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Abstract

An inviscid vortex-sheet model for non-conical sep-
arated flows about slender bodies at incidence and
vaw to a uniform stream is described. The vortex-
sheet model has previously been used to model conical
flows past thin conical wings and smooth slender con-
ical bodies. Modelling of non-conical flows using the
simpler line-vortex model has been described for thin
wings and smooth slender bodies, where each of the
separated shear layers is represented by a line-vortex,
Jjoined to a specified separation line by a cut. How-
ever, previous to this study, the vortex-sheet model
had only been implemented for thin wings. The
cross-sections of the bodies considered here are ei-
ther circular or basically square or triangular, but
with rounded corners. Studies of cones with these
cross-sections and of elliptic cones has revealed that
cross-sectional shape has a strong influence on the
degree of asymmetry. Since the model is inviscid and
there are no salient edges to fix separation, separation
lines must be specified a priori. Results are presented
for both symmetric and asymmetric non-conical flows
past smooth slender bodies.

1 INTRODUCTION

When a slender body is placed in a flow at moderate
to high incidence boundary layers develop on either
side of the windward attachment line and eventually
separate to form free shear layers that roll up into con-
centrated vortex cores running from the apex along
the length of the body. Flows of this type occur on
aircraft and missile forebodies and can develop large
forces which are important when considering stabil-
ity and control of the vehicle. Most strikingly, the
asymmetrical development of vortices on symmetric
bodies being flown without yaw can produce large
side forces, which may exceed the available control
power of the vehicle. The mechanism which leads to
this “phantom yaw” has long been the subject of de-
bate. It is not possible to discern from experiments
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whether this phenomenom is viscous or inviscid in
origin. Therefore theoretical models for this problem
have been developed. If high Reynolds numbers flows
are considered, then the shear layers are thin and may
be regarded as vortex sheets of infinite extent. The
inviscid vortex-sheet model, originally described by
Legendre [1] and implemented by Smith [2] has been
used in this work. In this model only a finite part
of the vortex sheet is represented and the remainder
of the sheet including the infinite spiral of the core
is represented by a line vortex joined to the free end
of the sheet by a cut, see figure 1. This model has
been used extensively to model conical separated flow
past thin conical wings and slender conical bodies, see
Fiddes [3]. Conical flow is a similarity solution of the
general non-conical model, which reduces the number
of variables on which the flow depends from three to
two. The solution need only be constructed in one
cross-flow plane, the flow field in any other cross-flow
plane is then found by a linear scaling of this solu-
tion. Non-conical flows have been modelled for both
wings (see Smith [4]) and smooth slender bodies (see
Fiddes [5]) using a simpler line-vortex model, how-
ever the vortex-sheet model has only previously been
applied to wings (see Clark [6]). The extension of
the vortex-sheet model to non-conical separated flows
past smooth slender bodies is described in this paper.
For non-conical flows, the solution procedure consists
of a downstream-marching scheme starting from an
known solution at the nose. In general a starting so-
lution is not available, however if each body and flow
considered is assumed conical at the nose then conical
solutions, found previously, can be used to start the
calculation procedure. Two different families of so-
lutions have been identified on slender conical bodies
of circular, elliptic, ”square” and ”triangular” cross-
section. For laterally symmetric configurations with
symmetric separation positions and no yaw, the first
family solutions are symmetric, whereas the second
family solutions are asymmetric. Both first and sec-
ond family solutions are used as starting solutions for
the downstream marching procedure.
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2 SULUTION PROCEDURE

Let Ozyz be a rectangular Cartesian coordinate sys-
tem. The origin O is at the apex of the body, Oz
is directed downstream along the body’s longitudinal
axis, Oy is to starboard and Oz is upwards, see figure
1. Let U be the speed of the free stream at small
incidence angle o and yaw angle 8 to the body. The
velocity potential @ of the flow can be constructed as
the sum of two terms,

