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Abstract

Using as an example a rather compli-
cated aerodynamical problem of compu~-
ting flow around a two-body system (re-
entry vehicle-impermeable parachute),
the possibility of modeling separated
flows within the framework of a bounda-
ry-value problem for the unsteady Euler
equations 1is 1investigated. Available
data on force tests and flow visualiza-
tion allow the numerical method to be
effectively verified.

I. Introduction

In real flows of a compressible vis-
cous gas there are the two main mecha-
nisms of vorticity generation: viscous
and entropic (in curved shocks). Essen-
tial features of the Euler equations
are the rigorous modeling of vorticity
transport in compressible gas flow and
the absence of a viscous mechanism of
vorticity generation.

In numerically solving a boundary-
value problem for the Euler equations,
the influence of physical viscosity can
be taken into account with the help of
special operators introduced into the
computational algorithm, and the pres-
ence of artificial viscosity in the
tensor form results in the appearance
of non-physical diffusion and dissipa-

tion in the solution. This imposes
certain requirements on specifying
boundary conditions and computational

grid generation to obtain satisfactory
results for various bodies and flow
regimes: the same value of numerical
viscosity determined by a measure of
grid resolution (the number of grid
points) may turn out to be unacceptable
for an attached flow around an airfoil
and sufficient for computing flow over
a bluff body.

The present work addresses the prob-
lem of external flow around a two-body
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configuration at 0.8 = Mw = 1.7. The
influence of computational grid topolo-
gy and boundary condition statement
associated with the problem on the ac-
curacy and physical meaningfulness of
solutions being obtained are investiga-
ted. The boundary-value problem on the
accuracy and physical meaningfulness of
solutions being obtained are investiga-
ted. The boundary-value problem being
solved corresponds to modeling separa-
ted flow around the two-body configura-
tion in a wind tunnel. But to what deg-
ree the natural phenomenon being inves-
tigated is modeled under aerodynamic
test conditions in view of its unstea-
diness and non-axisymmetry remains an
open question.

I1I. Problem formulation and the
discussion of the model employed

The substantially unsteady three-
dimensional problem of deceleration
(from freestream Mach number Mw= 1.7 to
Moo= 0.7) of a reentry vehicle-parachute
configuration is considered. For const-
ructing the mathematical model several
assumptions are made.

The problem is treated as steady,
using an inertial body-fixed coordinate
system with freestream being steady and
uniform. The permeability of parachute
material is ignored (this question is
investigated in ") as well as the dy-
namics of parachute deployment and va-
riations of shape of parachute canopy
according to the pressure difference
across it (see, e.g. ). The influence
of shroud lines, parachute longitudinal
and lateral oscillations and spinning
due to a large number of degrees of
freedom is neglected, but the unsteadi-
ness associated with the formation of
separated flow structures and solution
oscillations at Mw = const in the case
of the stationary rigid parachute are
taken into consideration. Such a state-
ment allows experimental results to be
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used for verifying solutions obtained.
In the present case,the effects of wind
tunnel walls and gas viscosity are not
taken into account in numerical model-
ing.

The flow is assumed to be axisymmet-~
ric, which excludes the canopy’s non-
axisymmetry and non-axisymmetrical per-
forations in it.

Thus, the separated flow around the
combination of the two rigid bodies
(Fig. 1) is computed using the unsteady
Euler equations:
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where p is the density, p is the pres-
sure, E =e + V/2, e = p/p/(k-1) for
the ideal gas, k is the ratio of speci-
fic heats. The tangency conditions on
the surface 8Q of the reentry vehicle
and on both sides of the surface 301 of
the parachute are

(v, N)laQ U s = O (2)

The shape of the parachute surface a0
is specified beforehand according to
the shape of a rigid parachute for wind
tunnel testing or,in the case of a soft
parachute, using  photographs taken
during experiment.

