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Abstract

Systematic application of Navier-Stokes solvers
to the design of new aircraft is still limited by
the extremely high costs of these methods.
Therefore, there is a need to couple efficient
boundary-layer solvers with inviscid flow
solvers. This results in a substantial reduction
of the computational effort. In the commercial
airplane design environment, with attached
flow and week shocks, even no considerable
difference between inviscid flow and equivalent
inviscid flow is generally supposed, there is a
need for the use of the boundary-layer
equations together with the Euler equations
or the potential flow equations to predict the
viscous flow. A multigrid-multiblock full
potential solver with a robust algorithm code
cooperating with a boundary-layer code is
used here. The calculations have shown good
agreement with experimental data on velocity
profils, distribution of skin friction coefficient,
displacement thickness and momentum
thickness on a wing at a transonic Mach
number with angle of attack. The application
to a commercial airplane will be shown, and
different topologies for calculations of a
propeller driven airplane configuration will be
discussed herein.

Summary

The coupling of efficient boundary-layer solvers
with inviscid flow methods is part of the more
general zonal calculation method in which the
Navier-Stokes equations are solved in the
regions of strong viscous-inviscid interaction
only, most of the flow field being predicted by
the coupling of efficient boundary-layer solvers
with inviscid flow methods.

In a commercial airplane design environment,
with attached flow and week shocks, even no
considerable difference between inviscid flow
and equivalent inviscid flow, there is a need for
the use of the boundary-layer equations
together with the Euler equations or the
potential flow equations to predict the viscous
flow in the near wall region.
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Compared with the more general Navier-Stokes
equations, the boundary-layer equations have
the advantage of being of parabolic type.
Therefore, they can be solved by numerical
space-marching methods, while the Navier-
Stokes equations have to be integrated with
time-marching methods, which require
enormous amounts of computer time and
storage. For this reason, systematic application
of Navier-Stokes solvers to the design of new
aircraft is still limited by the extremely high
costs and big computational effort of these
methods. In practical applications, the flow over
three-dimensional configurations is predicted by
the use of the boundary-layer equations
together with the Euler equations or the
potential flow equations. The influence of the
boundary-layer on the inviscid flow is then
accounted for by a distribution of equivalent
sources at the wall. Since the equivalent
inviscid flow does not present a very steep
gradient in the vicinity of the wall, the Euler or
potential grid can be coarser then a Navier-
Stokes grid. This results in a substantial
reduction of the computational effort. On the
other hand, the boundary-layer equations
describing the near-wall viscous flow can be
solved on very fine meshes and the CPU time is
negligible compared with a Navier-Stokes solver.
Therefore, there is a need to couple efficient
boundary-layer solvers with inviscid flow solvers
in applications.

Commercial airplanes are designed to avoid
strong viscous-inviscid interaction regions, even
there is not a considerable difference between
the inviscid flow and the equivalent inviscid
flow, it is necessary for such complicated
configurations to make use of the boundary-
layer equations together with the Euler
equations or the potential flow equations to
predict the viscous flow in the near wall region.
Potential flow calculations require far less then
a tenth of the CPU time of Euler calculations,
and for a commercial aircraft potential model
they give a good simulation.

A potential code has been developed at FFA for
simulation of transonic flow around wing-body-
nacelle configurations. The propeller is modelled

207



as an actuator disc, and the effect of the
slipstream is considered in an approximate way.
It is a multigrid-multiblock solver using both
the incomplete lower upper decomposition and
the strongly implicit procedure as the
smoothing algorithm. It is fully implicit not only
in all the three coordinate directions but also
between the blocks. The multigrid method with
the implicit algorithm brings robustness,
effectiveness and good convergence. The
applications have shown good agreement with
wind tunnel tests for the propeller driven
airplane in subsonic climb and in transonic
cruise. This code gives the outer boundary
condition for the boundary-layer calculations.
The boundary-layer code used here is based on
the experience gained from the application of
several existing three-dimensional boundary-
layer solvers. Performance improvement is
achieved by the choice of numerical method.
The finite difference solution method is used. In
the space marching at each sweep in the
downstream direction the most suitable scheme
is selected at each node, and the sequence of
calculation is determined so as to achieve
accuracy of the results and efficiency of the
computer program. The resulting algorithm is
very flexible, because the problem of solving the
boundary-layer on the whole configuration
reduces to a succession of solutions at one
single normal at a time. Therefore in this
procedure it is possible to continue the process
around normals, where the calculation has
broken down. This feature makes it very
suitable for applications to three-dimensional
complex configurations.

