, B = JM(%-:—]., l = el/hla SJY =

%2/?(1,W=%,W*=%*,u=lﬁ,u*=

£ * and

M, = 1+ (- Vy) (4a)
A 2v(1-7)

M, = A+ 1 + ) ) (4b)
i 2v(1+§)

The coefficients Kn,gq, Cn,2q Of © and
an , Dn,gq , C’ﬁ,gq of #* and the coeffi-
cients Wij , Wij of the downwashes W and,
respectively W are related through the fol-
lowing linear and homogeneous relations as

n [1], [5], [13] i.e.
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C24s]
only on v. The inviscid drag coefficients

are non-linear functions depending

Cq, C§ of the thin and thick-symmetrical
delta wing components are:

cd=szju%§1dxldy, (7a)
ﬁAlﬁ

Ch=8¢ J B ¥ % d% dF (7b)
ﬁAle

Let us now denote §* and &~ the dimen—
sionless thicknesses of the boundary layers
on the upper and lower surfaces (3"=6*/h1,
§-=6-/h;) of the thick, lifting delta wing
(Fig.1). An easy matching of these zonal
solutions is obtained 1f the slopes of boun-
dary layer thicknesses 8+ and & in the Ox3
direction are approximated in form of
superpositions of homogeneous polynomes in

x; and X, as in [8], [9] i.e.

33* _ ul ~m-1 LS ’5+ ~k

—=> X E n-k-15k |¥] (8a)

5x1 m=1 k=0

06 N m—-l Nk 8b
=> X Z w1k |15 (8b)

0x1 m=1 k=0

The modified downwashes W; and W} at
the edge of the upper boundary layer are
of the following form:

n—1
Z X > 8 7] (92)
N N 1 I —1 N*( )
}:1 g U lyl- (9b)
n= =

The modified coefficients in these formulas
of Wi and W} are

v'?rg}) = Wwij + %— (sij + Sﬁ) , (10a)
\%’fj(l) = \%"{j + % (3{}‘3 - 351-). (10b)

The axial disturbance velocities u; and u}
at the edge of the boundary layer are ob-
tained from the formulas (2) and (3) by
replacing in (la,b)(6a~c) the coefficients
Wij, Wi; with the modified coefficients
NS)’N*(l)

and ug at the edges of the upper and lower

. The inviscid axial velocities ug

boundary layers are obtained from u; and
u} as follows
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w=-w+aul,us=u + o} (11)
2. Spectral Solutions for the Three-Dimen-
sional, Compressible, Boundary Layer

The starting points for these spectral
solutions are the continuity, the impulse,
the physical equation of state and the
energy equations as in [16]-{21] i.e.
- The continuity equation:
9(gu) , 9(gv) . d(ew) _ |
x4 0xo O0x3
- The impulse equations:

u@ll_+va_“_+wﬁl_1_=.1.[_32g
0
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u Q‘y_ 4 v a_"v_. 4w a_“f__ -_—
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o |0x1| 0x Oxa| 0Ox9

- The energy equation and the physical gas
equation for perfect gas :

0 ug-ei—+v‘—9—e—-+wai =—pediv13
0x1 0xo 0x3

+A AT + p¢, p= gRT

o= 2|+ (&) @) + Q)

X4 X9 X3 3X1

ow 2 ov uy 2/, »
AL — + —)-=(div D),
* (6xz) * (6x1 * 6xz) 3 ( Y )

e=T+%(u2+v2+w2).