At "left-hand infinity" the undist-
urbed free-stream flow conditions are
specified:
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where 1 is the unit vector of the x-
axis.Specified at "right-hand infinity"
are zero derivatives in the direction
of the normal N to the boundary of the
computational domain:
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The equations of motion are nondi-
mensionlized using the freestream para-
meters pw,pw,Vo and the canopy diameter
D as characteristic values. By way of
the integration of pressure distributi-
on over the reentry vehicle surface and
both sides of the parachute surfaces
the force values are found which are
dividedzby the dynamic pressure qgo =
= po-Veo /2 and the characteristic areas
(n-d®/4 for the reentry vehicle,where d
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Figure 1. A schematic view of the
three O-type (a,b,c) and H-type (d)
grids, used in computation.

ll'll

is the base diameter, and n-D°/4 for the
parachute) to obtain the drag coeffici-
ents Cd and Cb. The base drag coeffici~-
ent Cd b for the reentry vehicle and
Cp_B for the parachute are also deter-
mined,with integration carried out over
the reentry-vehicle base 1in the first
case and over the canopy external sur-
face in the second case.
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For solving the boundary-value prob-
lem the upwind difference scheme is
used, stable without artificial dissipa-
tion. The integration with respect to
time in the framework of the finite
volume concept 1is performed using a
single temporal metric for the space so
that the time %5ep size at a specified
Courant number is determined by the
minimum volume of computational grid
cell. Details of the computational me-
thod used and results of its verifica-
tion for the ca%g oﬂs)isolated bodies
may be found in "and ". Considered for
all the computations are peculiarities
of the solutions on the grids of two
topologies: a curvilinear orthogonal O-
type grid for which the body contour is
one of the coordinate lines and an H-
type grid,whose structure is similar to
a Cartesian coordinate systen.

III. A solution method for the

boundary-value problem

Solving the problem on both grids is
performed using an axisymmetrical ap-
proximation in a cylindrical coordinate
system %, r, 9, with the x-axis being
directed along the flow symmetry axis.
The algorithm used performs computation
for one longitudinal meridional sectioy
¢ = const of the flow. A method of
employed herein is based on a finite-

volume scheme with the first order
accuracy in time and space The
scheme has no artificial viscosity

because the upwind difference method
used is stable with no additional dis-
sipative terms.

The presence of numerical (unavoid-
able) viscos%}y in a tensor form (see,
for example, )

Su Bu
u*Ax I v Ay—g;-
W ~p
8v v
whx e vy

leads to the fact that a differential
approximation of the original set of
the Euler equations is 'a system of
"pseudo-Navier-Stokes" equations (see,
for example, ') used in computing:

8 p . -

a_§_+ V{p-V} 0,

%L+ WpW-T = -V(pI+w,

gp%+v{(pE+p)‘V'}=—w:V_VT
where I is the unit matrix. Generally

speaking, the boundary-value problem
does not possess an unique solution, if
a differential approximation to the bo-

undary conditions on the body are the
tangency conditions. In this case the
uniqueness of the solution is establi-

shed by the surface break between the
conical and cylindrical parts of the
reentry vehicle, the corner of its flat
base,where in the small (in the case of
an indefinite normal) the no-slip con-
dition is modeled, and the sharp para-
chute leading edge (a Kutta-Joukowsky-

type condition).

Artificial viscosity generates nu-
merical diffusion which suppresses
short waves in the solution and leads
to widening any discontinuity (shock,
mixing layer) by a value greater than
mesh spacing. Long waves (by the way,
the grid methods are basically a tool
to study a long-wave approximation) are
minimally affected by numerical diffu-
sion, which permits solutions with
shocks to be considered where (now due
to numerical viscosity) the transforma-
tion of short-wave kinetic energy into
thermal energy takes place. In similar
fashion, the dissipation of short-wave
energy occurs and vorticity is genera-
ted in the mixing layer demarcating the
separated zone of circulating motion

from the externa%bg%ow. 8)

As shown in and , separated
flow with zones of circulating motion
may be successfully simulated 1in the

framework of ideal gas concept by solv-
ing the unsteady Euler equations conta-
ining a vorticity transfer mechanism.
In this case, along with a physical me-
chanism of vorticity generation in cur-
ved shocks with variable entropy along
their fronts there is a non-physical
vorticity generation mechanism due to
numerical vorticity in the computatio-
nal scheme. The numerical vorticity are
caused by the approximation to the equ-
ations of motion and boundary conditi-
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ons, especially when using a H-type
grid, where the tangency condition (2)
is specified on a stepped line repre-
senting the body surface and coinciding
with the grid lines xi= const,rj=const,
nearest to the surface. In so doing, at
each corner point (i,j) of the stepped
line v|r=rj = 0, uix=xi = 0 the no-slip

condition (uij = vij = 0) is modeled in
the small; in the vicinity of each cor-
ner point a mixing zone occurs and an
intensive vortex formation takes place.

