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Abstract

Several methods for synthesis adaptive control of flexible
systems are well known. Methods based on eigen-
functions and corresponding natural shape modes are
frequently used for mathematical description of flexible
system motion. In this paper a different approach of
synthesis adaptive control of flexible systems is presented.
Method is based on the generalized method of
decomposition and reducing mathematical model of
elastic structure dynamics performed for systems of second
order differential equations in direct procedure, which is
used for synthesis complete mathematical model of
flexible system motion. This method is useful for synthesis
active control of elastic structure system vibrations. Main
feature of this approach of mathematical modeling flexible
systems is possibility of system control synthesis in several
phases corresponding to the actual system state which is
in this phase independent of other dominant shape modes.
Main advantage of presented method of simplify computer
oriented procedure for simulation of flexible system
motion and corresponding control design are presented
and described in the paper. This method includes
numerical procedure for solving algebraic Riccati matrix
equation with corresponding computer package which is
main problem of complete presented method. Some
performances of complete computer program package for
simulation of flexible system motion, based on presented
procedure of its mathematical modeling, are shown in the
given example. Corresponding PID control synthesis are
also presented. The concept of adaptive control synthesis
of internal flexible structure dynamics is also presented in
the paper. Internal dynamics of flexible system is usually
described with large scale mathematical submodel
corresponding to the model of system nominal motion.
System control is assumed as same as for system with
rigid structure, but with change control law corresponding
to the internal dynamics state as a small disturbance of the
whole system. Any additional generalized coordinates of
system control are not included in the first phase of its
design.

Introduction
Complete system can be separated onto four subsystems by

using Kalman’s decomposition as followed [2]: subsystem
which is observable and controllable; subsystem which is
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not observable but controllable; subsystem which is
observable, but not controllable; subsystem which is not
observable and not controllable. The first of mentioned
subsystems is of prime interest in problems of system
control design and the subject of this paper only. Several
methods for reducing subjected subsystem are known.
They can be classified in six basic approaches and its
combinations as followed [2]:

-Parameter Optimization approach;

-Aggregation approach;

-Singular Perturbation approach;

-Modal Dominance approach;

-Component Cost Analysis approach and

-Internal Balancing approach.

Discussions in the paper are related to a third of
mentioned approaches in intention to define some possible
ways for solving existing numerical and other problems
which arises in its use.

First step in a system control synthesis is reducing of
system dynamic model on usable dimensions, but without
arbitrary lose in its accuracy. If system nominal control is
defined completely, the problem is how to compensate
internal flexible system dynamics as much as possible
assuming it as a small disturbance around nominal
motion. Another problem is synthesis of nominal
dynamics in accordance to the minimization of system
internal dynamics influence trough the whole phase of
mentioned system motion. This problem presents the
advanced system control. Internal dynamics can be used
for different nominal motion synthesis, which optimizes
the system performances in a measure greater as for the
rigid one.

Several problems of control synthesis of flexible systems
with distributed parameters can be described by coupled
mathematical model between nominal and flexible
internal dynamics. Dynamic systems with nominal and
internal flexible motion are presented in a problems of
anti-flutter control synthesis, synthesis of passive and
active control of rotor head vibrations, control synthesis of
flexible structure manipulators in a space robotics, control
of vibrations of mechanical systems, etc. Usually, nominal
dynamics is described by nonlinear dynamic model.
Internal one is usually given in a linear mathematical
form (except for the systems with large flexible
displacements, which are not the subject of this paper). It
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is useful to reduce mentioned dynamic submodel of
internal flexible system dynamics on a minimal form
which includes only modes of interest to be compensated,
whose number is less of the number of dominant flexible
modes. By using this procedure, problem of system control
synthesis can be described in a more simplified
mathematical form.

Mathematical model of complete nonreduced flexible
system can be generally described in the following
implicit form [3]:

X=Ff[X,U,¢e(X,X,Y,Y)] Q)
:g(Y,X,X,U)

with corresponding initial conditions. X is the subvector
of system nominal dynamics state, which is not the subject
of system reducing procedure. Additional vector Y of
system state corresponds to its internal flexible dynamics
described by the second differential matrix equation of the
relations (1). Parameter ¢ is a measure of internal system
dynamic influence on its nominal motion.

