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Abstract

A method for the analysis of propellers and the de-
sign of optimum propellers is described. The method is
based on representing the rotor system and its wake by
a set of line vortices. The wake may be relaxed to model
the contraction of the wake. The method does not re-
quire the assumptions used in classical blade-element
and momentum theory and is thus less restrictive. The
vortex theory described here is used to verify some of
the assumptions of blade-element theory. Application
of the vortex method to the design of two propellers is
described and the results compared with those of clas-
sical blade design methods. It is found that the results
are in good agreement with the classical blade element
theory, although the effect of the tip vortex is found to
be quite marked at low advance ratios.

Introduction

As suggested by Lanchester in 1907{13], a propeller may
be modelled aerodynamically by bound and trailing
vortices, where the velocities induced by the trailing
helical vortices at the blade modify the relative airflow
there. Although expressions for these wake-induced ve-
locities can be written down using the Biot-Savart law
for vortex-induced velocities, the numerical evaluation
of these expressions is in general not possible in a simple
form. The calculation of the induced velocities is the
most difficult aspect of the practical application of the
vortex theory of propellers. In fact one of the earliest
versions of blade-element theory due to Drzewieckil9
ignored the induced velocities entirely and while there
were a few attempts to compute it in Japanuz] and
Russia (see the work of Joukowski referred in[2]), these
approaches were quickly abandoned as a potential route
to a practical calculation procedure with the available
computing facilities of the time.
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Various idealisations were used to simplify the problem
with the greatest advances in propeller analysis meth-
ods following from the work of Prandtl and Glauert(?)
where a combination of blade. element and momen-
tum theory was developed — in effect obviating the
need to calculate the induced velocities of the vor-
tex wake via a Biot-Savart expression. Subsequently,
Goldstein(8! produced a theory for the velocities in-
duced by an idealized vortex wake, refined by Lock(19]
for practical application. The essential difference be-
tween the Prandtl/Glauert and Goldstein approaches
is the means by which the wake induced velocities are
calculated. However, they share common assumptions.
Fundamental amongst these is the ‘blade-independence
principle’. Glauert(©] gives a qualitative description
of why the wake-induced velocities at a particular ra-
dial station on the blade should depend on the loading
at that station alone. Experimental investigations by
Lock et all16] have shown this to be a valid assump-
tion for most parts of the blade. Another assumption is
that the wake does not contract. This implies that the
increase in axial velocity of the air passing through the
propeller is small, i.e. the propeller is not producing a
‘large’ amount of thrust per unit area of the propeller
disc and is lightly-loaded. This assumption was relaxed
by Theodorsen[17], who introduced corrections to the
basic theory to allow for highly loaded propellers. Fi-
nally, the velocities induced by the vortex system at
the blade are assumed to be half the values induced
in the wake far downstream. This result follows from
considering the velocities induced by an infinite and
semi-infinite helical vortex filament of fixed pitch and
radius, (where this wake shape is a consequence of the
lightly-loaded assumption.) These assumptions have
been the cornerstones of classical blade-element the-
ory for several decades yet little has been done to assess
their accuracy or range of applicability.

Within the framework of lightly-loaded propellers,
Betz[3] was able identify the optimum load distribution
on a propeller —i.e. the propeller design requiring min-
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imum power input to produce a given thrust. A similar
study using the calculus of variations is reported in 1y

For completeness, a brief summary of blade-element
theory as developed by Glauert is given in the next
section. The results of this classical theory are com-
pared with a new vortex theory later in the paper.

Blade-Element Theory

From the blade independence assumption, we can treat
each radial station of the blade separately. Consider a
propeller with B blades rotating with angular velocity
w in an axial flow of velocity V' and examine the con-
ditions at a radial distance » from the axis of rotation.
We define the solidity, o, by

Be
7 Tar O

where c is the chord at . The Prandtl tip correction
factor is (see Glauertm);

_2 1y
F= - cos™'e 2
where B(1-7)
-F
f= 2 “sin é1 @)

r . . . .
where ¥ = —, R is the tip radius and ¢; is found from

Rtan¢; = rtan¢, where R is the radius of the blade
tip and ¢ is the angle between the local flow at the blade
and the blade disc. The element of lift (dL) and drag
(dD) acting on the blade element are given in terms of
the lift and drag coefficient of the blade sections by

dL = CripWicdr
dD = CpipWiedr (4)

where W is the total velocity at the blade element and
may be found via

_V(l+a) wr(l-1b) '
W= sing (5)

cos ¢
Here q is the inflow factor and b is the swirl factor and
represent the velocities induced by the trailing vortex
system at the blade. From the assumptions of blade-
element theory the corresponding values of the inflow
and swirl factors in the far wake are twice those at the
blade element.

