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Abstract

The flow separation patterns around ellipsoids with different axes ratios are studied numerically in order
to gain insight into the influence of body geometry. The flowfield results are steady-state solutions of the
three-dimensional, incompressible Navier-Stokes equations obtained by using pseudo-compressibility method
and Beam-Warming approximate factorization scheme. The separated flow patterns at 10° incidence are
displayed via the computed skin-friction lines, off-surface streamlines and their Poincaré projection in the
cross-flow plane. The main features are that the open separation is found only on thinner ellipsoids while
the closed separation occurs on bodies with various geometries. Tornado-like vortex can be formed on the
closed separation line on a fatter body. As the thickness decreases, the open separation occurs at a much
more forward position and the resulted primary vortex becomes stronger. Comparison of the aerodynamic
loads indicates the lift and pitching moment to increase with the decrease of thickness. An inference can be
made that as long as the thickness ratio decreases toward zero, the open separation might begin in the nose

and produce the strongest vortex.

Introduction

Three-dimensional flow separation and vor-
tex motions have received much attention because
of their significant effects on the aerodynamics of
flight vehicles. From the following two examples we
can see how important the three-dimensional flow
separation and the resulted vortex might be. A sta-
ble, concentrated vortex formed by the flow separa-
tion at the leading edge of a slender wing generally
contributes significant nonlinear aerodynamic loads
at moderate to high angle of attack and the vortices
shedding periodically from the axisymmetric bod-
ies will cause servere side force at large incidence.
Therefore, continuing efforts should be made to elu-
cidate the effect of 3-D separation and induced vor-
tices on aerodynamic characteristics. In the sur-
ficial topological approach, three-dimensional flow
separation may be classified into two types, namely,
closed and open separation(!) or global and lo-
cal separation(?), but in a spatial descriptive ap-
proach, they may be further classified as closed,
open and hybrid separation(®), Different separa-
tion types are related to different physical mech-
anism and have different impact on aerodynamic
characteristics. The closed separation results from
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streamwise detachment of boundary layer on the
wall under streamwise pressure gradient, while the
open separation exhibits the crosssflow detachment
of viscous shear layer from the body surface under
the tangential shear between the viscous inner and
inviscid outer flows. The closed separation gener-
ally produces a bubble or tornado-like vortex influ-
encing mainly the drag of a flight vehicle, however
the open separation usually produces concentrated
vortex having significant effects on lift, pitching mo-
ment and also on side force in the case of asymmet-
ric flow.

The flow separation patterns and the resulted
vortex strength are related to many factors, among
which the geometry is a dominant one. It is the
purpose of our study to find out the relationship
between the geometry and the flow separation pat-
terns. We restrict our investigation to symmetric
flow and leave asymmetric one over to future re-
search. For clarity yet no loss of generality, we
have chosen ellipsoids with different axes ratios as
test cases, because flows past such bodies are able
to exhibit typical separation patterns. By varying
the axes ratio, the ellipsoids will resemble a large
variaty of configurations from fuselage to slender
wing.

Although previous studies put much empha-
sis on the nature of 3-D separation("'a), yet few of
them have noticed the relationship between the pat-
terns of 3-D separation and the aerodynamic loads.
A previous study(!) revealed that open separation



becomes dominant as a prolate spheroid becomes
more slender. In order to gain further insight into
the influence of geometry with the hope of find-
ing the relationship between the evolution of sep-
aration patterns and the axes ratio, we present a
comparative study of the flowfield around ellipsoids
with five different axes ratios. The axes ratios of
a:b:c for the five cases are 1:0.25:0.25 (labelled as
case A), 1:0.25:0.167 (B), 1:0.25:0.1 (C), 1:0.5:0.25
(D) and 1:0.5:0.167 (E), where a, b and c refer to
‘half axis length in streamwise, spanwise and nor-
mal directions respectively, see Fig.1. So we can
find out the influence of the thickness ratio (c/a)
by comparing among A,B,C or between D and E
cases, and the influence of slenderness ratio (b/a)
by comparing A with D, or B with E. The flowfields
are numerical solutions to incompressible Navier-
Stokes equations. For solving the equations, the
pseudo-compressibility method is used because of
its validity and efficiency in computing steady 3-D
incompressible flow(®1%), The addition of an arti-
ficial time derivative of pressure to the continuity
equation will render the incompressible equations
hyperbolic. Beam-Warming approximate factoriza~
tion scheme is applied. Our algorithm is similar
to that of Kwak et al (®) but different in artifi-
cial viscosity coefficient and adoption of local time
step to accelerate the convergence to steady-state.
Surface skin-friction lines, streaklines issued from
points nearest to the wall and their poicaré cut in
the crossflow plane are used to define the pattern
of 3-D separation. Based on these charts the flow
separation patterns around different geometries are
revealed and a direct comparison is made. In accor-
dance with the variation of the flowfield, the aero-
dynamic characteristics are also discussed.
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Figure 1. Sketch of the ellipsoid
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Governing equations and numerical algorithm