(14a,b)

Hereby is T the absolute temperature, ¢
the dissipation function, e the internal en-
ergy. Let us further introduce the coordi-
nate 7=(x3 - Z*(x1,x2))/6*(x1,x2) in the up-
per boundary layer. The dimensionless
axial, lateral and vertical velocities us, vs,
ws on the upper boundary layer are

N N
W=Ue p Ui ,V6=Ve D ViT,
1=1 1=1

N .
W§ = We D Wi 7 (15a-c)
i=1

(ue = ug , ve = V&, We = W§ )

Here ue, ve, we are the edge values, ob-
tained from the outer potential flow. The
non-slip conditions at 7 = 0, us = v =
ws = 0 on the surface of the wing are
automatically satisfied. The matching con-
ditions with the potential flow at the edge

of the boundary layer (9 ¥ 1) are

6116
Uy =t , — = (7%, = 0)
o
8%u; i
— =0 =0), (16a-c)
on? an
6V6
Vg = Ve , — =0 (1x9 = 0)
an
62V6 BTXZ
—_— = (—=0) (17a)
on? an
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These boundary layer conditions lead to
the following linear and homogeneous rela-
tions among the coefficients uj, vi, w; of
us , vs and ws

N N
> wo=1 , > iug =0
i=1 i=1
N
ii-Duwy =0 , (18a—)
i=1
N N
Z vi =1 Z ivi=0,
i=1 i=1
N
> i(i-1)vi =0 . (19a-c)

For laminar flow at the edge (n = 1)

N
Wy =We ie > wi =1 (20)
i=1

Remarks

a) In the boundary layer p=pe(x1,x2). By
using the physical gas equation ( here the
equation of perfect gas) the absolute tem-
perature T inside the boundary layer can
be expressed only in function of the pres-
sure pe at the edge and of p ie.
T = pe/(e R).

b) The viscosity g depends only on the
temperature T. If an exponential law is

(k/a2)" it results in:
b= (T ) =i (Re) (21)
Ty 0

¢) The temperature T can be eliminated

accepted and pi=p,

from the impulse equations (13a-c) and the
partial differential equations of the three -
dimensional compressible boundary layer

The first
one formed by the first four equations i.e.

can be splitted in two groups.

the continuity and the impulse equations,

which depend on aj, vi, w; and p. The in-
ternal energy e is obtained from the equa-
tion (14a) in which the absolute temper-
ature T is given from the physical gas
equation. After these remarks the impulse
equations written in Ny=N-2 chosen points
Py (k=1, 2, .. (N-2)) in the boundary layer
are quadratic algebraic equations:

N 1) (1) (1)

Z Z ui(Aijk wj + Bijk vj + Cijk wj)
i=1 j=1

(1) N (1) (1) (1)
=Ak + Z (Aik ui + Bik vi + Cik wi)

N X (2) 2 (2)

Z Z vi(Aijk uj + Bijk vj + Cijk wj)
izl j=1

(2) N (2) (2) (2)
=Box + Z (Alk ui + Bik vi + Cik Wl)

1=1

N (3) (3) (3)
Z Z wl(AIJk u; + Ble vy + Cle WJ)

1: J...
= _;_ Cik wi .
i=1

The equations (22a-c) together with the
boundary conditions (18a—c) and (19a—)
form a guadratic algebraic system with re-
spect to the unknown coefficients u;j, vi, wij
of us, vs and ws. If § and p are firstly gu-
essed in Ny chosen points Py in the bound-

(22a—<)

ary layer the 3N coefficients uj, vi, wi can
be obtained by solving the system given
above. The remaining equations (20) and
(12) (the last integrated once with respect
on 7) are used to correct ¢ and 4 in the
higher order iteration loops.

3. Computation of the Total Drag

Coefficient C{

The shear stress component 7" at the
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wall and the friction coefficient C.sf) are

N DL
%1’ = x1' I = [ U Ue
n=0 dn =0
Ca’/=8 v u | uex dxy dy (23a,b)

ﬁ‘h%

The total viscous drag coefficient, is Cét)=
c{P+ Cq4 + C% . Hereby Cq and CY are
the inviscid drag coefficients of the thin
and thick-symmetrical delta wing compo-
nents given in (7a,b). In the (Fig.2) and
(Fig.3) the total and the inviscid drag co-
efficients Cét) and Céi) = Cq + C§ and
the polars of the wedged delta wing (Fig.1)
are compared. The friction drag coefficient
increases slower as the inviscid drag when
the angle of attack increases. The spectral
solutions are also very useful for the vis-
cous optimal design.