Procedure of second order dvnamic system reduction

Presented procedure is based on the method of first order
dynamic system reduction [6]. Consider a dynamics
system given in a matrix form by the following relation:

MX+DX+KX =F )

with corresponding initial conditions. X is the vector of
flexible system state. Equation (2) can be transformed into
a first order matrix form by following change of system
coordinates:

X =Y 3)

=AY +BX +G

where system matrices are defined as:
A=-MTD

B=-M"'K =M™'F (4

Matrix form (3) can be written in a following form:
Z=PZ+Q 5)

where subvectors of generalized coordinates are redefined
in the form:;

Z={Z,,ZZ}T,'X={X,,X2}T,‘Y={Y1,Y2}T )
Q ={Q1102.}T:'21 = {X1:Y1}T;zz = {erYZ}T

Corresponding submatrices are given in the form:

o | 0o 0 0 0

P, = ;P = ;B =

" B1 1 AI 1 l ? B12 A12 21 BZ 1 ’42 1 (7)
o | 0 0

P, = ;..Q = S.Qy =

22 822 Azzl 1 lG1 2 Gz

where A ,B and G are the cofactors of the corresponding
matrices given by relations (4). By using procedure of first
order matrix system reduction, system form (5) can be de
coupled into two separated subsystems presented in the
following form:

W,=CW,+E, W,=CW,+E, ®
where are:
=Py -P,L
2=P22‘LP12 9)
E,=Q,+N(Q,+LQ,)
E,=Q,+LQ,

Matrices L and N are the solutions of corresponding
matrix algebraic Riccati equations:
P, -P,L+LP, -LP,L=20
~PyN+P,(I+LN)+N(P, +LP,,)=0

(10)
Corresponding transformation of generalized system
coordinates is given by matrix relation:

Z
Z,

w,
w,

-N l an

|+ LN

- l_’L

Expanding presented relations by cofactor matrices we can
determine matrices of the systems (8) in the following
form:

0 /
C =
! B11 - B12L71 "'Arzl-:n A11 - B12L12 _Arzl-zz
C. = -L;,B,, I-L,A,
z Bzz - LzzBm Azz - LzzArz

(NyLy + Niply, )G, + Ny, G,

" (1+NylLy +Nyly )G, + NypG, (12)
L,G,
E o=
z ILZZG, +G,

Cofactor matrices are presented by the following relations:

A =M [-Dy~M (M- MMM, ) (MM, D~ D)
A, =(M, -MIM;M21).1 (Mvz’V[z—;Dzz -Dy,)
Ay=(M, “%M—:MZ)—1(%M11D11 -0,,)
Ay = M3 [~Dyp— My (M ~MMM, ) (MM;;D,~D,)]
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B,= Mt';[‘&FMz(Mzz“%MJM12)~1(M2M11K11“ Kol
By=(M,- MMW21)~1 (MM;Kzz -Ki2) 13)
B,= (Mzz‘M2M;M2r1(M2M17K11"K21)

B,= MzZ[ —Koz Moo MFMMWZ)J(MM;K&’ Ki2)l

Gl = (Mﬂ ‘MM;M21)~1(F1 —MM;FZ)
G, = Mz—; [Fz ‘Mz1(M11 —M2M£21M21)-7(5 "M12M;;Fz)]

Equations (8) can be expanded into second order matrix

differential equation in a form:
"+ AU+ BU =G, 14
where system matrices are presented in the form:
Az = —(A, - B;;L,;, - Ap,ly)
15)

BR = "(B11 - B12L11 = A12L21)
(By — Byl — AL, )S, + Sz

R

S1 and S2 are the corresponding (in dimension) cofactors
of vector E. Linear transformation of generalized
coordinates of reduced system is given in a form:

=Ty X, +Tp X+ Ny X, + Ny X, (16)
where cofactors T21 and T22 are corresponding cofactors
of the matrix T, given by the relation:
=1+ NL an
It is also of interest to define the complement submodel of

reduced part of transformed system, which can be used in
a two step method of system model synthesis, in a form:

T+ A V+BV =G, (18)
where subsystem matrices are given in the form:
A; =-(C, +C,C,C)
19

B, =-C,C, +C,,C,C,/C,
C,R, +R,

E

Cij are the corresponding (in dimension) cofactors of
matrix C and Ri are the corresponding cofactors of matrix
E. Linear transformation of generalized coordinates of
complement subsystem form is presented as:

=L, X, +L, X, + X, (20)
Mentioned two step procedure can be used for decoupled

system control synthesis. The first step is reduction of the
whole system into representative reduced model. The

second step is decoupling reduced form into two
decoupled submodels, where one or both of them can be
controlled with separate system control for slow and fast
modes.

