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For the numerical analysis of the arbitrary
non-uniform and unsteady inlet conditions in-
herent in the rotor flowfields the present
method is based on the unsteady three-dimen-
sional compressible Navier-Stokes solver by the
pseudo-analytic function theory with the inte-
gral operator. The function theory for the ini-
tial boundary value problem allows to assign
the control surface to any locations in the
flowfield. Through the reference points on the
control surface, which can stand for any arbi-
trary aerothermodynamic values, the arbitrary
inlet conditions can be introduced. Also the
current analysis uses the three different kinds
of computation surfaces, which can manage any
deflections of their contours.A numerical exam-
ple was given to demonstrate an important role
of the unsteadiness detected at the inlet,which
often assumed as negligible, in the turbomachine
performance.

Introduction

Usually the flow the turbomachine engine re-
~ ceives from the inlet is non-uniform and un-
steady either radially or azimuthally.The prop-
er estimation of the effect of the non-uniform-
ities and unsteadiness on the flow behavior be-
comes one of the most keenly interested and
troublesome problems for the improvement of the
performance. Even in a perfectly axi-symmetric
inlet there also would be regions of low stag-
nation pressure near the outer walls.Also these
non-uniformities accompanying with unsteadiness
lower the stall margin of the fan or compressor
and produce stronger secondary flows. Rather
difficult phenomena such as inlet distortions,
turbulent intakes, multi-row machine problems
and, so on, are governed by the completely un-
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stesdy circumstances. The distorted inlet flows,
for example,have variations in stagnation pres-
sure and temperature both radially and azimuth-
ally. The prediction of the inlet-engine inter-
action, therefore, requires the details of the
flow in place. However,only approximate experi-
mental techniques, through inserting so-called
distortion screens,have been used for the esti-
mation of the interaction. As is well-known,
such steady-state distortion testing is not al-
ways sufficient because that the strong un-
steadiness governing the flow may under- or
overestimate the stall margin. Moreover, it may
give the wrong informations on the secondary
flow phenomena observed in the blade passages.
The current analysis is motivated to present
the method which can evaluate the non—uniformi-
ty and unsteadiness detected in the inlet flows
mentioned. The method is based on the unsteady
three-dimensional compressible Navier-Stokes
solver using the pseudo—analytic function theo-
ry with the integral operator ¢}’ ‘2 .The solver
uses the three different kinds of computation
surfaces, blade~to-blade, meridional and cross—
sectional ones those allow any deflections of
their contours and can be located anywhere in
the flowfield. The arbitrary inlet or upstream
condition is evaluated on the control surface
and, then introduced through the reference
points with the known aerothermodynamic values
assigned on the surface. Also the iteration is
used in the method. The method ¥+ 2 with the
supplementary discussion on the reference
points can predict the flowfields with the re-
spectively given inlet conditions. The method
has som eremarkable characteristics. The enve-
lopes contacting with both blade ends are the
cross—sectional surfaces and the blade wall

1718



themselves are the meridional ones. Moreover,
the fact that the function theory allows the
conventional conformal transformations of the
given domains, makes the present code applicable
to the arbitrary flowfields. Also the body-fit-
ted coordinates are used. Naturally there are
no mesh generation techniques nor complicated
selection methods of the coordinates. Owing to
the superposability of the solution in the it-
erative process®, Duhamel s method can be in-
troduced and it can afford a time-saving, reli-
able and stable computation even for the non-
uniform and unsteady inlet cases. The code
requires only moderate size of memory and CPU
time consumption of a standard type of the com
puter systems. The obtained numerical example
demonstrated an important role of the unsteadi-
ness detected at the inlet of the axial tran—
sonic rotor, which usually assumed as negligi-
ble in the experimental studies.

Governing Equations

The continual continuability of the solutions
after the pseudo-analytic function theory‘#’
allows the segmentation of the flowfield even
for the unsteady three-dimensional compressible
viscous cascade flow with the arbitrary inlet
condition®!’- ¢*> The governing equations in the
blade relative frame for the segmented flow-
field between two control surfaces are the con-
tinuity equation,the momentum one and the aero-
thermodynamic relations®!’-¢?>, For the rela-
tions the energy equation and so on, according
to the respectively given physical conditions
are introduced. The boundary conditions, at the
same time, should be physically and adeguately

defined. The governing equations are as follows.