With a sufficiently accurate solution
approximation (high grid density) the
size of the approximating line steps
diminishes (the "angularity"of the ap-
proximating line and the vorticity ge-
nerated by the angularity decrease and
only the vorticity associated with the
“true” surface breaks remains), the
number of steps increases and the solu-
tion is stabilized in a pseudo-viscous
way. For example, the influence of the
stepped approximating 1line of reentry
vehicle on the solution becomes negli-
gibly small with grid refining in com~

parison with the effects of the cone-
cylinder break and base corner.
The computation was performed on a

comparatively coarse grid not always
sufficient for obtaining a high levelof
resolution in the vicinity of the reen-
try vehicle and parachute,and especial-
ly in the zone between them. The latter
region is of great importance in inves-
tigating the so-called "aerodynamic re-
efing" of parachute.

In the present method particular at-
tention was focused on the choice of
grids that makes it possible to acco-
unt for the influence of the separated
flow around the first body (reentry
vehicle) on the flow about the second
body (rigid (??rachyg?), the issue not
considered in and .

The boundary conditions at infinity
(3),(4) for all the grids used are spe-
cified at the computational domain bo-
undary, which, as distinct from'®’, 1i-
mits the freestream Mach number Mo be-
low. Such an approach 1is traditional
(see, for example, ). The question of
the sufficiency of computational domain
size for the transonic problems in the
framework of the Euler equations is in-
vestigated in In particular,for the

two-dimensional circulatory case a size
of about 50 airfoil chords was found to
be sufficient. For the noncirculatory
three-dimensional case this size can be
substantially diminished due to a more
rapid attenuation of disturbances with
incrfasing the distance from the body.
In the questions associated with the

asymptotic behaviour of the solution at
infinity are resolved as an external
potential problem relative to the inte-
rnal vortical do main using a well-es-
tablished finite-difference method for
the potential equation on the O-type
grid with the mapping of the exterior
domain relative to the zeroth stream-
line, which bounds the body and the
closed separated zone behind it, into
an open disk,and infinity into its cen-
ter. This approach permits the computa-
tional domain boundary to be chosen
correctly (on the order of 10 characte-
ristic lengths for the problem) in for-
mulating boundary conditions.

A schematic view of internal details
of the three O-type grids used in com-
putation is presented in Fig.1l. All of
them have 100 rays with 50 mesh points

on each and the same topology near the
computational domain boundary. At the
external boundaries of the computatio-

nal domain the coordinate lines &€=const
and m=const are orthogonal.

A distinctive feature of the first
grid used for computation of the flow
around the isolated parachute (L - o,
where 1. is the distance between the
base of the reentry vehicle and the
mouth section of the parachute) is the
orthogonality of the coordinate lines
on the axis of symmetry r = 0.

The single grid for computing the
flow around the two-body configuration
at a body-to-body distance of L = L/D=1
has non-orthogonal coordinate lines
(skewed cells) in the axis of symmetry
as opposed to the above grid. They are
non-orthogonal on the reentry vehicle’s
surface as well, especially on its base
and, as in the first case, on the para-

chute’s surface and to the largest
extent near the parachute’s mouth
section.

The third grid used for computig the
flow around the two-body configuration
at L = 1.75 has no above shortcomings:
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it is orthogonal on the base as well as
on the axis of symmetry.

Both the second and third grids are
used to compute flow around the isola-
ted reentry vehicle. In this case, the
tangency conditions on the line model-
ing the parachute is removed. The size
of the computational domain is approxi-
mately 20-Lx10-L, where L is a charac-
teristic scale of the problem.