Method of numerical solving of
matrix algebraic Riccati equation.

As it is well known, iterative methods for solving matrix
algebraic Riccati equation are not too powerful because
the initial point and convergence conditions for the
method of stationary point usually can not be determined
in general form. For that purpose generalized gradient
method is effective for solving matrix algebraic Riccati
equation for large scale problems, but local extremes
(complex solutions) of the given Riccati matrix equation
must be overlaid. Complete procedure and performances
of computation corresponding solutions are presented in
the following text.

Method of stationary point cannot be used without some
transformation of mentioned matrix Riccati equation
because it contains the parabolic algebraic equations,
which satisfy the convergence condition if the initial point
is inside the region bounded between possible solutions
only. It produces this method unusable because generally
is not possible to determine the initial point which satisfy
mentioned conditions. One of the possible ways for
performing given matrix equation into a form which
satisfies the convergence condition for the wide region of
initial points is to transform each of parabolic algebraic
equation into two corresponding algebraic equations
called as "upper" and "lower" form. The first one is define
as a parabolic equation in the same form as it is defined in
matrix equation, whose region is bounded from the upper
side with the ‘second’ zero of the mentioned equation.
The second one is defined with inverse parabolic equation
bounded from the lower side with the ‘first” zero of
corresponding non transformed equation. Main problem
which follows this procedure is in fact that ‘upper’ and
‘lower’ possible solutions depends of initial point, which
generally cutting out some of the possible real solutions.
Just because of that this method is not so effective for use
in general form of the problem.

Method discussed here is combined general gradient-
Newton’s method in connection with method of minimal
quadratic forms. In this case arises problem of local
extremes which are not the real solutions of the given
matrix Riccati equation. It will be shown that it is possible
to separate quadratic form on two domains, with and
without local extremes. It is also possible to transform
given quadratic form to cut out some or all of local
extremes included in procedure of gradient method.
However, it depends of number of complex solutions of
the given Riccati equation, because each of them
corresponds to one local extreme. Method of scaling

2847



matrices of given Riccati equation can be used for cutting
out local extremes.

For solving general algebraic equations, given in a vector
form as:
f(x)=0 2D

we can determine corresponding procedure for
minimizing following functional, given in a form:

22

whose minimum is equal zero. Numbers r and q are
positive numbers. If =1 and q=2 functional is completely
differentiable -for the each corresponding zeros of the
given equation. In case r=q=2k functional has to faster
convergence then the first one. For both cases the local
extremes or saddle points are existed and makes some
problems in computational procedure. Optimization
problem of the second type functional is a problem with
constraints, and just because of that it is more complicated
than the first one. Procedure of localization of local
extremes for the first functional are very sensitive,
especially for the problems with large scale dimensions,
and it is possible to cross over the local extreme. Problem
of oscillation around local minimum or extreme is
presented for the booth of cases.

For determination of norm minimum is used combined

generalized gradient and Newton’s method, corresponding
to the value of q=2. Gradient is defined by next relation:

@23

were corresponding partial derivatives are given in a
form:

JlE]
a(1,)

24

g; =

Next value of unknown nonquadratic matrix L is defined
by the assumed step coefficient &, or in a form:

E(1,)
Al = -—0”—-—61_—"90_ (25)

Instead the first of mentioned matrix algebraic Riccati
equations (10) we can determine the norm of the
nonquadratic error matrix E, given by next matrix
relation:

E=-LA,L+LA, - A,L+A,, (26)

where matrices are with corresponding dimensions nxn,
nxm, mxn and mxm, n dimension of reduced system form
and m dimension of its complement subsystem. In a scalar
form of coefficients equation (26) can be written as:

~al' + Z az’x, ~ Z ay X, + Z Z aiZx,x;, 27

k=1 j=1
Norm of error matrix E, defined in the form:

(28)

where n and m defines the matrix dimensions, and q=2k,
k=1,2,... is the assumed exponent (in computer program
g=2), must satisfy following condition:

