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Summary

For compressor cascade blading operating in
turbulent flow from upstream separations the
differential equation (d.e.) of motion has
significant similarities to a d.e. arising in the
physics of the kinetic glass transition. Recent
studies using mode-coupling analysis of
collective dynamics of particles in super-cooled
liquids show particular feedback mechanisms
within a d.e. which is analogous to that of the
oscillating blades in cascade. The kinetic glass
transition exhibits two regimes of behaviour for
a correlation function which separates two
regimes of relaxation. One of these is a plateau
in time and the other exhibits progressive decay
along a range of individual pathv'vays. Close
similarity of behaviour in the blading case is
revealed and suggests possible form of control
parameters plus a method of implementing
control of unstable blade motion. Thestudy also
offers an explanation as to why chaotic
behaviour may not be exhibited to the extent
often expected in such non-linear dynamical
situations.

Introduction

When the mass flow in an axial compressor is
reduced, the pressure rise increases beyond the
desired operating point to a point at which the
flow becomes unstable. Close to the critical
point, a small change in the flow may initiate
instability. If the compressor blading enters into
rotating stall severe blade vibrations are set up
which may lead to catastrophic results and
recovery to the design condition is made
difficult by a hysteresis effect.

The associated stall margins have been a matter
of concern for many years. Theoretical
predictions of stall have often been too
~Copyright © 1994 by ICAS and AIAA. All rights reserved.

optimistic because the disturbance field in
turbomachinery is particularly complex and
boundary layer transition and separation on
blades may result from a variety of causes
simultaneously or in competition

Our objective is to offer some cross-disciplinary
information from the physics of kinetic
transitions in super cooled liquids which may
suggest future lines of investigation on the
relationship of oscillatory blades in cascade and
the initiation of undesirable processes which
reduce stall margins. In outlining the utility and
drawbacks of traditional approaches to
turbulence Narasimha' has spoken of a
"reconciliation” between the notions of ordered
motion and statistical theory which will
probably emerge from greater understanding of
the apparently random occurrence of coherent
events through a dynamical-systems approach

.which may use at least some traditional ideas

perhaps from vortex dynamics. Some of this line
of thinking is embodied in the work presented
which also calls upon some of Kraichnan’s
earlier developments in his approaches® to
turbulence and vortex dynamics.

Blade Motion in Separated Flow
A common type of motion exhibited by
fluttering compressor blades is a bending
vibration and the equation of motion, at a
representative point on a blade, close to stall is
of second order nonlinear forced oscillator
form®. Although such equations are sensitive to
initial conditions with all the peculiarities of
strange attractors and bifurcation on the path to
chaos, there has been some doubt concerning
evidence of deterministic chaotic behaviour.
Perhaps this is because there is both a large
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number of degrees of freedom in the practical
system and a simple deterministic model is
disturbed by stochastic perturbations or other
time varying changes in the structure of the
model, (for example, due to random forces from
mode coupling interactions with other local
blades) to investigate this matter. We take
account of some of the foregoing effects and
consider a stochastic differential equation for
blade motion which allows for the
autocorrelation function M(k,t) for the local
random force on a blade in the cascade. In such
cases, the differential equation of blade motion
ata point on the blade can be written in the form

¥ (k1) + W)y (k, 1) + Py (k, 1)

_J;‘-'M(k A=) [’ -Dld’ =0 (D)

where f is the dynamical force coefficient given
by the local slope of the lift curve and has the
form f(o) =-K,0+K,0? - K,a® ,® is the natural
bending mode frequency, ¥(®) the damping
coefficient and a is the effective angle of attack
for a tapered, twisted blade in free stream
velocity v.

a=0+y/v—(@+np0/v) @

where n, is a constant~1.5 at the 1/4 chord point
and 6(t) is the small torsion motion of the blade
due to its tapered-twisted form which gives a
small orthogonal displacement to the main
bendingdisplacement. The phaselagis thelag
of aerodynamic force behind the blade motion.
Previous observations from industry®® have
shown that © is a function of the reduced
frequency wb/v and notasimple function of the
slope of the static lift curve.