4. The Optimal Aerodynamic Design of the
Flying Configurations

The drag of the flying configurations FC
at high speed (the supersonic aircraft, the
waveriders and the space vehicles) can be
very much reduced if the shapes of their
surfaces are designed by performing a glo-
bal optimization, i.e. their cambers, twists,
and thicknesses distributions and also the
similarity parameters of their planprojec-
tions are simultaneously optimized in order
to reach a minimum drag at cruising Mach
Additionally, the
must fulfill some local or global auxiliary
conditions of geometrical,

number. configuration
aerodynamical,
thermal and structural nature. If an invis-
cid solution for the three-dimensional hy-

perbolic boundary value problem concerning
the determination of the velocity field D is
considered as start solution an inviscid op-
timal design is performed. The fully-opti-
mized shape of the FC is obtained by
using the Optimum - Optimorum Theory
of the author in one step as in [1]-[13]. If
more realistic viscous start software are us-
ed for the computation of the velocity field
U the influence of viscosity in the total
drag and in the fully-optimized shape of
the FC can be obtained by using the Iter-
ative Optimum-Optimorum Theory as in
[13]-[18]. The author proposes her own
three-dimensional zonal solutions (poten-
tial/boundary layer) as in [15],[18] as start
solutions for the performing of the viscous
optimal design of the shape of the FC. The
inviscid and the viscous design of the delta
wing alone are here performed as exemplifi-
cation.

5. The Optimum-Optimorum Theory and

the Inviscid Design
The optimum-optimorum theory allows

the simultaneous determination of the opti-
mal shapes of the gurface and of the plan-

projection of the FC in order to obtain a
minimum drag . The determination of the
optimum-optimorum shape of the FC leads
to an extended variational problem for the
inviscid drag functional Céi), ie.

Céi) = J F[ xl,xz,Z(xl,xz)Jdm dxs = min.
S(X1,x2)
(24)

Here the function Z(xi,x2) (i.e. the equa-
tion of the surface of the FC) and also the
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boundary S(xi,x2) of the integral (i.e. the
similarity parameters of the planform of
the FC) are a priori unknown and are de-
termined by the solving of this extended
variational problem. According to the Op-
timum-Optimorum Theory [2], [5] the opti-
mum-optimorum FC is chosen among a set
FC, defined
through some common properties. In the

of admissible which are
frame of the author’s optimum-optimorum
theory, two FC belong to the same set if:
their downwashes w and w* (of the thin
and thick-symmetrical components of the
FC) can be piecewise approximated through
two superpositions of homogeneous poly-
nomes of the same degree; their planprojec—
tions are polygons which can be related
through affine transformations and the
shapes of the FC of the set fulfill the same
auxiliary conditions (of geometrical or
aerodynamical nature). The free parameters
of the optimization are the coefficients Wi;
and W}; of the polynomial expansions of
the downwashes w and w*(i.e. of the local
incidences and slopes of the surfaces) and
the similarity parameters (v, u,..., vp) of
the planprojections of the FC of the set.

In order to solve this enlarged variational
problem for the determination of the ex-
tremum of the drag functional Cgi) with
free boundary the author uses her hybrid,
numerical-analytical method. This method
starts with the remark, that the depend-
ence of the drag functional Céi) versus the
coefficients Wi; and W3; of these polynomial
expansions of w and w*, which piecewise
approximate the incidences and the slopes

of the surfaces of the FC, is quadratical
while the dependence versus the similarity
parameters v; of the planform is strong
non-linear. The method presents two steps.
In the first step the set of similarity par-
ameters of the planform (v, ws,..., vpn) i8
considered as given. The boundary of the
drag functional c&i) is now a priori
known. The optimal values of the coeffici-
ents wi; and W}j of the downwashes w and
w* on the FC are obtained by solving a
algebraic system. These optimal
coefficients determine uniquely the drag
functional’s value (Cgi))opt, for the pre-
scribed set of similarity parameters of the
planform. This value of (Céi))opt repre-
sents a "point" of what is called here lower

limit hypersurface of the drag functional
i)