The continuity equation is
,‘}%.}.ﬁ(pﬁ)ﬂ() (D

and the momentum equation
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Where W, V, p, &, w, I, T and s are the
relative velocity, absolute velocity, density,
viscosity, angular velocity of blades, rothalpy,
temperature and entropy per unit mass, respec-
tively. Using the cylindrical coordinates (x, ¢,
r) and the corresponding velocity components

( W, W,, W.), equations (1) and (2) are re-
written as follows.
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where
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On the solid boundaries relatively at rest and
on the locations with velocity distributions of
zero, the momentum equations are reduced as
follows.
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The additional aerothermodynamic relations as
mentioned above are omitted here. The solutions
Tor the equations hitherto mentioned are common
to axial-, radial- and mixed-flow types of tur-
bomachines. Therefore, the discussions here-
after, refer only for the axial-flow type.

Solutions for Two different Types of Equations

The governing equations for the initial boun-
dary value problem are solved,using the pseudo-
analytic function theory‘!’- ‘2>, The boundary
conditions are assigned to the control surface
through the reference points. . The continuity
and the momentum eguations are reduced to the
simultaneous fundamental differential equations
of the complex velocities w.( n=1,2,3 ) defined
on the respective blade-to-blade,meridional and
cross-sectional computation surfaces. The veloc~
ities on the respective computation surfaces
are calculated through the iteration between

the two equations.Pararell with the velocities,
the other aerothermodynamic parameters of the
flow included in the variable coefficients in
the above equations are renewed. The equations
in the iterative process'’- ‘?> gre written as
follows.

The first type of equation is such that:
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The second type of equation is such that:
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Here the aerothemodynamic parameters along with
the complex velocities at the reference points
on the control surface are given or known. The
pseudo-analytic function theory®*’ yields the
solutions with the integral representations for
the respective two types of equations as fol-
IOWS(J)' (2)‘
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and
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Owing to the superposability of the respective
solutions under the iterative process‘®’, the
Duhamel’ s method can be introduced!’- <*’. The
method contributes for the time-saving computa-
tion. Applying the current method to the seg-
mented flowfields one by one, the solutions for
the unsteady three-dimensional compressible
viscous flows with the arbitrary inlet condi-
tions can be found eventually.

Numerical Methods

The convergence of the solution by the present
method for the flows with the complicated

boundary conditions such as the inlet distor-
tion, the turbulent intakes,and so on, is assured
theoretically®'’- ¢*>, In the computation the
arbitralily given inlet conditions are attained
through the iterative scheme, approaching from
the simplified conditions to the given ones to-
gether with the adequately selected control
surface. The solutions of (12) and (13) at the
respective computational stages are simultane-
ously obtained. Additional descriptions of the
total scheme for the numerical method and the
computation paths are given now.

The Computational Scheme. For the leaned blade
row and others, if necessary, the conventional
transformations of the coordinates can be ap-
plyed, prior to the computation. The present

Reading of the turbulent inlet flow data
given at the reference points

Simplification of the inlet conditions
through filter methods

Arranging of the three different kinds
of computation surfaces

Adjustment of the conditions on a
control surface fixed at the inlet

Solutions of the flows on the three
different kinds of computation surfaces

Approaching of the inlet conditions to
the given data

v
To the next step

Fig. 1 Turbulent inlet condition
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computational schemes for the inlet distortion,
for the turbulent intakes, for the multi-row
machine, and so on, are similar.Here the scheme
for the flow with the turbulent inlet condition,
as an example, is shown in Fig. 1.

In the first step, the condition is numerical
ly given on the control surface arranged at the
inlet. To the reference points the arbitrarily
given values are assigned, using the integral
operators. In the second step, the given condi-
tion is simplified through some filter methods,
for example, to assure the stability of the con-
vergence in the iterative computation. In the
third step, the three different kinds of compu-
tation surfaces are selected to represent the
flow phenomena to be discussed. Those surfaces
may be rearranged, according to the stages of
the iteration. Then the iteration starts, ad-
Jjusting the values on the control surface in
order to approach to the given data and obtain-
ing the solutions on the different kinds of the
surfaces. The convergences of the respective
numerical solutions are also assured by the
pseudo-analytic function theory ¢t} 2

The Computation Surfaces. Using the computa-

tion surfaces, the scheme can be detailed.Fig.2
shows the procedure to approach to the given
inlet conditions to be aimed on the control
surface which placed ahead of the blade row.The
assumed inlet conditions for the respective
blade-to-blade computations are improved with
the iteration process. The aimed inlet condi-
tions at the second and the last stages are
numerically represented through the reference
points. The segmentation of the flowfield is
introduced in the respective computations as
shown in Fig. 3.In the segmented flowfield the
control surfaces are disposed from the upstream
to the downstream and vice versa. At the last
stages of the respective computations the seg-
mented flowfields are rearranged and the compu-
tation paths are put together as shown in Fig.
4. The figure stands for the meridional compu-
tation paths on a blade surface.