E=0 29

if matrix L is a solution of first of equations (10). Square
of the norm of error matrix E is forth degree nonnegative
polynom of nxm independent variables, whose coefficients
can be presented in the following form:

( i Xk:i,l;ej ) a12X ( 22 "a}‘;)x:j -(651 —by)
eij (xi,k;ej [ xpsti,nek = k) (C ak )xzk +(dy _302'1) 30)
e/j (xkaei,j r.xp¢k,r:j = k) = (aliz + //)xk/ +(gy —ai/2'1)
€5 ( Xuwisej s Xpuryus =K) =hy —alyz" !

where corresponding coefficients are:

Z ay X, + 21 Z ag Xy Xy
k;[ k;; I:I

m
b.-,-=2

K=
k=

m
- 12
Cis =D, 8uXy
I=1

—

Z ay X, +kZ’ ,21 ai Xy Xy
ks& ked

ya—zaikxlq

:j s = Z aké’xlk

n m
Z ak/ Xy + Z ; alfxlkxﬁ

“—Zam/ o

ksﬂ izd

Zaikxk;

Zn: ay X +Z i ak,x*xb
k=1

ke j kaej Iaei

€2)
Expanding given relations (31) square of the norm of
error matrix E can be presented in the following scalar

form:
m L
"E(xijlxk*i,lti u =22 6m=
bt a1 (32)
n
-e,,(x,,)+zep,(x,,)+ze,q(x )+ZZe,,.,(xg
p:! q=1 p#iq*i
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or in expanded form as:

2 2 2
”E(Xij 1 Xwitej = k)” =(aX; +BXy+ vy ) +
n+m-2 nm—n—m+1k )
+ Z(¢q) =

N AT &
k=1

=(a,jx,f+ﬁ,jx,j+y,j)2+(5x + &X; + ¢;)

It must be noted that the second brackets term are always
nonnegative. Given polinom has no more than tree local
extremes, and also must have one local extreme. If all of
the possible polynoms corresponding to the each of
cocfficients of solution of matrix Riccati equation has only
one local extreme which is equal zero, it means that the
given problem has unique real solution of the problem (all
of other possible solutions are complex and not of
interest). It is of interest to define the conditions which
satisfy that the mentioned form has only one local
extreme. Question is can we satisfied that conditions by
using procedure of scaling matrices of coefficients of
given Matrix Riccati equation. Procedure of matrix
scaling can be presented in the following form:

HE = (1) + Ap(1L) ~ (L) Ay + (i) (1 A ) () = 0 (34)

where p is an arbitrary scalar. It means that the diagonal
submatrices are unchanged, and nondiagonal submatrices
are multiplied with factors p and 1/u. In the case of
matrix scaling corresponding form of polinom coefficients
given by relations (31) can be performed as:

m
_ 22
b; = ; i Xy — Z g X+~ kZ /Z a0 XuX;
= 1 I=
k#i k:/ k#j 1£i

Cijs = Zas/"a
djs = Za Xy~ Za ,k+-ZZak/ XXy

H k=1 1=1

k.-nS kzd
1T
ﬂ_’i,& = “Z s Xik
=
s~ Za/k Xy — Zaqu:k+ leakl XXy
H k=1 1=%
k::S 126

hy,s = Za Xig = Za ;;a XX j

k;&j k#j 1#i

€R))

If assume that p is enough large number, corresponding
relation (30) of norm can be written in a form:

21 2 2
|ECXy Xiises = )] =(;aﬁxﬁ+ﬂyxy+y,j’) +

n+m-.

-2 nrnnm+1
+ D (% +E')

i I
k=1

2 2 2
=(;a,.jx,, +BX; + v ) (6 X +

(36)

&' X+ ;")

where tree local extremes can degenerate into only one
local minimum defined with the term in second brackets
added by the first order term into first bracket. Another
question after discussions about existence of local extreme
equal zero is what type is it. Enough condition for
existence of local extreme equal zero is that each member
of relation (30) must be equal zero in the same point, or
each polinom of mentioned terms must have one zero
same for all polynomial terms of relation (33). It means
that the norm of error matrix E can be written as:

[E G Ko = K] =% —x},‘J(x,j xR J‘;"_’;?,;;; PRNED)

with corresponding relation in the form:

(3%)

where x*and x** are corresponding zeros of mentioned
terms. Term in square root is always great than zero. It
means that only one zero of the E norm exists and is equal
x*. We must note also that the existing local zero is not a
local extreme of E norm because it is not differentiable in
that point. This is a main conclusion of this method on
which the numerical procedure of computing local
minimum equal zero is based. This fact makes procedure
of computation too faster than usual generalized gradient
method. Another quality of this computational method is
that the local extremes corresponds to a different
conditions for its existence than for the local minimum
equal zero as a solution of subjected Riccati matrix
algebraic equation. That is the reason why gradient
method only for determination of local minimum can't be
used. Performances of computational procedure are
presented on a following figures. Presented method can
make some problems of convergence in a domain of local
extreme. There are two - possibilities for solving this
problem. One of them is to use method of matrix scaling,
which can not be determined uniquely because the matrix
equation of conditions for stationary points can not be
solved. Another possibility is to define new functional
which lies between given one which corresponds to the
solution of Riccati equation and zero, or which has the
same zeros as basic functional. This problem can be
solved effectively and it arises from the equations (37).
Main idea is to find some new functional without any
stationary point which is not equal zero except local
extreme as maximum, In that case Newton's generalized
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method can be used as always convergent method, except
in case of crossing over the local extremes as maximum.
Mathematical formulation of this method can be written in
a following form:

|E (X)) Xewises = K| =| (X + Bty + 7 )| <

2 2
s\/(a,.jx,.j +BX; + 7 P +(8pC + &%, + ;) =

(39)
X + &% + 9y

2 2=
(X +BiX; + ;)

=l(a,,.x,§ +BX; +yij)!J1+
="E(Xij Xaifuj = k)u

Term under the second of square roots is always greater
then one. In that case arises one zero more for the norm
E', which is not a zero of the norm of the initial
corresponding functional of the Riccati matrix equation.
Both of zeros are local minimums with nondifferentiable
functional in that points. Convergence in that case will be
too faster than for the basic procedure. Only one problem
arises as the result of using this method. It is a problem of
possible minimums which are not the solutions of the
Ricati matrix equation. This problem can be solved by
searching only, If some solution not satisfies given Riccati
equation, whole procedure with new step or gradient or
initial point must be repeated.

Main fact is that only one solution needs to be find by
using this method because the functional is defined for
any point with real coordinates. Nondiferentiability in
each point which is a solution of the Riccati equation is
effectively used for relatively fast convergence of given
method, which is not a good performance of the gradient
method. Problem of oscillating trough coming over the
local minimum can slow the whole procedure.

Third approach for solving matrix Riccati equation can be
expressed as optimization with constraints. Suppose that
the norm of error matrix is presented in a following form
(r=q=1) corresponding to the expression (22):

F(x)=lz"ln(x);=z"m(x) (40)
=1 i=1

where are x corresponding n-dimensional vector of
independent variables, Ai corresponding scalars to the
each cofactor of the error matrix defined as follow:

_y 1ii(x)20

= 41
-1,1,(x)<0 v

A,

It means that exists 2" combinations of possible forms of
given functional as a norm of the error matrix E equal F.
Each of these combinations of vector coefficients
corresponds to the one possible real or complex solution of

the given matrix Riccati equation. For any arbitrary point
of independent wvariables we have exactly value of
coefficients of vector A. It means also that there are no
explicit procedure for determination each initial point for
calculation corresponding local minimum. Just because
the fact that each local minimum corresponds to the cross
section between two corresponding functional defined for
the different values of vector A, initial optimization
problem can be expressed as a constrained optimization in
the following form:

J(x)=F(x) “42)
with corresponding constraints in a vector form:
g,(x):F,(x)—F,(x):O 43)

where are i and j corresponds to a values Ai an Aj. This
formulation of the constrained optimization problem can
be transformed into unconstrained one by using Lagrange
multipliers in a form:

J =F(x)+p[F(x)-F(x)] (44
including corresponding constraint in a form (43). This
formulation leads to the final form of transformed
functional F as:

J = J—(;f}g—)"'(;";—'»)g(x) "
k K

8q % g
dx I e | — -——-—dX
x (ﬁxk) 'Z:; ox,

with corresponding constraint (43). This optimization is
n-1 dimensional optimization without any constraints.
Main problem is how to define corresponding initial value
and checking each of the steps values to satisfy the
constraint. If we assume the corresponding dependent
variable xk in quadratic form the problem can be solved
casily if there are exists the real solutions of this
expression. In opposite ,we must cheek another point does
it satisfy the constraints.