(CE)opt = £ty vy 2) (25)
Each of these points is analytically deter-

linear,

mined by solving a classical variational
problem with a given shape of the plan-
form.In the second step, through systemati-
cal variation of the set of similarity par-
ameters the "position" of the minimum of
this hypersurface is numerically (or graphi-
cally) determined and gives the best set of
similarity parameters (vi, vs,..., vn) of the
planform. The optimal set of the simila-
rity parameters together with a chosen area
So of the planprojection determine the
shapes of the planform of the optimum-op-
timorum FC. The shape of the optimum-
optimorum FC is the optimal FC corre-
sponding to this optimal set of similarity
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The minimum value of the
"ordinate" of the hypersurface represents
the drag coefficient of the optimum-opti-
morum FC of the set. The resulting Global
Optimized Shape of the Configuration
obtained by using the Classical Optimum-
Optimorum Theory depends on the chosen
"start" software for the calculation of the
velocity field U around the configuration
and on the chosen set of auxiliary condi-
tions. The Optimum Optimorum Theory
can be used for any set of auxiliary con-
itions and for any start software for D.

In our previous papers we have used our
own potential solutions as start solutions
for 0 and a set of auxiliary conditions of
geometrical and aerodynamical nature for

parameters.

the design of the Inviscid Fully-Optimized
Shapes of the following three different fly-
the Delta Wing
Alone, presented in (Fig. 4),and (Fig. 5a),
and in [2]-[7], the Integrated Delta Wing-
Fuselage Configuration presented in (Fig.
5b), and in [7]-{9] and the Integrated Delta
Wing Fuselage-Leading Edge Flaps Con-
figuration of Variable Geometry presented
in (Fig. 5b,c) optimized at two, very dif-
ferent cruising Mach numbers M) and M,
(Mi< M,) as in [10]-[13], [17]. At the
higher supersonic Mach number M, the in-
tegrated FC is flying with the flaps in re-
tracted position as in (Fig. 5b). At the
lower supersonic Mach number M}, the FC
is flying with the flaps in open position as

ing configurations i.e.

in (Fig. 5c). The author proposes as in
(Fig. 5a-c) the fully-optimized delta wing
alone as the shape for the unmanned space

vehicle, the fully-optimized,
wing-fuselage configuration for the super—

integrated,

sonic transport aircraft of second generation
and for the both vehicles of the Singer
space vehicle in two stages and the inte-
grated, fully-optimized wing-fuselage con-
figuration of variable geometry (i.e. with
movable leading edge flaps) for the single-
stage space vehicle (like Hotol, Hermes and
NASP). The effective design of the opti-
mum-optimorum shape of the delta wing
model Adela given in (Fig. 4) and of the
integrated wing-fuselage model Fadet given
in (Fig.5b) was performed by the author at
cruising Mach number M, =2 as in [2]-[7]
and in [7]-[13]. The modification of the
shape of the surface, due to the fuselage
integration (in the section X; = 0,6) is ob-
tained through comparison of the (Fig.
5a,b).