Analogy to the Kinetic Glass Transition
Eq. (1) is an extended type of generalised
stochastic differential equation of Langevin for
the density autocorrelation function ¢(k,?) for
particles in suspension given® as

"8k )+ 10Ok ) + QO , 1)
+J.'M(k,t—t')¢(k,t Ndt' =0 3
(]

This corresponds to Eq. (1) with t=0 andf
would be —¢(k,t ). The forcing function term
describes the retarded friction characterised by
the "memory function" M(k,t) which is actually
the correlation function of a dynamical variable,
the so called "random force” Ry(t) used in
studying the suspension of particles exhibiting
irreversible Brownian dynamics due to the
suspending fluid. We then note that at
sufficiently high concentrations, such
suspensions ina liquid may exhibit glassy states
as well as the usual fluid and crystalline phases.
The correlation function actually measured®
over time-scales of a few seconds shows the
features of Figure 1. In the case of the glass
transition physics, the differential equation is
heavily damped. The stochastic background for
therelevanceof Eq. (1)ina cascade of blades and
the basis on which our analogy is drawn is
covered in Appendix A. The mode coupling
approximations in that application show that
the function M reduces to a form quadratic in
¢(k,t) which thus provides a nonlinear
feedback mechanism.

In the case of the compressor blade model, a
similar feedback situation occurs due to the
presenceof y in the expression for a.as seen from
Eq.(2) and Eq. (1). Itis therefore suggested that
the y(k,t) blade motion may also exhibit several
different regimes with a discontinuous change
from ergodic to non-ergodic behaviour at a
defined control parameter in an analogous way
to temperature in particle suspension physics
where one relaxation regime is separated from
the step to final relaxation by a defined plateau.
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Termination of Pathways to Chaos

So we are now prompted to examine more
closely, the effects from the last term in Eq. (1)
to possibly classify and hopefully identify
control parameters of blade response. Thestudy
herein shows that even though the number of
degrees of freedom in an actual physical system
is very large, a progression to chaotic behaviour
may possibly develop. As we shall also see, the
pathway to chaos may be prematurely
terminated because it requires particular
conditions to progress to do so. If the conditions
are met, the energy input supplied from
upstream wakes can then lead to destabilisation
of the system via a range of possible pathways
and rates of decay of autocorrelation. The two
modes of behaviour are related to two modes of
the autocorrelation function ¢ in the glass
kinetics of Eq (3) but the damping is "dead beat"
in the latter case.

To identify the controlling parameters, we need
to know the character of the dynamics,
especially when the system is subjected to
periodic disturbances from the upstream wakes
of the cascade, apart from the local mode
coupling interactions, in theblade’s progression
towards entrainment. The foregoing is directly
relevant to a proposal for extending pre-stall
margins by feedback injection of re-scaled
wakes with spectral changes of wave number (k)
which can be a controlling factor in preserving
stability. Wethereforeneed toknow under what
conditions entrainment is possible or not
possible prior to such injection of such "coloured
noise" to be effective.

So we need to look more closely into the nature
of the governing differential equation Eq.(1). At
present we do not know the exact form of the
function M and therefore cannot write theexact
d.e. However, the close analogy with the
physics of the kinetic glass may be of help, as
follows.
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Limits on the Model
The mode-coupling approximation for the
kinetic glass transition yields a quadratic in
&k ,¢) in the function M thereby providing a
non-linear feedback mechanism leading to
heavily damped (dead-beat) response in the
glass transition model but not necessarily so
damped in the aerodynamic case. However, in
Appendix A, we see that to achieve a reasonably
realistic analysis in the presence of developing
turbulence, the &k and blade frequency
parameter ® must conform to contain
conditions. Fortunately, these seem realistic in
cascades and correspond to a low loss of
correlation of a Green’s function for a response
function in a Kraichnan-modified approach’ to
unsteady Navier Stokes using renormalisation
methods from quantum mechanics. As also
discussed in Appendix A, he also showed the
need to incorporate the quantum mechanics of
a particle in a random potential in order to
preserve reality for the diffusion coefficient. (It
is important to point out the latter connection to
the glass transition model studied by Gotze et
al® where the same type of quantum mechanics
model was used, as mentioned in Appendix A.)

Whereas in the glass transition mode-coupling
model the feedback response is provided for by
the feedback in the d.e. for blade motion with
translations (y) and torsions (0) is prov.ided via
the combined functions M(k,?) f(y,6,0) in the
last term in the d.e. where the function f is cubic
with combination terms in y,e,é . Also, if the
constraints in our Kraichnan-modified Euler
method regarding the spectrum of k (Appendix
A) are satisfied, phase decorrelation can be
avoided and the autocorrelation function M is
expressible in terms of y(kt) of the form
exp[-T'(y — o and approximated by aquadratic
iny(kt).



Conversion to General Form of Excitable
Systems
If we take the Laplace transform of Eq. (3) a
simplification results from the removal of the
lagged argument by virtue of

Lfo‘-tM(k,t-—t')f(t'—‘t)d(""") =ME)fs)

the bars denoting the transform of the
individual functions.