P=Uzxz+¢ (1)

where ¢ is the perturbation potential including inci-
dence and yaw. For a slender body ¢ = O(k?) pro-
vided incidence, a, and yaw, 8 are O(k), where k is
a small slenderness parameter, see Ashley and Lan-
dahl [7]. The solution for ¢ is a singular perturbation
problem. In an inner region close to the body slen-
derness scalings are appropriate, that is the cross-flow
coordinates y and z are small compared to z, the lon-
gitudinal coordinate along the body axis. In fact y
and z are O(kz). In this inner region the governing
equation for the perturbation potential to leading or-
der is a two-dimensional Laplace equation

¢ ¢

provided |1 — M2 | = O(1). This study concentrates
on this inner region, the outer region would only be
required if absolute pressures were to be determined.
This would require matching of the outer limit of the
inner solution to the inner limit of the outer solution.
The following boundary conditions must be applied.
Firstly the solution must match to the outer flow as
(y?+2?%) — oo and the flow must be tangential to the
three-dimensional body surface, the latter condition
means that the body cross-section is not a streamline
of the two-dimensional cross-flow. The vortex sheets
are free boundaries of the potential flow region and so
boundary conditions must be imposed on them. Fol-
lowing Smith [8], the condition that the vortex sheets
must sustain no pressure jump is

A 0A
Ua&f 60’? cosec(p1) {% cos(p1) +
Er ﬁn(¢1)} (3)

and the second condition that the vortex sheets are
stream surfaces of the three-dimensional flow is

8 or
22 = U sinen) (4)

The subscript 1 is used to indicate quantities in the
physical cross-flow plane. In (3) and (4), A denotes
the difference operator across the sheet, which when
moving along the sheet in the direction of increasing
o1 is defined to be ‘r.h.s. - Lhs’, r 1s the radius

and ¢ is the angle between the sheet and the ra-
dius vector in the cross-flow plane, see figure 1. Also
(8¢/801)m is the mean of the tangential velocities
on either side of the sheet and 8¢/0n; is the normal
velocity to the sheet in the cross-flow plane.

A condition analogous to the Kutta condition is ap-
plied at the base of each sheet. The sheet leaves the
body tangentially at the separation line. On the up-
stream side of the separation line the velocity vector
merely has to be parallel to the common tangent plane
of the sheet and body. On the downstream side of the
sheet, the flow must be that appropriate to flow in a
cusped region, so the velocity at the base of the sheet
must be tangential to the separation line. Therefore
on the downstream side of the sheet the tangential
velocity, Vi is

Y[}_l = d;;“ sin iy + %—3 cos 1y (5)
where y;; and z;, are the cross-flow coordinates of
the separation position and ¢, is shown in figure 1.
The inner part of the vortex core is represented by an
isolated vortex and cut, and the final condition is that
the force on the vortex and cut must vanish. This is
most easily expressed in terms of a complex potential

W(Z,) = ¢ + 1V, where Z; = y; + iz1, then

L. aw T\ _
U9 \42, 2w~

dl dZv
[(ZIV — ZlE)d—x +T - ] (6)

where the positions of the isolated vortex and the
“free end” of the finite part of the sheet in the Z;
(or physical) plane, are given by Z1v and Z; g respec-
tively, and T is the circulation of the isolated vortex,
see Clark [6].

The construction of the complex potential W, or the
complex conjugate velocity dW/dZ; is complicated in
the physical plane and thus for simplicity the region
outside the body cross-section, with cross-sectional
reference length h(z), is mapped to the region exte-
rior to a circle, radius {(z). The mapping between a
rounded corner polygon and a circle is described by
Williams [9], the shape of the “polygon” is a func-
tion of two mapping parameters A and u. In the
circle, or Zy, plane the complex conjugate velocity
is more easily constructed using the linearity of the
governing equations and the method of images. For
simplicity, non-dimensional variables are introduced,
velocities are scaled by U, the free stream velocity
and cross-sectional lengths by I(z) the radius of the
transformed circle. The complete separated flow com-
plex conjugate velocity is therefore written in terms
of non-dimensional variables as