6. The Iterative Optimum-Optimorum The-
ory and the Viscous Design

If the more realistic viscous start software
for the computation of the velocity field 0
is used and supplementary auxiliary condi-
tions of thermal and structural nature are
considered it is too complicate to use the
Optimum-Optimorum Theory In_One Step
because the shape of its surface and of its
planprojection are a priori unknown.
Therefore an Iterative Optimum-Opti-
morum Theory is here proposed. The In- -
viscid Optimum-Optimorum Shape of the
Configuration, which uses an inviscid flow
field (i.e. the full-linearized, full-potential,
or Euler equations) as start solution for

the optimization, represents now the First
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in the iterative shape-optimization
An Intermediate Computational
Checking of the Inviscid Fully-Optimized
Shape is introduced before the second step
of the optimization is performed.The check-

Step
process.

ing is made with a viscous solver (here a
zonal potential/three-dimensional boundary
layer). The shear stress coefficient 7w on
the wall and the global friction coefficient
Céf)on the surface of the configuration are
determined. The influence of temperature is
also introduced in the computation of the
viscosity coefficient g The inviscid fully-
optimized shape is checked also for the
thermal and structural point of view. This
checking gives us realistic suggestions for
the <Corrections> of the inviscid fully-
optimized shape in the second optimization
step. New local or global auxiliary condi-
tions introduced for thermal, structural or
boundary layer reasons can occur as for
example a local limitation in the minimal
thickness (for structural reasons) or limita-
tion in the magnitude of curvature of the
wing(in order to avoid great thermal gradi-
ents or some detachments of boundary
layer). In_the second step of optimization
the predicted inviscid optimized shape of
the configuration (obtained in the first op-
timization step) is corrected by including

supplementary auxiliary conditions(for ther-
mal and structural nature)in the variational
problem and of the friction coefficient in
the drag functional. The Iterative Optimi-
zation Process is repeated until the maxi-
mal local modification of the shape in two
consecutive optimization steps presents no

significant change. The author uses a zonal
potential /boundary layer starting solver in
order to correct the inviscid fully-optimized
shape by taking into account the effect of
viscosity as an exemplification of her Iter-
ative Optimum-Optimorum Theory.

7. The Inviscid Design of the Delta Wing
Alone

Let us suppose that the downwashes w
and w* of the thin and thick-symmetrical
wing components of the thick, lifting delta
wing are given in the form of superposition
of homogeneous polynomes in X; and X, as
in formulas (1a) and(1b),but in the design,
the coefficients wy; and w3; and the simi-
larity parameter v of the planform are un-
known and must be determined after the
performing of the optimization process. The
corresponding axial disturbance velocities u
and u* for the delta wing components with
subsonic leading edges are given in the for-
mulas (2), and (3) as in [1]-[7]. The coeffi-
cents R}, i, Y, #E, B
entering in the formulas (5a,b) and (6a-c)
are non-linear functions only of the un-
known similarity parameter v. Let us first-
ly perform the inviscid design of the delta
wing as in [1]- [7] and in (Fig. 4). The op-
timal values of the coefficients Wij and WY;
and of the similarity parameter v of the
planprojection are determined by using the
own hybrid numerical-analytical method
described in [1]-[7]. The optimal shape of
the skeleton surface for a given value of v
is obtained by setting the drag functional

N N m1 n-1,

Cqg={¢ Qnmkj Wm-k-1,k
n=1 m=1 k=0 j=0
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Wnej1,j = min. (26)
with the following auxiliary conditions:
-the lift coefficient Cy is given:
n—1 ~ C[O
= Z Z Anj Wnijotj —7 (27)

- the Kutta condition on subsonic leading
edge (ie. & gy = 0) is fulfilled, in order

to suppress the induced drag at cruising
Mach number M, i.e.

~ n—1 ~

Fn = Zo ‘Pnj Wn_j-l,j = 0 (28)
J=

(a=01,. (N1) )

The coefficients Wi; and the values of La-
grange’s multipliers A and A, are given
by the solving of the algebraic system as
in [1]-[7] :

N n-—-1 ~ ~
Z Z Qn59+o+1so,j + 99+o+lanaj,a j!
n=1 3=0

Vh‘;'n-j—-laj + /\(1) A9+o*1m + Agsont E’9+cr+1,<5
=0, (29)
* (N—l))
Similarly, the optimal shape of the surface

of the thick-symmetrical delta wing compo-
nent is obtained by setting the correspon-

l1<0+0+1<N,0=01,.

ding drag functional

m—1 n—1

= ¢ Z Z S5 Qhag Whtke

n=1 m=1 k=0 j=0

Wn.j_1,j = min. (30)
with the following auxiliary conditions:
the given relative volume
m—1
z 2 i W = o { ¢
(0 = Vo / 3(3/2) (31)

the cancellation of the thickness along the

leading edge
N m-1 .