It is more convenient to use the axial and circumferen-
tial force coeflicients defined by:

Cy = Crcos¢—Cpsing
Cx = Crsing+Cpcosé (6)
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The elemental contribution to the thrust on the blade
element is

dT = BCyipWicdr =
| L 4

Force on blade element

pV(1 + a)27rdr2VaF

~
Momentum increase in far wake

()

where the force on the blade element is given in terms
of the coefficient of thrust on the blade and also in
terms of the momentum in the far wake. From these
expressions we have

“or (W) = Sor (B22) =avaer ®

v 4 sin ¢
thus c
o Cy _ _a
Ton?s Y T T+a ©)

This may be solved to give the inflow factor as
oY
1
F-oY (10)

Similarly, the contribution to the torque on the pro-
peller acting on the blade element is;

dQ = nCx 1pWlcrdr = pV (1 + a)2nrdr2wrbFr (11)

a=

where again two expressions are available, one in terms
of the force on the blade and the other is the increase in
angular momentum in the wake. From these we obtain:

Tox I
4% Vor
- % (1+a)(1-5b)
Y el sin ¢ cos ¢
= (l4a)bF (12)
which simplifies to
¢ Cx b
—_— = = ——F
4 sin ¢ cos ¢ oX 1-b (13)
which in turn may be rearranged to give the swirl factor
cX
= 14
F+oX (14)

The wake helix angle at the blade is given by;

V(l+a) _ V R(1+a)

tand = =0~ wET (1=0)

(15)

Defining A = w—V-, F= L and substituting for a (equa-~
tion 10), b (equation 14) and using equations 13 and 9
we obtain

(Fsing - %Cy) = -;- (Fsingcosg + Z-Cx) (16)



This is the main equation used in this paper the itera-
tive solution procedure for ¢ at each radial station on
the blade.

Optimum Design

Consider the case of a drag-free section (i.e. only cir-
culation is present on the blade) then

Cy
Cx

Crcos¢
Crsing (17)

so equationl6 becomes

(F sin? ¢ — %CL cos ¢) =

% (F sin ¢ cos ¢ + %CL sin ¢) (18)

this may be re-arranged to give;

. A
sin ¢ — = cos
o . ( ¢ T ¢
—Cr = Fsin¢g (19)
4 A
cos ¢ + = sin ¢

where the left hand side is just a function of ¥ and ¢ for
a given A. Betz(3] has shown that when a propeller car-
ries the optimum load distribution the far wake rotates
as a rigid screw surface. The optimization process is
thus as follows. First a value is estimated for ¢;00, the
value of the tip wake helix angle far downstream. The
optimum condition is that the helix angle for the wake
far downstream obeys the following relationship;

rtan ¢ = constant = Rtan ¢yn (20)
or .
tan oo = a":“” (1)
with
V(142
tande = (T-2)
Al+2a
T OF1-2 (22)

We have the earlier results;

oY
F —~oY

a =

(23)

with
oCy
4sin® ¢
oC

= Tomd cot ¢ (24)

substituting for ¢Cr from equation 19, we obtain;

oY =

a=

cos ¢ <sin ¢ — % cos ¢) (25)

>

Similarly, we may derive an expression for the swirl
inflow factor, &,

oX
= 26
F+oX (26)
as Cx = Cf sin ¢ this leads to
A
b=sing¢ <sin é— 5 cos d)) (27)
The helix angle of the far wake is given by
_ V(142a)
tanfoo = wr(l — 2b)
Al+2a
T OF1-2 (28)
Now, from equations 25 and 27,
142 1+2§-cos¢<sin¢—;-cos¢)
1-26 ) (29)
1-—2sin¢ (sinqS - gcosqb)
thus equation 28 becomes
A7 tan2e—1
tan ¢oo == P (30)
" Ztan2¢ + 1
T

For an optimum propeller, we have the condition that
the far wake forms a rigid screw surface;

t
tang, = an:tm
r tan2¢ — 1
-2 @
r ?tan 26+ 1
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So, far a given tan ¢¢o, Wwe have

'i-'
tangreo _ A tan2¢ -1 (32)
A é\; tan2¢ +1
=
This may be re-arranged to give
tan ;Stw +1
tan2¢ = 7 tandis (33)
A ¥

Given a value of ¢, the advance ratio and radial sta-
tion, equation 33 gives the flow angle at the blade from
which the inflow factors, circulation and local thrust
and power coefficients can be found. By integrating
the local power coeflicient across the blade the total
power coeflicient is found and compared with the de-
sired value. ¢:c is varied (via a Newton iteration) until
the desired power coeflicient is obtained.