The boundary-layer calculations have shown
good agreement with experimental data on the
velocity profiles, distributions of skin friction
coefficient, displacement thickness and
momentum thickness on a wing at transonic
Mach number and angle of attack. The
boundary-layer calculations on the wing for a
wing-body-nacelle configuration will be shown
here. The results for the other components will
be decribed.

The different topologies for viscous flow
calculations around wing-body-nacelle con-
figurations will be disscussed.

Numerical Method

Boundarv-Layver Numerical Method

The brief description here concerns aeronauti-
cal applications.

The boundary-layer code (1) is a second order
boundary-layer theory method. The code can
also be used for first order boundary-layer
calculations. The finite difference solution
method is used. The code was devoloped for
calculation of three-dimensional attached

viscous flow. For turbulent flow an algebraic
Baldwin-Lomax model or the Cebeci-Smith
model are available.

As the system of governing equations has a
dominant parabolic character, and all surfaces
normal to the body surface are characteristic
surfaces, the three-dimensional boundary-layer
equations are solved by a space marching
integration process. The three-dimensional
boundary-layer equations differ from the two-
dimensional boundary-layer equations in the
occurrence of two coordinate directions to
describe the boundary-layer development, which
introduces a hyperbolic character as the
subcharacteristic to the problem. Therefore, an
important feature of the governing differential
equations is their domain of dependence
bounded by characteristics corresponding to the
direction normal to the wall, the directions of
the limiting surface streamline and of the
external streamline (2), see Fig. 1. Following the
Courant-Friedrichs-Lewy (CFL) stability
condition, a stable integration can only be
achieved, if the numerical domain of
dependence involves the domain of dependence
of the boundary-layer equations. This condition
has importance for the choice of grid and of
suitable numerical schemes.

External streamline

Z'one of
dependence

\

~_ Body surface / — /:

Fig. 1. Zone of dependence and zone of influ-
€nce ‘

Computationally the marching process is
performed in the increasing x1 direction, Fig. 2.

As the CFL condition should be met, the xi

coordinate lines should be aligned between the
directions of the limiting surface streamline and
the external streamline. Since the limiting
surface streamlines are unknown before the
calculation, the most convenient coordinate
systems are then the ones based on the inviscid
streamlines. Surface fitted coordinate systems
should be used, in which x1 and x2 are

locally parallel to the surface, and x3 is normal
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Fig. 2. Coordinate system

to it, see Fig. 2. In these systems the velocity
coordinate v1 should always be positive i.e. the
x1 lines are roughly aligned with the inviscid
flow direction. The numerical schemes used
should be stiff enough to deal with locally large
crossflow components. The equations are
solved at the nodes of a grid as described in Fig.
3 in the computational domain. The marching
process is performed in the increasing xi
direction, starting from an initial solution at
the first plane xi1=constant, the xi direction
referred to as the mainstream direction.

At each x1 = constant plane, the integration is
performed in the crossflow direction, i.e. along
x2. According to the flow characteristics, the

numerical scheme should be able to get
information in positive, negative or even both
crossflow directions. Apparently, it would be
very efficient to solve the equations at all the
nodes simultaneously in a x1 = constant plane
by an implicit solution process. The deficiency
of an implicit solution process is that the
process would be terminated once breakdown of
the calculation happened at one normal (x1 =
const, X2 = const). Such a termination would
not be expected especially for a complicated

configuration. For this reason, in this code in
the crossflow marching process, along x2, the

normals are treated successively with numerical
schemes satisfying the local CFL condition.
Therefore, there should be a calculation
strategy to organize the crossflow marching.
The solution for x1 = const plane is then

computed along each normal, i.e. along x3. As

the diffusion terms are dominant along
normals, this means that information must be
able to travel in both positive and negative
normal directions simultaneously. The scheme
therefore must be implicit, and the process
solves the boundary-layer equations at all the
nodes along a normal sitnultaneously.