Each of the presented methods can be used in some cases
of the problem formulation. Combying them, it is possible
to create a computer package with all mentioned options
which can be used for this purpose. It must be noted that
for the large scale problem this package can be used, but
the possibilities for computing any of the solutions
depends of problem formulation. For analyses and
computation zeros of the Riccati matrix equation, which is
a main computational problem of the presented procedure,
are maked the computer package described in a following
text.
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Program package has several options, which can be of
interest in a desired problem. This options and
possibilities can be described as:

-adaptive step of iterations;

-adaptive step for gradient calculations;

-adaptive step of function searching in a domain of local
extreme or minimum; "

-adaptive step compensation of oscillations.

Another options are defined for the different type of
functional which can be used. In a package all of
described cases of functional types are presented.

Some performances of the wused methods and
corresponding results will be shown on the following

graphs.

Description and performances of Computer package
for numerical solving matrix Riccati equation

It is well known that complete optimization of nonlinear
problem with high dimensionally can't be done without
using direct search technique. As it is described this
problem is nonlinear, but with some spatialties which
leads to a spatial type of computational algorithm for local
minimum determination of given functional which
corresponds to the one of the possible real solutions of
initial matrix Riccati equation. Presented procedure is
based on combination of methods of minimal squares,
generalized gradient method, generalized Newton's
method and spatial search procedure performed for
determination of local minimum of not differentiable
functional. Procedure is generally not too fast but it can be
used successfully in a several phases because the error of
computing is not cumulative.

Presented procedure can be used for determination one of
the possible real solutions of given Matrix Riccati
equation. Procedure guaranties determination of one local
minimum or local extreme. In a connection with other
statements expressed in this paper, main problem is how
to cross over local extreme toward local minimum, which
is of interest only. Procedure leads to one of the possible
local extremes or local minimums from one assumed
initial point.

For determination of reduced form of the initial dynamic
model of internal flexible system dynamics it is of interest
to determine one of possible real local minimums. If we
determine a local extreme instead local minimum, direct
search technics is the possible way only for determination
another initial point for further computational procedure.

Approximation model.

Presented results corresponds to the following simplified
example of rotation of flexible disk with lumped six equal

masses on both sided beams fixed to the base body.
Approximation model is presented on the figure 1.

Fig. 1.

Corresponding parameters and constants are:

-body mass moment of inertia: J=20.0 kgm?2;

-distance between lumped masses and base body: 1=0.1 m;
-relative natural frequency: ratio EI/ml3=1000.0 s-2, were
all lumped masses are equal;

-coefficients of proportional closed loop: k0=400.
-coefficients of differential closed loop: k1=300.
-coefficients of integral closed loop: k2=0.

Corresponding shape modes are shown on the fig. 2.

There are presented five cases of possible iterations for
reducing mathematical model and solving corresponding
matrix Riccati equation of given example. On the
following graphs are shown convergence velocity and
corresponding accuracy of numerical solution,

Iteration 1.
index of norm type: INOR=1 :
value of error matrix norm: ENOR=0.5495
factor of steps: TET=0.9
factor of steps for gradient calculations: D=.00001
total number of iterations: NIT=201

modal displacements (sigen-vectors)

01 T T T
i ! p
0.08} SHAPE MODE FUNCTIONS W .7
0.06} .
e
0.04f 7
,"' °’z
002} - _/ o,
o e ,//
0 el P
\'n
. , L l |
0'020 05 1 15 2 25 3
radius of mass pozition x0.1{m)} s
Fig. 2.

initial values of matrix LO and final values of matrix L:

1.2 0.0 0.9671 0.0
0.8 0.0 _|-0.7075 0.0
Le=1lo0.0 0.0 "1l 0.0 0.7510
0.0 0.0 0.0  -0.2438

Eigen-values of nontransformed model are:
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01=9.25 Hz ©2=60.57THz ®3=162,72Hz
Eigen-values of transformed model are:
01=9.45 Hz ©2=55.07Hz ®3=163.61Hz

Difference of frequencies for complete and reduced

approximation model is relatively small (not more than:

10%). For practical purposes this approximation can be
used as initial mathematical formulation of the given
model. Corresponding graphs are shown on the following
figures.

norm of error matrix

—— rumb. of iter. |
i i i i 1 i L

20 30 40 50 60 70 80 B0 100
Fig. 3

On fig. 3 are shown norm of error matrix ENOR and
gradient value depending of number of iterations NIT.
Convergence is relatively fast because starting point is
close to the calculated minimum, which is not a solution
(ENOR is to different than zero). Evaluated gradient value
shows that the calculated minimum is not a local extreme,
but accuracy of minimum calculation is satisfied because
norm of step matrix is less than .0001. (fig. 4.).

07 L T 1 T T T T ] 1

08k 4
o8} ]
o4t

0.3 E
norm of step matrix

02t 4

04k E

—— riumb. of iter.
0 ) ] L L . i A 1 1

[¢] 10 20 30 40 50 60 70 80 90 100
Fig. 4.

On fig. 5. is indicated that calculation procedure oscillate
around local minimum, because the generalized scalar
product of last two step matrices is closely to ( -1.)

Tteration 2.

INOR=1 ; TET=.9 ; D=.00001 ; NIT=201 ; ENOR=.5697

086

T
04f
02}
o-N—J i
i
1

generalized "cos” {scalar product

02 o cl step matrices) between to steps 1
-04 E
08 .
08
—s numh. of iter.
_1 | 1 1 L —L. . 1 L
4] 10 20 30 40 50 60 70 80 80 100
Fig. 5.
0.7 0.0 . 4397 0
L. = 0.2 0.0 L=|" 2969 .0
® " 1o.0 0.0 0 . 6269
0.0 0.0 0 -.1754
Iteration 3.

INOR=1; TET=.1; D=.000001 ; NIT=1001 ;
ENOR=.4858

0.7 0.0 . 4959 .0
0.2 0.0 . 2837 .0
bo=lo0.0 0.0 L=l o . 6366
0.0 0.0 .0 -.1805

On fig. 6 is shown the difference of convergence velocities
and calculated minimum between gradient step factor
values TET=.9 and TET=.1. Norm of step matrix for these
different gradient factors are shown on a fig. 7.

25 T T T i ¥ T T T T

ERROR MATRIX NORM

—s ramb. of iter.
I 1

7'0 80 20 100

Fig. 6.

Figures 8 and 9 corresponds to the value of gradient factor
TET=.1 It is interesting that the convergence is monotone
because the corresponded scalar product of step matrices
is always positive (fig. 9) and indicates iterations around
focal minimum (no local extreme) which is indicated on
fig. 8.
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Iteration 4.

NOR=1 ; TET=.9 ; D=.00001 ; NIT=201 ;ENOR=.4453

0.7 0.0 .6212 .0
L, = 0.2 0.0 L= . 2291 .0
0.0 0.7 .0 . 6583
0.0 0.2 .0 -.1921
1 H H T ¥ T L) T ¥ L
09p GENERALIZED COSIN BETWEEN E
08 LAST TWO STEP MATRICES ]
0.7[ TET=04 ]
06} E
oS5t 4
04t 4
0.3k
02} E
01t ~———+ numb. of iter. 4
) L I3 1
0 10 20 30 40 60 60 70 0] 80  10C
Fig. 9.
Iteration S,

INOR=1 ; TET=.1 ; D=.000001 ;NIT=1001 ; ENOR=.418

0.7 0.0 . 6441 .0
Lo 0.2 0.0 L= . 2236 .0
¢ 0.0 0.7 .0 . 6617
0.0 0.2 .0 -.1939

On the figures 10 and 11 are presented convergence
procedure (norm of error matrix and norm of step matrix),
as the preprocedure before final calculation of
corresponding solution. As in the case before, this solution
is not exact because the error matrix norm is not too close
to zero. But, calculated eigen-values of the reduced system
form indicates that the given solution can be used for
practical purposes in system control synthesis.

12000 T T T T T T T T
ERROR MATRD( NORM
10000 E
80001 J
6000 L TET=0.1 i
40001

2000} - r
TET=09 s (MR, of ifer.

0 I 1 L I f T 1

0 10 20 30 40 50 60 70 80 80 400
Fig. 10.