After the development of blade-element theory there
has been little further development in propeller the-
ory. The optimum results of Betz (leading to the result
shown above) have been used recently by Larrabeell4]
and Adkins and Liebeck!!] to design and analysis mod-
ern for low-speed applications (including propeller for
man-powered aircraft) with great success. Designs for
higher speed applications are still based on the Gold-
stein/Lock theory, but with allowance for compressible
flow over the blade sections.

To quote Larrabeell4l “The nest step up to a ‘pre-
scribed’ or ‘free’ discrete vortez model of the ‘rotor’ and
tts ‘wake’ is much more difficult’.

Here we take this ‘next step’ and now describe the de-
velopment of a new propeller theory based on the fun-
damental vortex description of a propeller and compare
it with results from the classical and new theories.

A Line-Vortex Model for Rotor Flows

As a rotor system may be replaced by a bound vortex
system and a set of trailing vortices forming a heli-
cal surface an inviscid calculation of the flow past the
blades can then be obtained by a generalization of the
lifting line theory for conventional wings. In particular,
it is most convenient if an iterative procedure is used. If
the circulation distribution across the blade is initially
assumed, then the distribution of circulation in the
wake follows from the Helmholtz law. The wake vortic-

ity will induce velocities at the blade. These velocities
may be found, in principle, from the Biot-Savart law
if the wake shape is known and combined vectorially
with the relative airflow at the blade due to forward
speed and rotation, to give the total relative airspeed
at each section of the blade and the angle of flow to the
disc plane. This in turn implies (for a given blade pitch
setting) an angle of attack which determines the blade
lift coefficient and hence its circulation. This leads to a
new estimate of the circulation distribution across the
blade and so the iteration process can be repeated until
a converged answer is obtained.

A numerical method for calculating the velocities in-
duced by the semi-infinite helical trailing vortex fila-
ments is used here. The present approach represents
the wake in two parts - a near field and a far-field re-
gion. The vortex filaments in the near field region are
replaced by a series of straight vortex filaments, follow-
ing a helical path. The Biot-Savart law is then used to
calculate the velocity induced by each vortex segment.
An asymptotic expression is then used for the veloc-
ity induced by the remainder of the wake. An early
version of the present method is described and applied
to wind-turbine applications in Gould and Fiddest101.
Gould®¥! conducted a survey of a number of methods
for estimating the influence of the far-wake, and found
that the method proposed by Wood and Meyerus] gave
the most accurate results and was computationally ef-
ficient.

The near-field vortex filaments can be relaxed, to align
themselves with the local flow direction. Each of the
far-field vortex filaments is taken with fixed pitch and
radius to downstream infinity. The pitch and radius of
the far-field filaments is fixed by the pitch and radius
of the last part of the adjoining near-field filament.

The lifting-line method has been investigated exten-
sively by Brownl4 to assess its accuracy. The key nu-
merical parameters are:

1 Number of trailing vortices per blade
2 Number of turns in near wake
3 Number of vortex segments per turn in near wake

4 Radial distribution of horseshoe vortices and con-
trol points

It is, of course, desirable to use the minimum number
of vortex filaments to represent the wake while pre-
serving the required degree of accuracy in the solution.
To achieve such an efficient model of the wake it has
been found desirable to use a ‘cosine’ distribution and
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use ‘horseshoe’ vortices comprising adjacent wake fil-
aments. Then it is found that ten horseshoe vortices
per blade are sufficient to give good accuracy, with two
turns being used for the ‘near-field’ part of the wake
with each turn comprising 24 vortex segments. These
values have been used for the remainder of this study.

Wake Relaxation

An important part of the calculation procedure, espe-
cially for highly-loaded propellers, is the relaxation of
the trailing vortex wake so that it takes up a force-free
position. This is carried out for the inner wake region,
the semi-infinite part of the wake continuing with con-
stant pitch and radius set by the last turn of the inner
wake.