Eq. (1) can thenbeexpressed in the more general
form :

¥ =5®@3% 6=6@% @

where Fis
F =AB+BOy +[CH(3)~-D1y
G=Ey+Foy )

and #(¥) is a distribution function of the form

exp-T[y -y I’

Eqs. (4) and (5) represents the local
mode-coupling between translational and
torsional motion of the blade in the presence of
turbulence from upstream separations. The
terms A®,Ey,BOyandFOy describe a
Lotka-Volterra dynamics and the term
C[Hy)~Dly exhibits a type of Van der Pol
process, i.e. competition between non-linear
gain C#(y) and thelinear loss process Dy . For
C > D a stable limit cycle exists as shown
typically in Reference (9) for a generalised
equation of this form. Furthermore, there can
exist several unstable solutions. Unfortunately,
this theoretical information is not very useful in
providing relevant control parameters in
practice.

Reverting to the kinetic glass transition, we can
see an analogy to the two modes of behaviour
observed in experiments shown in Figure 1
where, in that case, the stable state corresponds
to a plateau of ¢ near unity in the upper ("a
relaxation”) region and the region below it ("B
relaxation”) corresponds to  individual

progressive decays of correlation paths with
time corresponding to our unstable states for
blade motion (M  decreasing) with the
possibility of individual pathways in time,
progressing to increased instability. In the glass
kinetic steady state, the control parameter
separating the two states is temperature T but
in our Eq. (1), it is not easy to isolate a practical
control parameter from an analytieal approach
and the previously mentioned condition C > D
even in the general form is not very useful for
this purpose. We thereforelookback to the glass
transition analogy to try to obtain an analogous
parameter(s) to T which, at a critical
temperature T = T, separates the B relaxation
process from the o relaxation process by a
plateau which becomes longer as the
temperature T drops. Comparison of
parameters for this condition suggest the

mS(kxot s o "
parameter =;=where 5(k)isa "structure factor

and m is blade mass per unit span. The
parameter suggests the 3D geometry of the
blade and/or the grouping geometry in the
cascadeasbeingkey structural parametersapart
from the k wavenumbers in the flow. In
dimensional terms, the parameter has a strong
dependence on blade mass distribution and on
k (dimensionally 1/time)

Opportunity for Control

The foregoing suggestion for possible
analogous parameters is not inconsistent with
our earlier study’ of stability under simpler
conditions for Eq. (1) (with the absence of the
autocorrelation factor). The control was seen to
be dependent upon the aerodynamic lag time ©
which, in turn, involves the parameters K, L, M
(lift curve coefficients) m (blade mass per unit
span) and b (semi-chord).

The opportunity for control under these
conditions suggests that k, as well as the blade
lift parameters is a key parameter and may be
the only parameter which can be altered during
operating conditions. We have previously®
proposed a means of doing this by rescaling™
the wake turbulence from unstable (fluttering)
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blade motion and feeding it back into the
incident flow. In that study, we used the dual
input describing function method to determine
the stable range as governed by the phase angle
@t and a variableradial length r of the Nyquist
incremental open loop gain locus where the
combination of r(®wr)and @t govern windows
of stability as the Nyquist locus rotates with wt .

Evidence of improvement in pressure rise
coefficientfrom the inclusion of a flow separator
ahead of a compressor rotor shows the
advantages of using a physical recirculation
channel. One of the processes involved™ there
was the removal of low energy fluid near the fan
casing. However, when recirculation vanes are
deployed, these operate on, and transform, the
length scale and swirl of the recirculated
turbulence. Enstrophy manipulation results in
a quite different frequency domain
representation of incoming flow (coloured
noise) with potentially quite different frequency
cascading and dynamic behaviour. Anexample
of results from Ziabasharhagh et al" is shown
in Figure 2 and demonstrates the remarkable
improvement in stall margin which can be
achieved using only moderate treatment.

Whereas the previous analysis, we believe, is
still valid if blades are in diverging motion in
separating flow and progressing to chaotic
motion, the analogy with the glass transition
model suggests that blade instability will not
necessarily progress to chaos except under the
conditions similar those examined below.

If a periodic disturbance F,cosAs is applied to
a blade operating in the stable limit cycle
corresponding to Egs. (4) and (5) and whose
frequency is @y, it has been shown’ that if
A <<y no entrainment can be reached by
increasing the amplitude of the disturbance F,,
The oscillatory motion will collapse before
entrainment is reached and this precludes the
development of chaos. An example of
progressive collapse is shown in Reference (9).
Therefore, it could be expected that similar
restrictions apply in actual cascade blading
where the Fourier components of the upstream
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wakes incident on the blade have significant
frequency domain separation. The periodic
components are strong and may fulfil the above
condition for no entrainment and no progress to
chaotic motion.