dw
VA

(v1 — fwn) =

_dZy . ﬁ—}—za (A +iB,)
~ e {o- i - B 3 )
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where A, and B, are Fourier coefficients used in the
series representation of the the component of the nor-
mal velocity to the body in the cross-flow plane and
in (7) give the attached flow component at zero inci-
dence and yaw. For a body of fixed cross-section once
A, and B, are known in one cross-flow plane, they
can be found in any other cross-flow plane by scaling.
However where the cross-sectional shape varies, A,
and B, must be recalculated in each plane where the
velocity is required, see Williams [10]. The integrals
in (7), which represent the contribution of the vortex
sheets to the velocity cannot be evaluated analyti-
cally, nor using simple numerical integration schemes
(eg Simpson’s rule) which have unbounded errors. In-
stead a panel method is adopted, however this cannot
take place in the Z, (circle) plane since the curva-
ture at the base of the sheet may be infinite. Thus
a series of mappings is carried out for each sheet, see
figure 2, so that in the final Z5; plane the curvature
of the jth sheet is everywhere finite. The jth sheet
may then be represented as a series of circular arc
panels in this Zs; plane, with continuous tangent an-
gle and sheet strength along the sheet. The values
of strengths and sheet tangent angles at panel end
points in the Zs; plane, together with the circulation
and position in the Z; plane of each of the isolated
vortices, representing the cores, give 2(n; + ns + 3)
unknowns to be found in each cross-flow plane. The
unknowns are determined from the implementation
of the boundary conditions (note that the sheet tan-
gent angle at the base of the jth sheet is fixed by the
condition that the sheet leaves the body tangentially
and has strength zero in the Zs; plane and are there-
fore known). The method by which the vortex sheet
contribution to the complex conjugate velocity is cal-
culated in this Zs; plane follows exactly the method
for conical flow. This process is explained in detail by
Williams [10] and is not repeated here.
The vector of unknowns in each cross-flow plane are
represented by Y (z). If the solution Y, in the plane
z = z; is known, then a marching procedure is used
to advance the solution to the plane z = z;,, where
Ziy1 = i + b; and h; is the ith step length in the
downstream direction. The stream surface and pres-
sure conditions (3) and (4) must be satisfied at in-
ternal panel end points and at the midpoint of the
panel at the free end of the sheets, together with the
force conditions (6) and the Kutta conditions (5), in a
plane ¢ = z;,,, where z;4, = z; + ph; and 0 < p < 1
using a finite difference procedure to estimate deriva-
tives. Streamwise derivatives of flow quantities are
then approximated using

g{ _ fin - fi. ®)
T, Tiyl — &4
and all dimensional quantities other than streamwise
derivatives are evaluated at £ = z;4, using linear
interpolation.

fivp = pfirn+ (1 =p)fi 9)

The following values of the finite difference parameter
p are special cases

p=0 Forward difference scheme, Explicit Euler.
p =1 Backward difference scheme, Implicit Euler.
p = 0.5 Central difference scheme.

A similar central difference scheme was adopted by
Jones [11] for rolling wing and body combinations.
The boundary conditions can now be applied using
the finite differences given above to estimate deriva-
tives and linear interpolation to estimate the solution
in the plane z = z;4,. This estimate to the solution
at = z;p can be used to evaluate all the quanti-
ties required in the boundary conditions which give
2(n1 + na + 3) equations for the 2(ny + ny + 3) un-
knowns. The Kutta conditions (5), applied at the
base of each sheet, can be solved simultaneously to
determine I'; and T's in the plane £ = z;41 in terms of
the position and strength of the vortex sheets and the
position of the cores in the £ = z; and the ¢ = z;44
planes. These expressions can be introduced into
the remaining 2(n1 + ny + 2) non-linear equations,
reducing the number of unknowns to be solved for
by two. These equations are solved using a multi-
dimensional Newton-Raphson scheme similar to that
used by Barsby [12].