Along with regular O-type grids,non-
regular Cartesian orthogonal H-grids
were used in a cylindrical coordinate
system with the x-axis being the axis
of symmetry of the flow (see Fig.1,d).
The entire flowfield in this case is
divided into two computational regions:
for the reentry vehicle and for the
parachute. In each region there are 6
blocks within which the grid spacing is
constant (but different in the x- and
r-directions). At the block interfaces
the grid spacing along the common boun-
dary 1is the same for two adjacent
blocks. The total number of grid points
for the two-body configuration is 2-50-
50,and for the isolated reentry vehicle

and parachute 50-50 and 50-60, respec-
tively.
The method was implemented on a

computer with a speed of 0.25 Mflops.
The computation of 1000 time steps
takes about one hour of computer time.
Convergence analysis and investigation
of accuracy ?f results are presented
. (4) (s

in and .

IV. Computational results

As the first example of the compu-
tational results,Fig.2 shows flow about
the isolated reentry vehicle - a cone-
cylinder body with a cone angle of ¢ =
150°,a cone fineness ratio of An=Ln/d =
0.12 and a cylinder fineness ratio of
Ac= Le/d = 2.5, where Ln and Lc are the
lengths of the conical and cylindrical
parts of the reentry vehicle, respecti-
vely. The cylindrical portion ends with
the flat base, at whose corner the no-
slip condition is specified and the se-
paration location is fixed naturally.
In this case the separation occurs be-
causé of fluid particles’ inertia and
the presence of artificial viscosity
which does not allow the tangency con-
dition (2) to be imposed "immediately"

on the body surface. By virtue of con-
tinuity of medium, a cavity formed
behind the base is filing to Crocco’s
theorem

Vxw =- T-grad S,

the shocks with curved fronts (with en-
tropy S varying along the front) repre-
sent the physical source of vorticity
@ = rot V. This is the case of bow

shock waves at Mw>1 and internal shocks
local

in the presence of supersonic

regions in flow.

Cd_b=0.24 J
_Co=159

Cd_lb=0.21 |
Cusl,28

Figure 2. Computational results for
the isolated reentry vehicle on the O
(a,b,c) and H (d) grids.

The results of computation on the O-
grid with skewed cells near the axis of
symmetry (see Fig.1,b) at Mach numbers
Mw = 0.8; 1.0; 1.7 and on the H-grid at
Mwo= 1.0 are presented in Fig.2. Along
with the body semicontour, depicted in
this figure are the base drag coeffici-
ent Cd_b and the total drag coefficient
Cd.The total drag coefficient increases
monotonically, and the influence region
is reorganized from elliptical into
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hyperbolical.

At Mw= 0.8 (Fig.2,a) the only source
of vorticity is artificial wviscosity.
Along with a separated zone in the base
region a long separated zone is observ-
ed on the cylindrical surface of the
reentry vehicle aft of the cone-cylind-
er break. With increasing Mw and appea-
ring physical vorticity in the flow the
latter zone disappears, and the base
separated zone loses its convexity, that
is,the presence of negative (clockwise)
vorticity in the flow make it easier
for gas to flow past the cone-cylinder
Junction and the flat base, decreasing
inertia of fluid particles and promo-
ting the realization of the tangency
conditions.

The computation on the H-grid (the
semibody contour is approximated with
18 cells) presented in Fig.2,d gives a
smaller extent of the separated zone on
the cylindrical surface (which is expl-
ained by an additional vorticity intro-
duced into the flow by the stepped line
representing the cone) and a lower base
drag.

The computation of flow around the
isolated reentry vehicle at Mo= 1.0 was
also conducted on the O-grid with or-
thogonal cells (Fig.1,c). The coeffici-
ents Cd b = 0.21, Cd = 1.33 obtained as
well as the shape of the Mach contours
and the zeroth streamline in the base
zone are closer to those predicted on
the H-grid than the analogous results
obtained on the O-grid with skewed
cells. The distinctive feature of the
last computation is the confluence of
the separated zone on the cylindrical
surface and the base separated zZone
through a narrow "neck".Later this grid
was used for computing flow about the
two-body system.