Nevertheless, it is also quite possible that the
restrictive conditionis not fulfilled in some cases
and chaos could ensue after the steps of
entrainment and quasi-periodic motion. Figure
3 shows part of the progressive entrainment
after a feedback injection into a divergent blade
oscillation of Eq. (1) when M is 0(1). The
occurrence or nonoccurrence of chaos will be
random in practice and this relates to Cox and
Isham’s description™ of turbulence as a random
collection of point occurrences in time or space
with events of different magnitudeand duration
occurring at various instants of time rather than
as a superposition of harmonic waves.
Narasimha® considers this episodic view which
embodies the random occurrence of coherent
events, to be consistentwith adynamical system
approach to turbulence. According to such a
scenario, there is a number of bifurcation
pathways and unexplained effects prior to
eventual "collapse” leading to the onset of a
response signal’ or travelling wave. Ithas been
recently reported that for period-doubling
bifurcating pathways to chaos in nonlinear
systems, the process may easily break down and
suddenly reverse® giving rise to period-halving
bifurcations. Such reversals may act to control
and even prevent the onset of chaos. It is
suggested that the foregoing features may
explain why evidence of chaotic dynamics is
often hard to come by or confirm.

Kaiser’s results’ show that the addition of
stochastic noise to the chaotic state arising from
an equation of the form of Eqs. (4) and (5) will
cause the chaotic state to continue. However,
we must point out that our suggestion of
feedback of the rescaled coloured noise to the
incident flow to blades in chaotic motion should
cause progression along a preferred path to an
ordered state (e.g. Figure 4) in which no order
atall would benormally expected. Atfirstsight,
this might appear to be "order through



fluctuations” or "order by noise" as introduced
by Prigogine*. Although this may be the case,
the underlying mechanisms for coloured noise
are completely different and not yet fully
elucidated. In the response to "coloured noise"
the trajectories formed such as in Figure 4 can
be interpreted™® as non-normalised probability
densities in the state space of ¥ and 8 and it is
important to note that these preferred
trajectories appear simultaneously and not in
the form of travelling waves.

The feedback channelling technology for the
feedback process proposed is available and has
been demonstrated theoretically’® (active
control) and experimentally (passive) in
industrial fans. Extension to more complex
geometries of compressors may be attainable
and is available from the recent computational
method” for theinverse problemof determining
complex branching flows in multiple connected
domains and which can include rotational flow
effects and viscous effects and be extended to
turbulence conditions.
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Appendix A

We consider a local region of volume V of the
cascade containing a small group of blades and
so have cyclic spatial boundary conditions. For
the non-equilibrium Navier Stokes system there
are severe difficulties for theoretical treatment
as discussed at I by Kraichnan in
considering the evolution of such a stﬁ)etem. As
noted by Kraichnan® none of reall
imgormnt qualitative nor quantitative results in
turbulence theory are derived from first
Erinciples of fluid dynamics such as the Navier

tokes (N.S.) equations. The Kraichnan
stochastic models embody most of the structural
properties of N.S. and lead to (closed "master
equations”) for mean quantities thereby
avoiding the formidable closure problem of the
originalT NS. equations. y usingo a
renormalisation procedure, generalised from
quantum theory, he shows that after
introducing a small periodic forced term f; (k) in
the presence of isotropic turbulence, the
equations of motion of the infinitesimal
response matrix contains a term representing a
dynamical damping with "memory” resembling
viscous damping. The approach has some
severe deficiencies but for certain conditions on
k (see below) it does have the advantage of
describing .in a natural way, the physical
phenomenon observed in turbulence that'small
scales of turbulence react on larger scales like a
dynamical or eddy viscosity that augments the
molecular viscosity.

To overcome some of the deficiencies which
arise in other regards, he shows that if we take
physically appropriateinitial k spectrain which
the excitation per mode falls off rapidly with k
then the viscosity term m measures both
amdplitude decay and energy decay just like an
ordinary viscosailtrv provided that k is small
compared to ap reciablg excited wave
numbers of the turbulence. But if substantial
energy lies in wave numbers below k then 1
may have little relation to energy-transfer
dynamics, largely because of phase
decorrelation of the Green's function governing
the response matrix.