The wake is initially a prescribed one, following the
‘lightly-loaded’ direction of the rigid screw wake, i.e.
following the air path traced by the blade. For a
given loading on the blade, the velocities induced in
the near-field wake are computed and the line vortex
segments aligned with the local flow. This is performed
by ‘sweeping’ downstream with relaxation being ap-
plied in successive downstream planes. A number of
downstream sweeps are performed during each relax-
ation cycle.

During the relaxation some vortices approach one an-
other closely and can develop large variations in posi-
tion from sweep to sweep. To alleviate this problem,
a vortex-merging procedure is used where vortices are
combined if they approach within a given distance of
each other. This has been found to be very effective in
stabilizing the wake roll-up process.

Thrust and Power Coeflicients

Using the method described above for computing the
wake induced velocities for a given wake (which may
be a relaxed wake), we may write;

up = Z ai;iT; (34)
i

CEDW Y (35)
i

where u; is the axial velocity induced by the trailing
wake system at collocation point i on the blade and v;
is the circumferential (or swirl) velocity. Thus a;; is the
contribution to u; from the horseshoe vortex associated
with radial position j. The a;; and b;; depend on the

wake geometry, and may be computed once the wake
shape is obtained, either via a prescribed or relaxed
wake solution.

From the Kutta relationship for the force on the bound
vortex representing the blade, and ignoring the profile
drag of the blade sections, we can write for the total
torque (Q) and thrust (T) on the blade;

T= pz Ar,-(wr,— + v,-)l‘.-
]

Q = pz T;AT;(V + u;)I‘;
t

Where r; is the “average” radial position of horseshoe
vortex i (taken as the collocation point) and Ar; is the
length of the bound portion of that vortex. The power,
P, is related to the torque via P = Quw

The following non-dimensionalisation is now intro-
duced: all lengths are non-dimensionalised with re-
spect to the tip radius R, and all velocities are non-
dimensionalised with respect to the rotational tip
speed, wR (hence the circulations are nondimension-
alised by wR?). Furthermore, it is convenient to ex-
press the thrust and power in coefficient form and use
the advance ratio instead of the forward speed, i.e.

T Bx?
Or = gupr = g g An Wl 69
P B3 J
szszngAm (;‘*‘Uz’) T; (37)
where, J is the advance ratio ( J = ;‘i = g“/‘)»

is the diameter of the blades (= 2R), n is the revolu-
tions per second (= i)—) and the other symbols now
represent non-dimensional values.

Optimum Propellers

The optimization problem is now introduced: given a
propeller with B blades each of radius R, operating
at an advance ratio J with a power coefficient Cp,,
what is the maximum thrust coefficient that can be
produced and what form of load (or circulation) distri-
bution across the blade gives this maximum thrust?

To answer this question we maximize the following ex-
pression with respect to the I'y’s;

L(T',X) = Cr + M(Cpo — Cp) (38)
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where T is the vector of I';’s and A is a Lagrange mul-
tiplier.

To obtain an extremal value of the function L, we must

have ?l;b(—;‘-’—)g = 0 for each value of k. This is found
via: k

aCr Br? ar;

b’ S Ari(r: AU

BT 1 Z ri(ri +w) 5p

B’II'2 Bv.-
+ T;Aﬂ'ér—kri (39)

Using the result Lx] = bi, (the Kronecker delta) and

Ty
dui 9 biT;
oy T
_ ory
= Zb,, 7T = bix (40)
J
we have:
60T B7r2
_(’—)ﬁ = 2 Af'k(rk+vk)

B 2
+ —:—Zi:m;b,-,,r,- (41)

The above equation represents two physical effects.

2
The first term (%{—Ark(rk + vi)) is the change in

thrust on a given horseshoe vortex due to the change
in strength of that vortex— this is a ‘local’ effect. The

Br? .
Yo Ari(r; + b )T;) is the effect due
to the change velocity at all bound segments due to a

change in circulation on one bound segment - this is a
‘global’ effect.

second term (

Similarly, we have for the rate of change of power with
local vortex strength;

oCp Br3 J or;
T 4 2T (‘+)5*r‘
Br8 Ou;
+ TZ:TiArimr;

3
= B rEATE (i + uk)
4 T
B 3
+ —%Zr;Ar,-a;kl‘;

]

(42)

This again is made up of two terms - the ‘local’ effect
and the ‘global’ effect.