The numerical schemes used are second-order
accurate in discretization error using a
minimum number of neighbouring nodes for
tangential derivative approximations. The zig-

Lateral boundary

/ Main flow direction.

marching direction
L L A L L
Lateral boundary
—
Initial plane x] = const X1

Fig. 3. Marching process

zag, rectangular and double zig-zag schemes are
used. They have different domains of stability.
The general space marching integration process
has been described above. One can see that the
calculation strategy to organize the crossflow
marching is of importance for the efficiency and
feasibility of the method. The choice of the most
suitable numerical scheme at each normal
determines the convergence of the iterative
solution of the governing equations. Whereas,
the sequence of calculation of the normals can
not be chosen arbitrarily, since information on
one neighbouring normal lying on the new xi
coordinate is needed for zig-zag and rectangular
schemes. The calculation strategy is then
defined as follows: determining the stable
direction of cross flow integration for each
normal, once the necessary information from
the neighbouring nodes being available,
selecting the suitable numerical scheme at each
node, optimizing the sequence, and organizing
the calculation. This procedure permits to
circumvent as much as possible limitations of
the step size in marching direction, since the
CFL numerical stability criteria effectively limit
the relative size of Ax; and Ax2.

In conclusion, the resulting algorithm is very
flexible because the problem of solving the
boundary-layer on the whole configuration
reduces to a succession of solutions at one
single normal at a time. For this reason, it is
possible to continue the process around
normals where the calculation has broken
down. This feature gives its feasibility to be
applied on a complex configurations.

Potential Flow Numerical Method

Potential flow calculations take far less then a
tenth of the CPU time of Euler calculations, and
they give good simulations for commercial
aircraft applications.

A potential flow code (3)/(4) WBNFLOW has been
developed at FFA for simulation of transonic
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flow around wing-body-nacelle configurations.
The propeller is modelled as an actuator disc,
and the effect of the slipstream is considered in
an approximate way. The finite volume
formulation is used here for the discretization.
It is a multigrid-multiblock solver using both
the incomplete lower upper decomposition and
the strongly implicit procedure as the
smoothing algorithm. It is fully implicit not only
in all the three coordinate directions but also
between the blocks.

The multigrid method with the implicit
algorithm brings robustness, effectiveness and
good convergence. The applications have shown
excellent agreement with wind tunnel test data
for a propeller driven airplane in subsonic climb
and in transonic cruise (3)(4), This code is used
here to give the outer boundary condition for
the boundary-layer calculations.

The code is cost effective as a result of the
multigrid method with implicit algorithm. The
concept for the multigrid method as an
acceleration technique is to eliminate efficiently
each Fourier component of the error spectrum
on the coarsest possible grid. This concept relies
on the use of relaxation algorithms that are
very efficient in damping those wavelength
components of the error, in at least one of the
coordinate directions, with the wavelength
comparable to the mesh size. The incomplete
lower upper decomposition and the strongly
implicit procedure(5)6) is used as the smooth-
ing algorithm. The potential equation in the
computational domain after the finite volume
discretization for the fixed grid level may be
written as

L) §=f (1)

where ¢ is the potential, which is unknown at
the nodes. L contains the algebraic coefficients
arising from discretization, depending on the

solution ¢ itself, and can be given by the
previous iteration results in the iteration
procedure. fis made up of algebraic coefficients
associated with discretization and known

values of 9, e.g. that are from the boundary
conditions. First, equation (1) is linearized
using the previous iteration results

Lo=f (2)
In the iteration procedure (2) can be rewritten
as

A¢n+l =B gn +f (3)

where A = L + B is close to L, but computa-
tionally efficient to factorise. This means that

the error matrix B should be chosen such that
the iteration matrix A is easy to eliminate,
which yields rapid convergence of the iteration
procedure without too much memory storage,
and is a good approximation of the system
matrix L. And (3) can be rewritten as

¢n+1 = A-1 Bon+A-1f

or
¢n+l = ¢n. A-1Rn
where

R = f+L¢n

For the case of incomplete ‘lower upper
decomposition and the strongly implicit
procedure, an incomplete lower upper
decomposition of the system matrix is carried
out

A=LU=L+B

The algorithm is implemented in two stages.
First, decomposition of the system matrix into a
lower and an upper triangular matrix in the
way as briefly described above, a forward sweep
is done and the matrix is now upper triangular.
Then is followed a back-substitution to solve

A.