The flow computation is governed by incom-
pressible Navier-Stokes equations. To implement
a time marching scheme, a pseudo-compressibility
term is added to the continuity equation as follows

(1)

13p .
=—+v-d=0
gar "V
where £ is a constant called pseudocompressibility
factor and 7 is the time.

In body-fitted curvilinear co-ordinate system,
the governing equations can be formulated as

3Q  3(E-E) 3(F-F) 3(G-G.)

=0
ar a¢ dn 8¢

(2)

where £,n and ¢ are coordinates along streamwise,
circumferential and normal direction respectively.
The formulations for conservative variable vector
Q, inviscid flux terms E, F,G and viscous terms
E,,F,,G, can be found in Ref.[9]. A nondimen-
sional form of the equations is used througthout
the computation. Lengths are scaled by the longi-
tudinal axis length L, velocity components by the
free-stream velocity U,, and dynamic pressure by
pUZ.

The numerical algorithm used to solve Eq.(2)
is an implicit, approximately factorized, finite-
difference scheme(AF scheme) by Beam and Warm-
ing. By using backward difference for time and
central difference for inviscid and viscous terms,
AF scheme with 2nd order implicit and 4th or-
der explicit artificial dissipation added in the left-
hand side and right-hand-side respectively can be
expressed as

LeL,L,A D" = RHS" (3)

where
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with h = ArJ and D = Q/J. & is a typical three-
point, second-order-accurate, central difference op-
erator. §; is a midpoint operator used in viscous
terms, §} and 6; are forward and backward differ-
ence operators respectively. J denotes the Jacobian
of the coordinate transformation. I is an identity
matrix and I, is a diagonal matrix with 0 for the
first element and 1 for the others. Only orthogonal
viscous terms are retained in left-hand-side factors.
The analytical expressions of the inviscid flux Ja-
cobian matrices A, B and € are also included in
ref.[9].

The above scheme is formally second-order
accurate and conditionally stable usually under the
condition of ez > 2.0¢4 and ¢4 = O(1), €2 and ¢4
are artificial viscosity. Note that all artificial dissi-
pation terms are multiplied by time step Ar, which
is different from Kwak’s. This treatment provides
appropriate dissipation in the boundary layer when
local time step is used. In present study, We took
€2 = 3¢4 and ¢4 = 0.5 ~ 1.0, which were large
enough to maintain numerical stability and reason-
able in having little effect on quantities of skin-
friction especially without changing the qualitative
features of the flow patterns. To speed up the con-
vergence toward steady-state, local time step was
adopted based on a Courant number of 5. However
an upper limit of time step has to be imposed to
prevent the computation from instability and inac-
curacy.

The constant § determines how ”compress-
ible” the modified velocity field is, and has influence
on stability, convergence rate, and accuracy of the
numerical solution. Previous numerical study(1?)
as well as our experience shows that § = 1 is a
preferable choice for steady-state computation.

In order to achieve higher computational ef-
ficiency, the scheme(3) can be diagonalized(*?) as
long as the matrix I,,, in viscous terms is changed
into an identity matrix I. Diagonalization can re-
duce CPU time by nearly 50%.

Initial and boundary conditions

The initial condition is that of uniform
freestream flow everywhere except u = v=w =0
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on the body surface. The boundary conditions are
treated explicitly. On the surface the non-slip con-
dition is applied, i.e.

u=v=w=0 (4)

and the pressure computed via a normal momen-
tum equation taken on the wall from Eq.(2), e.g.