The condition for an extremum is then

Arp(re + vi) + Z AribiT;

J
— AT (; reArg (-ﬂ—_- + uk) + ;r;Ar,-a;kI‘,-)
= 0 (43)
for each k.

One result follows immediately from A being the same
value for all values of k, i.e. at each radial position we
require that the ratio;

Arg(re +ve) + 3 ; AribiT;
reAry (-;Jr- + uk) + 3 riAAriap T

= A7 (44)

is constant across the blade. Substituting for v; and
1 in terms of the influence functions, we have;

Arg(rr + 3 0kili) + ), Aribir Ty

5 = Ar
reAry (-7; +3 ﬂkir:‘) + 3 riArianT;

or

Argre + 3 (Arebe + Aribig )Ty
J
'I‘kA'rk;r- + Z,‘("'kA"'kaki + r,-Ar,-a,-k)I‘,-

=Ar  (45)

Classical Propeller Theory Result

A link between the present analysis and the classical
result of Betz for optimum propellers is now seen, if
we make the same assumptions as used by Betz[3 in
deriving his result for the optimum load distribution,
viz:

(1) That the wake induced perturbation velocities at
a given radial station depend only on the load car-
ried at that station.
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(2) That there is no wake contraction and the wake-
induced perturbation velocities in the ultimate
wake are twice those at the blade at the same ra-
dial station.

The first assumption implies that only the “diagonal
terms” a;; and b;; are non-zero and the equation for the
Lagrange multiplier becomes (reverting to dimensional
quantities)

Arpwry 4 (A‘I‘kbkk ~+ Arkbkl,)l‘k
AU + (reArgage + reArgagi)Te
wrg + 26Tk

= — 46
rk(U+2akk1‘k) ( )

wA

is a constant across the blade. From the assumptions
above, wry + 263t is the circumferential (or swirl)
component of velocity in the far wake, while U+2ar: Tz
is the axial velocity there. The wake is aligned with
these velocities, so the helix angle (¢) of the far wake
is

wri + 20k ik Tk

t —
Mk = o T,

= constant X ry (47)

from the optimality condition. The tangent of the helix
angle of the far wake is thus proportional to the radial
distance to each part of the wake. This implies the
wake forms a rigid screw surface, in accordance with
the Betz result.

Blade Independence?

The availability of a method for the accurate calcula-
tion the influence coefficients allows us to assess the as-
sumption of independence of blade sections across the
blade. The consequence of the independence. of blade
elements (if it is true in each case) is that the influence
matrices calculated by the present method are diago-
nal, i.e. only the element a;;, b;; and c¢;; are non-gzero.
A weaker requirement is that the influence matrices
should be strongly diagonally dominant. Influence ma-
trices corresponding to a range of conditions (different
wake helix angles, number of blades), have been exam-
ined and a typical plot of the magnitude of the circum-
ferential (swirl) influence matrix elements b;; for two
cases is shown in figures 1 and 2 for unrelaxed, pre-
scribed wakes following the lightly-loaded wake shape.
The plots show the logarithm of the magnitude of the
influence coefficients, with the tip at the upper part of
the figure and the hub at the lower. In each case the

wake has been modelled by seventeen trailing vortices
per blade.

The first is for a case with six blades at an advance
ratio of J = 0.39. Here successive turns of the wake
are in close proximity and the trailing vortex system
is well-presented by a set of vortex cylinders, a case
that should be well-represented by the blade-element
theory. It is seen that the influence matrix is indeed
strongly diagonally dominant.

The second example is for a two-bladed propeller at
the same advance ratio. Figure 2 shows that the
off-diagonal entries do not decrease in magnitude as
rapidly as before, but the matrix is still diagonally dom-
inant.

The assumption of blade independence is thus seen to
be a good one, as studies of other influence matrices
for a wide range of flow conditions show.

Solution of the Optimization Problem

For an assumed value of the Lagrange multiplier A,
equation4b gives a set of linear equations that may be
solved for the circulations T'.