Ef = > Y ¥ =0
m=t+1 k=0
(t = 0, 1,...,, (N—l)) (32)

The coefficients W%; and the values of La-
grange’s multipliers u(‘) and p are given
by the solving of the algebraic system as
in [17):

N
2
=1 3=0
va

*
n-j-1sj + Il'(l) To+ostre +

n-1 N ~ o
Qn,0+o+1,mj + Q9+G+1’n’jsa

N-1 ~

t=0

(l<8+0c+1<N,f8=0,1,., (N-1)

The equations (29) and (33) are coupled
through the parameter v which enters in
The hybrid nu-
merical-analytical method (graphical-ana-
lytical) of the author as in [1]-[7] allows
the numerical decoupling of these equations

the constants of u and u*.

which are strongly non-linear in ». Instead
to solve a non-linear system a cascade of
linear systems obtained by giving several
discrete values to v (between 0 and 1) are
solved. The lower-limit curve of (C(Si))opt
of the optimal inviscid drag introduced by
the author as in [1]-[7] is obtained i.e.

(€ opt = 1(0)
Each point of this curve is analytically de-
termined by solving a classical variational
problem with given boundary (i.e. given v).
The minimum of this curve is numerically
determined. The position of this minimum

drag represents the optimal value of v (v
= vopt). If wopt is introduced in the equa-

(34)
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tions (29), (33) the best values of wij and
Wij are obtained. These coefficients of w
and w*, together with a free chosen surface
So of the planprojection, determine the op-
timum-optimorum inviscid shape of the
surface and of the planprojection of the

delta wing as in (Fig. 4).

8. The Viscous Design of the Delta Wing
Alone

Let us here perform the intermediate com-
putational checking of the inviscid fully-
optimized shape of the delta wing. This

checking is made with a viscous solver.The
spectral solution for the three-di-
mensional boundary layer is here chosen.
This checking is performed as in (Fig.6)
and paragraph 3 i.e. p, :ﬁj and :5151- are, at
the beginning, guessed. The coefficient ﬁﬁ})

and v”v"ij(l)are computed with the formulas

own

(10a,b). In these formulas wy and w}j are
the optimized values determined by using
the inviscid solver as in (29), (33), (34).
The thicknesses §* and 6~ of the boundary
layer are obtained by using the formulas
(8a), (8b). The edge axial velocities ue and
ug are obtained from the formulas (2) and
(3) in which the modified -coefficients
X,(,Qq, ﬁ}",c(ll) etc. are obtained by replacing
of wij and w%j with wi} and wi{V). The
coefficients uj;, vi, wi of the velocities in
the boundary layer are obtained by the
solving of the quadratical algebraic system
(22a) and p, 03 and 6%; are corrected
with the formulas (20) and (12). The glo~
bal friction coefficient c&f) is computed
with the formula (23b) and the new mod-
ified functional including the viscous effect

is:

c = ciP+ cq + ¢} (35)

Hereby are Cq and C§ the inviscid drag
coefficients of the thin and thick-symmetri-
cal wing components given in (7a,b) and
Céf) is the friction coefficient. The opti-
mized shape of the delta wing obtained
after the performing of the first iteration of
the viscous design presents non-significant
change (except on its rear part where it is
thicker than the inviscid one) but the total
drag (35) increases with 40% (at M, = 2
and a = 0) due to the viscous effect.
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