Final results of model reduction.
Corresponding frequencies of the reduced model are:

01=157.1 Hz; ©2=64.239Hz, ©®3=9.02 Hz.
Accuracy of final iteration is not too better than for the
first one (about 10% also). Simulation results of complete
and reduced model indicates accuracy of given reducing
approximation.

03 1 1 T T T ¥ 1 1 T
025 \ STEP MATRIX NORM ]
02t .
0.15H / TET=09 i
Xl -
oosll TET=0.1 }

» ——» numb. of iter.
0 — 3 i I L 1 1

-~ 0 10 20 30 40 60 60 70 8 60 100
Fig. 11.

On figures 12 to 15 are shown characteristic
computational performances for the final solution of
system reduction. For that purpose it is calculated the
corresponding solution of second of the matrix Riccati
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equation of relations (10). Corresponding transformation
matrix N as its solution is presented in following matrix
form:

N = |0-3770 0.0803 0 0

0 0 0.3770 - 0.0803
Complete transformation matrix corresponding to the
relations (11) can be presented in a following form:

1.0 0 0.3770 -0.0803 0 0
0 1.0 0 0 -0.3770 0.0803
T= -0.6441 0 0.7572 0.0517 0 0
-0.2236 0 -0.0843 1.0180 0 0
0 -0.6617 0 0 1.2495 -0.0531
0 0.1939 0 0 -0.0731 1.0156

If we neglect subvector W1 of fast generalized coordinates
in equation (11) we can define relations between basic and
dependent coordinates in a form:

T = 0.4864 -0.1036 0 0
* 0 0 -0.2980 0.0835
12000 r y . : .
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Fig. 12.
q
x 10
3.75 — r T : r
GRADIENT VALUE
37 3 TET=0.1 7

36F {

numh. qf iter, ——s

345 1 L L
0 50 100 150 200 250 300

0.026 . . . . ;
0.03 NORM OF STEF MATRIX
TET=0.1
0.025 -
0.02 ;
0015 y
0.01
0.006 ]
e 1IUMID, OF iteF.
0 )3 ] 1 1
) 50 100 150 200 260 200
Fig. 14.
1 ¥ 1 T T H
08 GENERALIZED COSIN BETWEEN ]
: TWO LAST STEPS OF [TERATIONS
06 TET=0.1

ey UMb, of iter.
1

1 1 i
0 50 100 150 200 250 300
Fig. 15.

Method of system control synthesis based on the
results of flexible system model reduction,

In the paper the PID control system design is presented in
accordance to the example in a paper [2]. The difference
is in change of torsion beam with radial flexible beam
with lumped masses only. All other parameters are
estimated to make any difference as small as possible.
Block-diagram of corresponding controlled system is
presented on the fig. 16. Corresponding constants are
approximated [2] to give equivalent proportional and
differential gain as kO and k1, defined as input constants
of the given example. Applied torsion moment as
generalized control force is defined in a matrix form as:

M, = Ko( O —6)+K (Ot —6)  (46)

Corresponding desire state of nominal system motion is:
Oref=n/2 and (d0/dt)ref=0. Given results are presented on
the following figures.

mech. sys.

o-‘L @
R 2

| Ky le— — —

Fig. 16.
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On fig. 17. are presented base body system motion (angle
0) in the cases of rigid body, reduced model and full
model motion. Control law is designed as a rigid one only,
without direct compensation of internal flexible dynamics.
On figures 18 and 19. are presented the top mass motion
in a cases of reduced and full dynamic model.
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Fig. 18.
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Fig. 19.

At last, it is subjected advanced active control system
structure. Active control compensation of flexible system
dynamics can be presented as a closed multiloop system
with equilibrium state which is equal zero (negative closed
loop). Suggested structure of adaptive control of flexible
systems is shown on a fig. 20. This concept of control
design can exist if modified control law of nominal system
dynamics can not satisfy expected performances. X is

vector of nominal system state, Y1 and Y2 are vectors of
reduced and complement flexible dynamic state, Uy1
control vector of reduced flexible model, Yoz1 and Yoz2
desired states of reduced and complement flexible model.

U

#| NOM. DYN. X,
4
Yor— ¢
Y, FLEX. DYN.
»| SENSOR oz
. Y22 NOM. CON. }¢
ADAP. CON, {
Fig. 20.
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