Initial attempts to generate solutions of the problem
were carried out with p = 0.5, since a central differ-
ence scheme is accurate to second order in h;. For
some body shapes and angles of incidence, the devel-
opment of the solution from an initial conical form
could be calculated with no apparent difficulty for a
considerable distance downstream. In other cases, in-
stabilities are encountered which lead to a failure of
the Newton method to converge, often after only a few
steps. Central difference schemes are prone to insta-
bilities and some solutions generated by this method
showed fluctuations in the sheet shape in successive
planes. At this stage it was not clear if the “waves”
were a result of the numerical method or a genuine
feature of the solution. Investigations of the effect of
step size h;, the value of p and tolerance were there-
fore carried out. It was found that decreasing p below
0.5 made progress downstream impossible for all the
cases considered. Therefore the only values of p con-
sidered are 0.5 < p < 1. It was found that increasing
p removed the problem of fluctuations, however if p
was too large for a particular problem then, again, it
was not possible to move downstream.
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Some of these points are illustrated in figure 3. The
solutions are for a first family solution with slightly
asymmetric separation positions specified at the nose,
which are made symmetric downstream on a circular
cone, for various values of step size and p. Figure
da and 3b demonstrate the effect of the choice of p.
Figure 3a shows the solution with step size equal to
0.5 and p = 0.5. Instabilities are encountered only
a short distance downstream, however increasing p
to 1 and keeping the step size fixed overcomes this
problem, shown in figure 3b. Figures 3b and 3c show
the effect of step size at fixed p = 1. Figure 3b has
step size 0.5, whilst figure 3¢ shows the solution when
the step size is halved to 0.25. Clearly the solutions
are unaffected by this change.

3 RESULTS

Two programs were written; one where lateral sym-
metry was enforced and one where asymmetry was
permitted.

For the non-conical problems considered in this pa-
per the body cross-sectional reference length, h(z), is
assumed to have one of the three longitudinal distri-
butions:

TYPE 1 The body cross-sectional reference length fol-
lows a cone. The non-conical calculation arises by
virtue of a longitudinal variation of the separation po-
sitions or body shape parameter. The body reference
length is given by

h{z) = ztanv”®

(10)

TYPE 2 Body varies smoothly from one cone via a
circular arc to another cone of small apex angle. The
cross-sectional reference length is given by

h(z) = =ztanyf 0<z<a

B = (h(@)-f'+(e-g)? a<z<b

h(z) = h(b)+ (z —b)tanvg b<z
(11)

where a, b, v; and v are specified and f, g, R and h(b)
are calculated to make h and dh/dz continuous func-
tions of . A sketch of a typical body is shown in
figure 4a.

TYPE 3 Body varies smoothly from a cone via a circu-
lar arc to a cylindrical afterbody. The cross-sectional
reference length is given by

h(z) = =ztanyf 0<z<a

R + (h=z)~f)2+(x—g)? a<e<bd

h(z) = h(d) b<u
(12)

where a,b, and v; are specified and f, g, R and A(b)
are calculated to make h, dh/dz continuous functions
of z. A sketch of a typical body is shown in figure 4b.

3.1 SYMMETRIC SOLUTIONS

First, consider a body of TYPE 2, where v; = 5%, 1y =
3% a = 5.0 and b = 12.0. Figure 5 shows the vortex-
sheet shapes in successive cross-flow planes for a body
of “square” cross-section placed side onto the inci-
dent flow where y = 0.8,A = 0.5, 85,(1) = 38.96° and
a = 3.0tan5°. The solution furthest downstream is
at ¢ = 40.6. It is clear that the solution on the con-
ical afterbody has converged to the conical solution
corresponding to the higher relative incidence there.
This is also shown by the longitudinal variation of the
normal force coefficient and the non-dimensional to-
tal circulation, shown in figure 6. This geometric test
case helped to validate the method, since no experi-
mental or theoretical results were available for com-
parison.