The schlieren photographs in Fig.3
were obtained in wind tunnel tests at
Mach numbers Meo= 0.86 (Fig.3,a) and 1.1
(Fig.3,b). The Reynolds number based on
the body diameter is about the same in
both tge cases and is equal to Red =
0.5:-10°. As can be seen, the experiment
also demonstrates weakening the separa-
tion on the cylindrical surface with
increasing Meo .

The computational results
well with the experimental data

base drag Cd_b (see,for examplef

compare
sﬁn the
) and

nose part drag Cd_n= Cd - Cd_b fromtllz

where C¢p=é.0 was obtained at Mw = 1,
Red=1.8-10".

Results of computing flow around the
isolated parachute at a freestream Mach
number of Mo = 1.05 presented in Fig.4
serve as the second example. The canopy
shape was taken from photographs of mo-
dels during wind tunnel tests at Rep =
3-10° and Mw=1.5,the shape was assumed
to vary little with decreasing Mw . The
computation was performed on two grids:
O-type (Fig.4,a) and H-type (Fig.4,b).
Along with the canopy shape,streamlines

Experimental results for
reentry vehicle.

Figure 3.
the isolated

and Mach contours,presented in this fi-
gure are the convergence time histories
(t= 1o-I) of the total drag coefficient
Cp (Cb—- 1.83 on the first grid and
Cb—~ 1.50 on the second one) and the
base drag coefficient Cp_B(Cp_B—-0.57)

computed on the first grid as well as
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Figure 4. Computational results for

the isclated parachute on the O (a) and
H (b) grids.

values of the normalized pressure p/po
for four points indicated in Fig.4,a:
two points inside canopy (Ti, T3) and
two outside (T2,T4). As can be seen,the
solution on the H-grid (the parachute
semicontour is represented with 35
cells) converges faster: it takes only
1-2 thousand iterations whereas in the
case of the O-grid with nearly the same
number of grid points 5-10 thousand
iterations are needed because of a
smaller To. In this case, the residual
(averaged over the entire flowfield)
for density

f
[

N+1
l /t

A
i ) s

1=1 j=

diminishes by three orders of magnitude.

The 1isolated parachute introduces
very large disturbances into flow,which
reduces convergence rate by one order
of magnitude as compared with reentry
vehicle. In the case of the isolated

reentry vehicle 100-200 iterations were
sufficient at Mw>1 using the O-grid and
up to 1000 at Mw = 0.8, with the nose
part drag Cd_n converging nearly twice
as fast as Cd_b.

The results obtained compare satis-
factorily with experimental data and
computational data from ‘on the drag
coefficient of an isolated, impermeable,
rigid parachute,where values of Cp=1.5-
1.6 were found for a Mew range from 1.1
to 3.0. Some experiments reveal a mono-
tonic increase in Cp from 1.3 to 1.45
as Mw increases from 0.6 to 0.9. The
tests of an isolated rigid parachute of
the same shape,carried out in the TsAGI
T-112 wind 6tunnel at Mw =1.05-1.50 and
Rep= 1.1-10" to further verify the com-
putational results, gave values of Cp =
1.33-1.43, with the drag maximum being
at Mo = 1.15. These results agree well
with the computation on the H-grid: the
value of Cp is overpredicted by 2-9%.
The agreement of the results on the O-
grid is less satisfactory, they exceed
an experimental value by 35-40%.

A better agreement of the computati-
onal results on the H-grid with the
experimental value of Cp is explained
by the fact that a sting support was
used to mount the parachute in the wind
tunnel, which decreased the size of the
base separated zone and was not taken
into account during computation. In
computation on the H-grid this dimini-
shing is attributed to additional vor-
tex generation (and hence,to decreasing
the cell Reynolds number) on the appro-
ximating stepped line. The additional
vorticity in the internal vortex zone
influences the solution in the external
flow region through a Kutta-~Joukowski-
type condition on the sharp edge.

In both the experiment and computa-
tion the development of separation from
the parachute sharp leading edge is ob-
served,and with increasing Mw and gene-
rating additional (clockwise directed)
vorticity on curved shocks the separa-
ted zone diminishes in height and is
pressed to the canopy side surface.