The condition§ in our cascade model would
seem to fit the former case and avoid any severe
decorrelation. This condition is being ufilised in
our attemFt to find the asymptotic value of the
autocorrelation function under these
conditions . The form of M is expressible as
exp-T(y — yo)* when forming Eqs. (4) and (5).
We recall that y is y(k?) and so our original
expression M(k,t) is consistent. An exponential
form for M is possibly not ected in view
of Narasimha’s comments® (and examples) on
theb u{Jrevalence of exponential forms in
tur|

ence studies.
The relationship which we suggest and utilise,
of the kinetics of glass transitions to the above
outlined Kraichnan models, is given below.

Kraichnan points out thatif k. (inhis truncated
Euler model of N.S. evolution where the initial
statistical ensemble is Gaussian) is large
compared to the characteristic viscous cut-off
wave number then the problem is well posed
and the quadratic energy constant can be
decreased only by the viscous damping term. It
is then worth noting that if k., 1s takenasa
kind of intermol spacing scale or mean
free path, then the truncated system constitutes
a non-trivial model of a molecular liquid.
(However, thereare some deep-lyinfanomahes
which can arise in such a liquid model as
Kraichnan points out.) We are nevertheless
reminded of a connection to the glass transition
model. Furthermore, in his grogresg to try to
resolve the NS. evolution difficulties,
Kraichnan invoked an analogy of a quantum
mechanical particle ina random potential where
the particle undergoes a diffusion process in
momentum  space. The renormalised

bation expansion for this problem is
closely analogous to those for the convection of
apassive field by a random velocity field
and resemble those for the turbulence problem.
Unfortunately the diffusion coefficient which
results in the WKBJ limit is given incorrectly
unless the model is reworked using a
generalised Schroedinger evaluation involving
unequal time arguments. This suggests the
extension to several particles moving in random
potentials as a possible method for modelling in
turbulence. Thereis thena ting connection
with the kinetics of glass transition model where

* Gotze et al® developed the early mode-coupling

model based on the theory of quantum particles
moving in random potentials.

Appendix B

In the kinetics of the glass transition model, the
nature of M with respect to ¢ arises from
g,rojecting the so-called random force R(f) on
pair products of conserved variables
gmicroscopic particle density and current) and
actorising the resulting 4-point correlation
function into groducts of 2-point correlation
functions similar to ¢(k). This retains only pair
roducts of the density and the memory
ction M to a form quadratic in ¢(kt). Then,

in the aerodynamic oscillations of blades in a
cascade, the analogous conserved variables
corresponding to "density” and "flow"” are taken
in a volume (cell) element V of the cascade
containingseveral bladesat time #=0. "Density"
corresponds to 1/V times the mass of the blade
motions movinig in and out of the boundary of
the volume cell over a period T} of oscillation,

ie 3fdm (dimensions of density). "Flow"
correspondsto 3- times the rate of changeof the
amountof blade mass which passes into and out
of the volume element during a cycle,
ie. ;}’.ﬂ % ldt (dimensions of flow)

This concept of mass flow through a volume V
canbemorereadil{;gpreciated orrotatingstall
(which is the first limiting instability incurred).
(See figure 5.) :
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There is an analogous relationship arising from
. the foregoing which might be drawn between
¢(kt) and the blade motiony(kt) of representative
ints on blades in a group in terms of the Van
ove functions G(r,t). The Fourier transform of
o(kt) = G(r,t) = Gs + Gp where G (.t) is the
probability of finding a (fluid) particle at time ¢
atdistance r from its original (origin) position
resulting from diffusion and
hydrodynamic-like processes and Gy (.t) is the
probability of finding a second particle at " at
time t. The function Gp(rt) characterises the
correlated time-displaced motion of the two
fluid particles in the bath of all other particles.
The analogy for theblades inindividual motions
in a local region of a cascade can be visualised
in regard to points represented by y(k,t) on the
blades in the cascade.

We also note that in the kinetic glass transition
the lxdrodynamic-like behaviour governed by
the diffusion equation changes rapidly to a
succession of jumps thro;:§put a "frozen"
disordered structure according to computer
simulation®,

In our blade model the analysis of the dynamics
refers to pathways of bifurcations (analogous to
jumps) in the pr%gress of (some) solutions for
y(k,tg to chaos under certain conditions given in
the text, i.e. progressive deceg of correlations
with time along different pathways similar to
the decay paths of ¢(k,t) in Figure 1.
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Figure 4

Example of an ordered structure with
spectral density contours D(k) at time ¢
resulting from adding "coloured noise" to
a Lotka-Volterra based model for 7,8 in
chaotic motion, e.g. C = D in Eq. (4) or if
M(k,t) is rendered "coloured" by
recirculation of selected k-spectra.
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Figure 5

Blade B and adjacent blades oscillating
(shaded) beyond volume V duringrotating
stall. Time-varying blade mass within

volume Vis m(t). '