Next, consider bodies of TYPE 3 with a = 3.0, b
=23.0 and v; = 5°. These bodies are conical at the
nose and move smoothly to cylindrical afterbodies,
with a fixed cross-sectional shape for all values of z.

The vortex sheet solution proceeds downstream with
an integration step of size 0.4 and p = 0.5. The so-
lution for a body of circular cross-section is shown in
figure 7. A downstream convergence of the cross flow
plane coordinates of the line vortices representing the
cores, was observed. The rate of change of the magni-
tude of the total circulation of the feeding sheet and
core, shown in figure 8, decreases towards zero as z
increases. Note that this curve is noisy due to the use
of finite differences. This suggests that either for suffi-
ciently large, but finite, z, the feeding sheet strength
reaches zero and the vortices representing the cores
may be stationary on the leeward side of the body
with constant circulation or the feeding sheet strength
asymptotes to zero, then the vortices tend to a fixed
position as £ — oo. This behaviour is similar to that
found by Foppl for the two-dimensional case of an in-
finite cylinder moving through a fluid with constant
velocity perpendicular to its axis, followed by a vor-
tex pair symmetrically situated with respect to the
line of advance of the centre. He found a curve on
which the vortices could maintain their position rel-
ative to the cylinder provided they had a particular
circulation depending on their position on the curve,
see Lamb [13].

It was therefore decided to make a comparison be-
tween the appropriate Foppl curves and the vortex
sheet solution on the cylindrical section. It would ap-
pear that the cores do converge onto the Féppl curve,
as in figure 7. This is shown more clearly in figure 9,
where the positions of the line vortices on the cylin-
drical section are plotted for the right hand sheet,
where it appears that the vortex cores converge to a
point on the the Féppl curve. If the total circulation
in each cross-flow plane is used to calculate the corre-
sponding points on the Foppl curve then these points
overshoot the point to which the cores are converging.
The position of the centroid of circulation in succes-
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sive cross-flow planes was also calculated, see figure
9, it is possible that further downstream the centroids
may converge onto the Foppl curve at a point closer
to that predicted on the basis of the total circulation.
Figure 10 shows the symmetrical vortex development
for a body of “square” cross-section placed side onto
the incident stream, p = 0.8, = 0.5,65,(1) = 38.96°
and o = 3.0tan 5°. The solution furthest downstream
is at z = 37.0. A similar convergence of the isolated
vortices on the cylindrical section is observed. This
suggests the existence of stationary vortex positions
behind a “square cylinder” with side on to the flow,
similar to the Foppl curve. A Foppl type solution for
the side on “square cylinder” will only exist if a curve
can be identified, on which the two equations, that
arise from setting the complex conjugate velocity at
one of the symmetric vortices to be zero are satisified,
provided that the vortices have a certain circulation.
Such a solution has been identified (see figure 10) and
a similar convergence of vortex cores is found as for
the circular cross-section case. Curves have also been
found for the corner on “square or triangular cylin-
ders” and side on “triangular cylinders”. It should be
noted that there is not an analogue of the Foppl curve
for all shapes, in particular the flat plate broadside on
to the flow does not yield one, see Smith and Clark
{14)].

The final type of problem considered in this section is
for a TYPE 1 body, where the cross-sectional shape
varies with . This can be achieved by specifying a
longitudinal variation of the body shape parameters
p# and A with . For all z, A = 0.5 and y has the
following variation with z

go= p r < 5.

p = pa+ppxr+pce®+ppzd 5.<z < 25.

b = 2 25. <z
(13)

where pa,pp, e and pp are determined by forcing
¢ to be continuous and dp/dz = 0 at ¢ = 5.0 and
z = 25.0. Since g is fixed for z > 25.0, this type
of problem again allows an appropriate conical so-
lution to be calculated on the afterbody where the
body cross-sectional shape is fixed. Figure 11 shows
the effect of moving from a circular cross-section
to a ”triangular” cross-section with corner onto the
flow. Here py; = 0.5,p0 = 0:9,62,(1) = 29.79° and
a = 3.0tan5°. The solution furthest downstream is
at ¢ = 42.5. There is a very close agreement between
the solution predicted by the non-conical calculation
and the appropriate conical solution.