Argre + Z(Arkbki + Arbi)T;
:

J
.Y 1 (rkArk-"-r- + zi:(rkArkak; + r,-Ar.-a,-k)F.-)
= 0 (48)
Rearranging this expression, we have for each station

k

E((Arkbk; + Aribig) — Am(ryArgar; + T,‘Ar,'a;k))r.'
i

= (1 — AJ)Argry (49)

If A is prescribed, equation 49 may be solved to give
the T';’s. The power produced by this set of I';’s may
be found from equation 37. This will, in general, differ
from the prescribed power, so an iteration is performed
with A to find the value of the Lagrange multiplier that
gives the specified power. A Newton iteration scheme
is used in this paper. Once the value of A giving the
specified power has been found, the optimum T'; distri-
bution and the thrust coefficient may be determined.

The loading optimization procedure is carried out for
fixed wake geometry. When the optimum loading has
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been found, the wake is relaxed, so that it is consistent
with the most recent load distribution. Typically two
to four relaxations are performed for a fixed circulation
distribution. The relaxation will in general alter the
shape of the wake and hence the influence functions.
The optimization process then needs to be repeated for
the new wake shape. This process is repeated until the
loading does not change between two successive wake
relaxations and optimizations.

Application Examples

Some examples of the application of the classical and
new theory are now described. The first example is the
design of a three-bladed propeller for a microlight air-
craft. The design specification is the maximum thrust
for conditions corresponding to an advance ratio of
0.433 and a power coefficient of 0.06. The classical
(blade element) optimization of the design predicts a
thrust coefficient of 0.106. Figure 3 shows the con-
vergence of the circulation distribution with successive
iterations for the vortex theory, while figure 4 com-
pares the classical and vortex-theory predictions of op-
timum load distribution. The agreement is quite close,
although the vortex theory has a marked nonuniformity
near the tip. This is due to the effect of the tip vortex
from the preceding blade that runs inboard of the blade
due to the wake contraction. This leads to an unload-
ing of the tip. Figure 5 shows the variation of predicted
thrust coefficient with wake relaxation. It is noted that
the vortex theory result approaches the classical result
very closely. Figure 6 shows the unrelaxed and final
relaxed wake shape for one blade. Note that for the re-
laxed wake the wake pitch increases downstream (due
to the progressive increase in axial velocity in the wake)
and the wake contracts, so that the actual wake shape
is quite different from the lightly-loaded form. Nev-
ertheless , the optimum classical design is quite close
to the vortex-theory result. This agreement between
classical and ‘fuller’ vortex theory for this case may be
expected as the design condition is a lightly-loaded one
at low advance ratios — conditions conducive to the the
assumptions of blade-element theory being valid. How-
ever, the effect of the strong tip vortex on the outboard
loading is not accounted for in the classical theory.

As the lightly-loaded example discussed above does
not reveal any marked difference in the optimum de-
sign as predicted by blade-element and vortex theory,
a more highly-loaded example is considered next. This
is drawn from a six-bladed propeller design for a high-
speed civil airliner with higher loading and advance

ratio (a power coefficient of 1.0 and an advance ratio
of 3.0).
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Figure 7 shows the convergence history of the circula-
tion distribution for ten wake relaxation cycles. Note
there is hardly any change in optimum loading with
wake relaxation. Figure 8 compares the classical and
vortex-theory results — again the agreement is very
good, perhaps surprisingly so in view of the design con-
ditions. Pigure 9 shows the convergence of the thrust
coefficient with wake relaxation. Again the resulf is
close to the classical method prediction in terms of
thrust levels.

Figure 10 compares the unrelaxed and relaxed wake.
The wake relaxation affects the downstream shape of
the wake more strongly than the ‘near wake’. The high
advance ratio means that the wake is carried away from
the blade quite quickly before rollup can alter the wake
shape near the blade significantly and thus explains
why the optimum loading does not change greatly with
wake relaxation in figure 7.

Again, the classical and vortex theory results are very
similar, perhaps more so than in the previous design
example, as the tip vortex is swept downstream before
approaching the following blade in the high speed case.

Conclusions

A new model for the flow past a propeller has been pre-
sented and a method for determining optimum designs
in this new framework has been described. Comparison
of the results of the new method with classical (blade-
element) design procedures has strengthened some of
the assumptions of the classical theory and given good
agreement with ‘classical optimum designs’. Perhaps
surprisingly, the greatest discrepancies occur at low ad-
vance ratios, due to the proximity of the strong tip vor-
tex from the preceding blade to the inboard section of
the following blade. At high advance ratios the classical
theory and vortex theory are in closer agreement.
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