Presented in Fig.5 are results of
computing supersonic flow around the
reentry vehicle-parachute configuration
at T =L/D=1.75 and Mw =1.5.The ratio of
the diameters of the reentry vehicle
and parachute, D/d is equal to 6. The
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presence of the forward body signifi-
cantly changes the flow pattern.Fig.5a
depicts computational results on the
O-grid, and Fig.5,b on the H-grid. In
this case, the flow around the two-body
system has the so-called open wake pat-
tern, where the reentry vehicle and pa-
rachute form a common separated zone
beginning on the forward body and ter-
minating behind the second body,so that
the parachute drag (computed on the O-
grid) Cp = 0.58 is substantially lower
than at L -+ and is primarily deter-
mined by the base drag Co_B = 0.43. For
comparison, the computation on the same
grid for the isolated parachute gives
Cpb =1.76, CoB = 0.39.
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Figure 5. Computational results for
the reentry vehicle-parachute configu-
ration on the O (a) and H (b) grids.

The reentry vehicle's base drag is
negative in this case:Cd_b=-0.21; there

is an excessive pressure Cp=(p-pw)/qu>0.

The nose part drag Cd_n = 1.33 varies
little owing to the presence of the pa-
rachute. For the isolated reentry vehi-
cle the computation on the same grid at

Mw= 1.5 gives Cd_b=0.25, the mean value
of the base pressure Cp_b=-0.25, Cd_n =
1.31,that is,Cd_n for the reentry vehi-
cle in the presence of the parachute
practically does not vary, but the base

drag varies significantly up to the
sign change with parachute’s approach-
ing to the reentry vehicle, which is

determined by the change-over of the
flow pattern from the closed wake pat-
tern, where an independent separated
zone forms behind the reentry vehicle
as in the case of the isolated vehicle,
to the open wake pattern as 1in this
case, where Cd_b< 0 is realized because
of a common internal separated zone.

Presented in Fig.5,a are streamlines
marked by arrows and contours M = const
as well as the semicontours of the re-
entry vehicle and parachute and pressu-
re distributions Cp(s) along them,where
0ss =1 is the arc length. The converg-
ence histories of the reentry vehicle’s
total drag, the base drag Cp_B, and the
total drag Cp of the parachute are also
presented. As can be seen, the converg-
ence takes 7 - 8 thousand iterations
(t =9 - 10).

A similar computation on the H-grid
(see Fig.5,b) for the same flow pattern
with open wake gives a smaller size of
the separated zone behind the parachute
and a somewhat smaller value of its to-
tal drag (this explains better agree-
ment with the experiment, where the pa-
rachute was mounted on a sting support
decreasing the base drag),Cp= 0.50. The
values of the reentry vehicle’s total
and base drag coefficients,Cd= 1.07 and
Ca_b=-0.25,respectively, also correlate
well with the results obtained on the O
-grid,but the solution stabilization in
the last case is reached much faster,in
N=1000 (t=10).The pressure distribution
over the reentry vehicle’s base area
Cp(r) in Fig.5,b corresponds to s=0.85-
1.0 in the plot Cprv(s) in Fig.5,a.

The calculations on both grids corre-
late well for Ca and Cp and also are in
good agreement with experimental re-
sults for a soft parachute (mounted on
suspension lines behind a reentry vehi-
cle model), obtained in th% TsAGI T-109
wind tunnel at Rep = 3:10°, Mw = 1.5,
A close agreement of the results on
both the grids is observed for Cd at
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Mw=1.3 and for Cp at Mw =1.0. For other
Mw values the computation on the O-grid

gives a somewhat greater values of drag.

It seems likely to be attributed to the
differences in the parachute shapes in
experiment and in calculation.

Tests in the T-109 wind tunnel on a
rigid parachute at D/d = 4.6 (that is,
smaller than in computation) give an
appreciably larger value of Cp= 0.92 at
Mw = 1.5. At smaller Mo the value of Cp
obtained from the experiment is between
the computed results for the O- and H-
grids. At Mw = 1 they differ by no more
than 10%.To better match the experimen-
tal data and the results computed on
the O-grid the computational scheme
must account for the presence of a
sting support.