3.2 NON-CONICAL
AMPLIFICATION

Results are now given for the flow past a 5° circu-
lar cone, where the starting solution at the nose is a
first family solution with a small asymmetry in the

separation positions, with @ = 3.4tan5°. The sep-
aration positions were changed downstream so that
they become symmetric, via

825(2) = 3° z>0
f25(1) = 0° 3>z
62s(1) = —(z—3)° 3<z<10 (19)
fss(1) = 3° z> 10

The sheet shape in successive cross-flow planes is
shown in figure 12, along with the appropriate sym-
metric conical solution in the last cross-flow plane,
where z = 30.0. Tt is clear that although the fi-
nal plane shown is far downstream from the point at
which the separation positions become symmetric, the
solution is not symmetric. The starboard sheet has
a higher vertical extent than the corresponding sym-
metric conical solution and the port sheet is closer
to the body than the symmetric solution. In figure
13 the normal and side force coefficients are plotted
against z. It can be seen that the normal force for
large z is close to that of the corresponding symmetric
conical solution, however the side force grows down-
stream instead of decreasing to zero as it would need
to do to match to the conical solution. The side force
to normal force ratio increases steadily with z, see fig-
ure 14. The total circulation of each of the starboard
and port sheets diverges from the corresponding con-
ical solution value, see figure 15. Thus it appears
that the small asymmetry is amplified downstream.
A similar effect was noticed by Fiddes [5] in a prelim-
inary study of a non-conical line-vortex model. The
“non-conical amplification” is a distinct mechanism
from the development of asymmetry on the conical
nose itself. Fiddes conjectures that it is an impor-
tant mechanism in the generation of side force at in-
cidences below that required for the onset of second
family solutions at the apex, see Fiddes and Williams
(17]. Tt is possible that the solution is converging to-
wards a second-family conical solution on the after-
body as * — oo, If this were the case it is possi-
ble that the first family, symmetric, solution could be
unstable and the second family, asymmetric solution
stable.

3.3 ASYMMETRIC SOLUTIONS

Consider a body of TYPE 2, where vy = 5% vy =
3°,a = 3.0 and b = 18.0. The separation positions
are given by 025(1) = 180 — 62,(2) = 6.87° and inci-
dence o = 4.6tanb°. The vortex sheet shapes in suc-
cessive cross-flow planes are shown in figure 16. The
appropriate conical solution is shown on the after-
body for comparison, in the final downstream plane
where £ = 20.0. The vertical extent of the port sheet
is greater in the conical solution on the afterbody
than the non-conical prediction. The starboard coni-
cal sheet is straighter than the non-conical prediction,
which has developed a more pronounced point of in-
flexion. Points of inflexion, were a common feature of
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the asymmetric calculations and are believed to cor-
respond to the formation of new centres of rotation, a
phenomenon which is observed experimentally. The
vortex-sheet model does not adequately represent the
roll up of the new centres of rotation, and the New-
ton scheme fails soon after the development of the
inflexion. This is a result of the fact that the sheet is
not being substantially stretched and will develop a
singularity, which leads to the breakdown of the solu-
tion procedure, see Moore {15}, whose work for a time
evolving vortex-sheet is analogous to the non-conical
evolution if time ¢ is replaced by convective time z/U.
In order to make further progress downstream a pro-
cedure similar to that used by Hoeijmakers [18] to
model the roll up of the wake behind the trailing edge
of a wing would be required. The longitudinal varia-
tion of the normal and side force coefficients is shown
in figure 17. The side force coefficient predicted by the
non-conical calculation initially converges towards the
conical value, but then starts to decrease and diverge
from it. The normal force is also quite different from
the conical value, but is still varying quite rapidly.
Since the downstream solution is clearly not conical,
this difference is not surprising. Figure 18 shows the
ratio of side to normal force, although the ratio is de-
creasing with z from above the appropriate conical
value it is not clear that its value is converging to the
conical value. In fact it seems likely that this would
not occur, since if the solution could be continued the
point of inflexion on the starboard sheet is likely to
become more pronounced downstream and thus move
further from the appropriate conical solution. Figure
19 shows the longitudinal variation of the total circu-
lation for the port and starboard sheets.