The algorithm is coded as a plane-by-plane
algorithm, and it is necessary to store the entire
(sparse) upper triangular matrix U. The impor-
tant aspects of incomplete lower upper
decomposition and the strongly implicit
procedure algorithm are its full implicitness and
the absence of a preferred sweep direction. It
has been shown that use of incomplete lower
upper decomposition and the strongly implicit
procedure in the multigrid method leads to a
fast and robust process and a well converged
solution. The price for the full implicitness is
the need to store the entire upper triangular

matrix U. The storage required is not restrictive.
However, this algorithm is not so flexible to be
easily applied to any kind of multiblock
organization.

This is a two block code. In order to be implicit
between the blocks, as the algorithm is coded as
a plane-by-plane algorithm, it is mainly needed
to store the entries of two planes for the upper-
triangular matrix at the first block for second
block use. The alternative is, of course, to use
an algorithm which is restricted to be implicit
per block. Such an algorithm is in fact for the
block boundaries a local two-dimensjonal SLOR
algorithm for a three-dimensional gener-
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alization. Therefore, it degrades the incomplete
lower upper decomposition and the strongly
implicit procedure algorithm completely.

Computational Results
and Choice of Topology

According to Van Dykel7), a second order
boundary-layer theory differs from a first order

not only with the difference in the boundary-
layer equations but also in the interaction
between the external equivalent inviscid flow
and inner viscous flow taken into account by
the matching condition at the edges. With the
first order or the second order in this paper is
meant only the boundary-layer calculation. As
there is no considerable difference between the
Inviscid flow results and the equivalent inviscid
flow results in the application cases within this
paper, the first order boundary-layer calcu-
lations are used here,

In order to validate the method, calculation has
been done on a wing in transonic flow. The
results are compared with experimental data (8)
and shown in Fig. 4. The configuration was an
aspect ratio 20 rectangular wing with an RAE
2822 airfoil, and the flow is given through Mach
number 0.676, angle of attack of 1.98 degree

and Re=5.7+106. The transition was fixed at

x/c=0.11 according to the experiments in (8) .
The outer edge boundary condition for the

boundary-layer calculation was obtained from a
WBNFLOW calculation using a grid of C-H

topology (9). The calculation results on the
symmetrical section are compared with the RAE

2822 airfoil 2D experimental data (8). In (8) the
test was performed at an angle of attack of 2.4
degree. However, in the calculation the angle of
attack is taken as 1.98 degree because of the
wind tunnel wall disturbances according to
(10), the correction taken into account. Fig. 4
shows that the calculation results are in good
agreement with the experimental data on the
velocity profiles, the distribution of skin friction
coefficient, displacement thickness and
momentum thickness for this wing at a
transonic Mach number at an angle of attack.

The application to a propeller driven airplane
configuration, which consists of wing, body and
nacelle, Fig. 5, at a subsonic Mach number
0.158, an angle of attack of 0 degree, and
Re=4.83+106, is shown in Fig. 6 to Fig. 14. The
outer edge boundary condition was obtained
from the WBNFLOW calculation, using C-H
topology and two blocks for the grid. In the
boundary-layer calculation the flow was
assumed to be turbulent. No considerable
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difference in results was observed when using
the turbulence model of Baldwin-Lomax or of
Cebeci-Smith.

Figs. 6 to 9 show characteristics of the
boundary-layer for the upper surface of the
inboard wing, such as external streamlines and
skin friction lines, as well as isolines for
boundary-layer thickness and skin friction. The
flow is dominantly two-dimensional, except in
the region close to the nacelle and the wing
trailing edge. Fig. 10 shows the boundary-layer
development and the velocity distribution at a
wing section close to the inboard side of the
nacelle.