Comparison with wind tunnel testing
shows that the computation reproduces
physical features of flow well: a comp-
uted separation from the cone-cylinder
Juncture revealed by computation can be
observed in experiment using visualiza-
tion.Introduction of an additional vor-
ticity into the flow by the first body
(including nonphysical vorticity in
computation) diminishes the drag of the
parachute.The same is observed in tests
where Cp for the sharp-nosed reentry
vehicle (¢=22°) is larger than in the
case of blunt-nosed one (=150°) at all
values of Mw and L excluding small L =
(2-3)-d at supersonic speeds (Mw =1.1),
when the sharp-nosed vehicle introduces
a greater vorticity in flow enlarging
the vehicle’s wake due to A-shocks on
its cylindrical surface and ensuing se-

parations.
Computations of the flow around the
two-body system at lower freestream

Mach numbers, performed on the O-grid,
show unsteady quasiperiodical character
of the flow when in the solution along-
side the short-period oscillations with
nondimensional period T = T-Veo/D = 0.2
there are long-period oscillation. For
example, at Mo = 1.0 the total drag is
periodical with a period of T = AN*1o =
3.4 and an amplitude from min Cp = 0.50
to max Cp=1.30,the base drag Cp_B being
nearly constant, which is associated
with pulsations of the internal separa-
ted zone.In this case the reentry vehi-
cle’s total drag features short-period
small-amplitude variations modulated by

a long-period large-amplitude one. The
same feature is characteristic of the
time dependences of the pressure p/po
in the base zone and especially inside
the parachute canopy, its oscillation,
both short- and long-period, being in
antiphase. On the nose part of the re-
entry vehicle and in the base zone of

the parachute the pressure is nearly
constant.
As in ', where an unsteady solution

of sonic flow around a sphere is pre-
sented, oscillations of the parameters
investigated occur approximately at the
same instants of time and does not de-
pend on grid density and variation of
the time step to. In comparison with
test data and steadystate solutions ob-
tained on the H-grid, the drag values
averaged over the slow oscillation pe-
riod are used.

Long-period motion is connected with
dividing and Jjoining the regions of
flow separation on the cone-cylinder
junction and on the base and with "bre-
athing" of the internal separated zone,
the minimum Cp being observed when the
internal separated zone is "inflated"
and the maximum when it is "deflated".
In this case the parachute canopy at a
fixed distance plays a role of resona-
tor and the oscillation period varies
as a function of the freestream velo-
city and the distance between the bodi-
es: thus,at L = 1 it is smaller than at
LT =1.75, and T = 3.3 at Mo = 1.0.

The latter results are of interest
because they demonstrate the possibili-
ty of obtaining an unsteady quasiperio-
dic solution in the framework of a sta-
tionary statement of the boundary-value
problem but using an unsteady algorithm.
Unsteadiness in the solution can occur
also from decreasing the freestreanm
Mach number Mo (as at L =1.75) and from
diminishing the distance between the
bodies: for example, solutions at L = 1
for all velocities in a range of 0.8 =
Mw = 1.7 is inherently unsteady.

There are two causes of difference
between solutions for the same algo-
rithm on two different grids with the
same number of grid points. The first
cause is a topological difference bet-
ween the O- and H-grids and associated
levels of solution approximation. Thus,
unsteady solutions occur on the O-grid
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because of smaller artificial viscosity.

Unsteadiness manifests itself in the
form of interactions of the separations
on the side surface with the base sepa-
ration. The second cause is scheme in-
dependent and introduced into the prob-
lem "from the outside". On the O-grid
the smooth parts of bodies’ surfaces
approximated without steps, hence this
grid better corresponds to a boundary-
value problem. In the case of the H-

grid, the stepped approximation for
curved parts of the surfaces and the
parts which do not coincide with the

grid lines results in an additional
vorticity generation at step corners,
which diminishes the separated zone
behind the parachute and hence the base
drag. The presence of the sting support
gives the same effect, which explains a
better agreement between experiment and
computation on the H-grid.

Good qualitative agreement between

experimental and computational flow-
field patterns and satisfactory agre-
ement of computed results and force

test data advocate the possible use of

this approach
flows.

in analysis of separated
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