No solutions are given for bodies of TYPE 3. It
proved impossible to track any solutions onto the af-
terbody. In the enforced symmetry solutions it was
found that the non-conical solution on the afterbody
was closely related to the Foppl solution for an infi-
nite cylinder. Foppl solutions are stable to symmet-
ric disturbances and unstable to asymmetric distur-
bances. This instability may be a significant factor in
the failure to converge asymmetric solutions onto the
afterbody.

Finally consider a varying cross-sectional shape prob-
lem, the body reference length again increases linearly
with z and has a slope of 5%, but the cross-sectional
shape varies with . Then for all z A = 0.5, and p
has the same variation with z as given in (13).
Solutions for two different cases are shown in fig-
ure 20. Firstly figure 20a shows the effect on the
downstream development of a second family solu-
tion of moving from a ”square” cross-section, placed
side onto the flow, to a circular cross-section. Here
p#1 = 0.76 and po = 0.5, the separation positions are
025(1) = 180 — 62,(2) = 27.50° and o = 5.4tan5°
The solution furthest downstream is at z = 25.5. Fig-
ure 20b shows the effect of moving from a ”square”
cross-section, with corner onto the flow, to a circu-

lar cross-section for a second family solution. Here
p1 = 0.77 and py = 0.5, the separation positions are
625(1) = 180 — 625(2) = 5.72° and a = 4.2tanb°.
The solution furthest downstream is at z = 35.5. A
comparison between the non-conical prediction and
the appropriate conical afterbody solution reveals
very different solutions in the final downstream plane
shown. For the side on case the starboard vortex sheet
of the conical solution has a tightly wound core lying
much further inboard than the non-conical solution.
However the starboard sheet is trying to wind up,
as indicated by the inclination of the cut, but it still
has a long way to go. (Note that it has been found
that for a line-vortex calculation a tenfold increase
in z from the start of the conical afterbody may be
required before the solution gets near to a conical so-
lution). Attempts to move further downstream were
not successful and it is believed that this is principally
due to the points of inflexion which form in the sheet.
These inflexions cannot be tracked downstream us-
ing the current approach. The conical port sheet also
extends further inboard than the corresponding non-
conical prediction. For the corner on case, although
the general shape of the conical and non-conical solu-
tions on the circular afterbody are similar, the vertical
extent of the starboard sheet is much greater in the
non-conical prediction. Figure 21 shows the variation
with z of the normal and side force coefficients. The
values predicted by the non-conical calculation on the
afterbody and the appropriate conical solution are not
in agreement especially in the case of the side force.
This is not surprising given the differences in the vor-
tex sheet shapes. Again the development of points
of inflexion in the non-conical solution, indicates that
new centres of rotation may be trying to develop.

4 CONCLUSIONS

A comprehensive study has been undertaken of the
solutions of the vortex-sheet model for flows past
slender bodies with a wide range of cross-sections,
some of which are shown in this paper. Although
the model has a number of limitations that restrict
its quantitative capabilities, it has identified physical
mechanisms that have a dominant role in determin-
ing the qualitative features of slender separated flows.
These features have now been confirmed by more ad-
vanced and accurate methods which solve the Euler
and Navier-Stokes equations, see for example Marconi
[19]. The calculation of symmetric solutions down-
stream has been successful and has provided several
interesting solutions, which have helped to check the
non-conical method. For asymmetric flows, tracking
of solutions was hampered by the breakdown of the
solution procedure associated with the development
of points of inflexion in the vortex sheet correspond-
ing to the formation of new centres of rotation, a phe-
nomenon which is observed experimentally. Finally, a
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non-conical amplification mechanism was found, dis-
tinct from the mechanism responsible for second fam-
ily solutions at the apex. This mechanism may ac-
count for the observation of highly asymmetric sepa-
rations on the afterbody, even when the incidence is
low enough for the flow to be nearly symmetric at the
nose.
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— — — downstream conical solution