The remaining figures apply to the upper surface
of the outboard wing. Figs. 11 and 12 contain
patterns of streamlines and skin friction lines.
They show that only close to inboard and
outboard ends respectively are any visible three-
dimensional flow effects. The two last pictures
show isolines for boundary-layer thickness and
skin friction.

The full potential calculations take far less than
a tenth of the CPU time of Euler calculations.
The multigrid method together with the implicit
smoothing algorithm brings robustness,
effectiveness, and good convergence, therefore
the code WBNFLOW is cost effective. In the case
of a C-H topology grid, certainly one can get very
good resolution for the wing and also for the
region of the whole wing-body-nacelle
configuration, which is rather close to the wing,
see (3) and(4). For this commercial airplane
configuration the surface grid on the wing can
be directly used for the boundary-layer
calculations without any extra work, e.g.
generating surface grid, interpolating data from
Inviscid calculations for the outer edge
boundary condition in boundary-layer calcu-
lations. It is important that the surface grid is
suitable for boundary-layer calculations. Then
it is unnecessary to make interpolations, that
have no physical meaning, for the boundary-
layer outer edge conditions, as such an
Interpolation often damages the accuracy in the
boundary-layer calculation, especially in regions
where the geometry changes rapidly and steep
gradients occur in the field.

The multigrid method together with the implicit
smoothing algorithm makes the code
WBNFLOW cost effective. On the other hand,
the implicit smoothing algorithm used here is
difficult in the coding respect to implement for
any number and type of block arrangement. For
the wing-body-nacelle configuration using two
blocks of C-H topology, the sweep is made
roughly in the spanwise direction. The code is
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Fig. 5. Wing-body-nacelle configuration

I

Fig. 6. Streamlines for inboard wing, Fig. 7. Skin friction lines for inboard wing,
upper surface upper surface
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Fig. 8. Boundary layer thickness isolines Fig. 9. Skin friction coefficient isolines for
inboard wing, upper surface for inboard wing, upper surface

Fig. 10. Boundary layer at wing section, just inboard of nacell
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Fig. 13. Boundary layer thickness isolines for outboard wing, upper surface
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Fig. 14. Skin friction isolines for outboard wing, upper surface
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organized plane-by-plane. For any block
arrangement if one has to break the sweep in
one plane into several pieces, it would be
difficult in coding respect.

For the commercial airplane there is often a
long fuselage part ahead of the wing, and a C-H
topology grid would be too coarse at the nose of
such a fuselage, and the surface grid on the
fuselage nose would not be suitable for
boundary-layer calculations. In this case the
interpolated results might not be very suitable
for boundary-layer calculation, and the outer
edge matching condition has to be set lower.
The results on the fuselage would not be as
accurate as on the wing and it would influence
the flow in the junction. Otherwise the
situation would be misinterpreted as flow
separation. The situation is similar for the
nacelle. As the two blocks C-H topology is used
in the inviscid calculation, the calculated flow
results on fuselage and nacelle are not as
accurate as on the wing.

Further, in the full potential calculations one
has to specify the wake position. This makes it
difficult to have a completely body-conforming
grid on the rear portion of fuselage. The
difficulty is the same for the nacelle grid. This
influences the accuracy in the boundary-layer
calculation.

The best choice of grid topology for viscous flow
calculations is an efficient multiblock grid for
the whole wing-body-nacelle configuration, in
which the surface grid is suitable for boundary-
layer calculations. Then it is unnecessary to
make any interpolation for the boundary-layer
outer edge condition, as such an interpolation
often damages the accuracy in the boundary-
layer calculation. In this respect an Euler code
would be very flexible and straight forward,
because it can utilize any multiblock grid
topology, as a Runge Kutta time stepping
scheme is used for the flow field solution.

Conclusions

The wing is aerodynamically the most
important component of the airplane. The full
potential code together with the boundary-layer
code is very cost effictive for the prediction of
the viscous flow at least about the wing of a
wing-body-nacelle configuration. Valid results
from such calculations were shown in this
report. Therefore it is a useful tool for the
airplane design.

However, for calculations of viscous flow about
the whole configuration it appears necessary to
to use a more complex multiblock grid.
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