Numerical Example

A numerical example was shown to stress on the
important roles of the unsteadiness and non-
uniformity detected at the inlet, those were
usually assumed as negligible in the experimen-
tal studies. As the first approximation of the

Tip
surface

Arbitrary
inlet condition

=

The last stage
of

the computationd|:

Simplified inlet
condition through
. Filtering process

Mass-weighted
< . pitch-averaged
v inlet condition
The second stage '
of the computation

|r-i
>~
‘r"‘}
1#11;:\
[ e
&
Sl

)

The first stage

s
-
s
=
of the computation é

@ Fixed points With.given
aerothermodynamic values

mm simwlification process
<1 Computation process

Fig. 2 Arrangement and improvement of
inlet conditions
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iteration the present numerical example em-
ployed the obtained results!’> for the axial
transonic flow through the 23 bladed overhung
rotor without inlet guide vanes installed in

MIT Blow Down Facilities‘®’. The experimentally
supposed tip relative Mach number was 1.30. In
the experimental study radially constant stag-
nation temperature rise, uniform inlet condi-
tions and the shockless through flow were ex-
pected. However, the negligible order of devi-
ations in the inlet conditions were observed.
In the computation of the results‘'’, reflect-
ing the experimental circumstances, some sim-
plifications such as Prandtl number of 1.0 and
the sinusoidal oscilation of the inlet Mach
number with 2.5 percents of an amplitude of
deviation, were assumed without loss of gener-
ality. The tip clearance effect and the viscos-
ity term, the third term on the right hand side
of (2), moreover, were omitted for the simpli-
fication of the computation.The control surface
was fixed at the three chords axially shead of
the blade row and the pitchwise periodicity of
the flowfield was furthermore assumed. Then the
unsteady but uniform inlet condition was ex-
pected.One period of the sinusoidal oscillation
consisted of 36 time increments. The final re-
sults with the 35 different Mach number distri-
butions at the respective time increments were
shown in Fig. 5. The envelopes of the different
distributions are represented using the upper
and the lower bounds of them. Now for the pre-
sent run the control surface was assigned at
the 0. 2-axial-chord ahead of the rotor. Owing
to the reference points on the control surface,
the first approximation could be easily inte-
grated into the run. The sinusoidal oscillation
of the inlet deviation was matched to the rotor
speed such that every sets of succeeding four
blades met the similar inlet condition. After
adding the omitted viscosity term to the first
approximation¢'’, the unsteady inlet condition
started from the one blade after another under
the blade relative frame and then caused the
non-uniformity as the whole.

For the transonic rotor flow the code was
written in FORTRAN for a HITAC S3800/480 and it
required a memory of about 600 Mega bites for

the present non-uniform case, as working volume.

The current run required approximately 1 hour
of the additional CPU time.The stability in the
computation was very good.

The results for the axial, pitchwise and radial
Mach number maps on the cross-sectional surface
selected at 0.1-axial-chord-downstream of the
rotor were shown in Figs. 5 to 7, comparing to

® Reference points v
with given or flged -
aerothermodynamic values

Fig. 3 Computation paths on a blade-
to-blade surface
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the first approximations, respectively. In the
figures the abscissae are the blade passing
periods and the ordinates the radial distance
non-dimensionalized by the tip radius.The radii
0.700 and 0.950 stand for the respective loca-
tions near the hub and the blade tips. Fig. 5
shows the axial Mach number maps. The underes-
timated secondary flow effect in the previous
result‘?’ in the outer half part of the annular
fiowfield was apparently improved. The obscure
pitchwise periodicity observed in the experi-
ment‘®’ was detected. The pitchwise non-uni-
formity in the map was apparently caused by the
unsteadiness given at the upstream after the
mutual interactions among the various flow con-
ditions at the different time increments. Also
the map suggests the possibility of the predic-
tion of the secondary flows due to the unstead-
iness. Figs. 6 and 7 illustrated the pitchwise
and radial Mach number maps, respectively. These
maps obviously showed the similar tendency for
the axial ones. In Fig. 7, as for the radius
ratio of 0.700, the results simply include the
effect of the wall curvature of the hub. The
radial maps characteristically surveyed the
secondary flow phenomena. The current integral
operator method can give the more detailed maps
of the flow, but was used only for the compari-
son between the results.

Conclusion

For the approach to the numerical experiment of
the arbitrary inlet conditions in the three-
dimensional compressible viscous cascade flows,
a numerical method based on the pseudo-analytic
function theory for the initial boundary value
problem is presented. A numerical example was
shown to demonstrate an important role of the
negligible order of unsteadiness detected at
the inlet in the turbomachine performance. The
code can give the stable numerical computations
even for the flows with the unsteady inlet con-
ditions and shows the applicability of the
method to the future numerical experiments.
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