5.0 9.0
T |
. T O )
o L AU N
p \ u=0.§ N ,i
A a=3.4tans P
\  —
5.0 |- h;‘-‘. B \ -
t.‘.‘ A% \
""Fg ARSI N ‘
I,lﬂ’" FOC N
He SO
5.0 L e, BN ]
() AN
L 2 Jaanin
el 7N |
) A
70 ‘?In )‘Q‘I\
fl'l’ﬂld‘ {‘\“‘\
ao L A SN -
oA AN
e ‘.“ “‘i‘
N U A Al
2.0 | l"’;",'ﬁ‘ ‘l:\\ ]
e L 2 8 -
0.0 £A
-6.0 0.0 6.0
v

: . : " - ©.08 T T T r T r
=Y - g
g
. c.o8 L. B
0.0 L -
0.0 b -
L i 1 1 . ©.00 1 1, 1 1 L 1
20.0 3.0 #g.0c BO.0 680 ¢ V0.0 0.0 10.0  20.0 30.0 40.0 %$0.¢ 80.0 7Y0.0
x »
Fig. 14
5.00 T T _r
+ starboard Q
X pOl"t 4.00 e - u=0.5 i
a=4. 6tansS
3.00 -~ -1
E 2.00 —
Lo
2
v
_ N
1.00 - —d
1.20 ) | | 1 ! | 0.00
[} 10 20 30 40 50 80 70 -2 2
x
Fig. 15 Variation of total circulation with x Fig. 16 Asymmestric cone/cone solution
°:e T ] T 2o I I ]
7.0 |- | 109 b e e e =
T o S s e 1.8 /“'_“\:
6.0 — -]
1.7 b —
z / >
Q 5.0 . i 8] 1.6 - |
4.0 ] | | 1.5 | ]
(o} =1 10 15 20 [¢] 5 1Q 15 20
x X
Fig. 17 Variation of normal and side force coefficients with x

2503



(a)

o downstream conical solution

0.8
l T ] 2 T | x
S oszo L . e -
_ l s » - —=% + starboard
5 o4 _ S 2s L
2 = — e =
¥ T R, ‘
- e _ EO_MM: X port
0.2 | 1 [ 1.5 | 1 I
o E 10 15 20 o 5 10 15 20
x X
Fig. 18 Fig. 19
6.0 T (o) 9.0 .
° o
s o = «=5.4tans «=4.2tanS
~—= — = conlcal a.o‘ . ~em =~ conjcal
solution T solution
4.0 -~ downstream downstream
6.0 |. .
3.0 | .
2.0 i 1 4.0 - -
1.0 L _
2.0 L N
0.0 |- i
o.0 L -
IN]
~-1.0 L o
-2.0 | 4
-2.0 L N
~3.0 1 4.0 4
-2.5 0.0 2.5 4.0 0.0 4.0
v y
Fig. 20 Asymmetric solutions for bodies of varying cross-sectional shape
1 6
(@) @ °° I T x
1.4
2.8 i -
1.2
> > 2.2 |- —
U 1.0 a
o.8 ] [ 1.5 1 ] 1
] 10 20 30 (e} 10 20 30 40
x — — — downstream x
8.0 i Q
T T conical 7 I x T
solution
5.5 | - 6.3 (. —
I \ - ss L -
5 4.5 L. e e 5 4.8 L. p—
4.0 | | 4.0 | 1 |
) 10 20 30 o 10 2o 30 40
X x

Fig. 21 Variation of normal and side force coefficients with x

2504