9p -1 8%
% = e In2 (5)
with n and v normal to the surface. The treatment
of the condition in the farfield is based on charac-
teristics analysis normal to the farfield boundary
via

aw ow

—tAy—=—=10 6

ar + n (6)

where A = diag(gn, ¢n, gn + 8,¢n — @),

a = (g2 + B)}/? and W is the characterictics vari-
able vector. In our steady-state computation, for
outflow boundary with g, > 0, W, W,, W3 are de-
termined from inner flow variables and W; from
external freestream flow. For inflow boundary with
gn < 0, Wy, W,, W, are determined from external
freestream fiow and W3 from inner flow variables.
Once W is known, the flow variable can be ob-
tained.

Reflection conditions are used on the wind-
ward and leeward symmetry planes. On the major
axis extending from the nose and the tail, all vari-
ables are equal to the average of values at the same
normal position but next £ = constant plane.

Results and discussions

The results herewith included are obtained
from the laminar flow computation for an inci-
dence o = 10° and a Reynolds number Rer, =11700.
The five cases with a:b:c equal to 1:0.25:0.25,
1:0.25:0.167, 1:0.25:0.1, 1:0.5:0.25 and 1:0.5:0.167
are labelled as A, B, C, D and E. We define c/a as
thickness ratio and b/a slenderness ratio.

The outer boundary of the solution domain
extends 1.25 times the length of the major axis from
the body in upstream and downstream directions.
Doubling this distance does not change the results
appreciably. The grids are of O-O type generated
by a transfinite interpolation method(1®), Typical
grid number is 37 X 33 x 49. To define a steady
state, the residual of Eq.(3) and divergence of ve-
locity would converge by four and three orders-of-
magnitude respectively. Generally this will require



about 2000-3000 iterations. We will focus on dis-
cussions of the relations between the geometry and
the flow characteristics.

Topological changes of surface flow patterns
with axes ratios

In Figure 2, the computed skin-friction lines
and the corresponding topological structures for
the five cases are shown. For case A, correspond-
ing to the flow past a prolate spheroid, the line
S1 — Fy — 83 — F3 — S5 is a closed separation line
which divides the skin-friction lines coming from
the front and rear stagnation points. Here two foci
Fy and F; on this line are often associated with
tornado-like vortices. The skin-friction lines orig-
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inating from the front stagnation point approach
the rear and show the tendency of slight squeez-
ing in front of the closed separation line but rather
difficult to discern the existence of open separation.
For case B and C open separation line is formed ev-
idently at further forward position and approaches
toward the windward side symmetry plane. We see
the topological changes from case B to C resulting
from the disappearance of focus F; and F,. The
comparison of case D with E also shows an earlier
and much evident open separation which occurs on
ellipsoid with smaller thickness ratio. For compar-
ing the influence of slenderness ratio we compare
case A with D, or B with E. We see the larger slen-
derness ratio results in a much forward extension
of the whole separated region including the sad-

Figure 2. Comparison of the skin-friction line patterns(i) and their topology(ii) at @ = 10°, Rey = 11700.
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dle point S3 on the leeward side symmetry plane.
However the open separation in case D differs a lit-
tle from case A with smaller slenderness ratio. The
common feature of case D and E is the disappear-
ance of S; and F; and the bubble region after the
leeward segment of the the closed separation line
Sy — F1 — S5 is very large. From the comparsion de-
scribed above, we see the normal and lateral scales
of a body would influence the open and closed sep-
aration respectively. Making the body thinner will
significantly promote the happening of open sepa-
ration while increasing the slenderness ratio would
extend a closed separation region. The physical rea-
son why decreasing the thickness ratio can promote
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open separation may be understood from the vari-
ation of pressure gradient in the crossflow plane. In
Fig.3 where pressure gradients along the circumfer-
ential direction of the body surface are compared
between case D and E, we see a larger gradient is
developed for smaller thickness ratio case E, which
indicates the cause that the open separation is more
likely to occur on thinner ellipsoid.
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Figure 3. Comparison of the surface pressure gradient along the circumferential direction between case D
(£ = 0.25) and E(£ = 0.167) at four axial stations.( §=0 at the windward symmetry)
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Spatial and cross-sectional flow patterns

It seems insufficient to determine the 3-D sep-
aration type only from the skin-friction line pat-
terns. However, the separation pattern might well
be delineated from the 3-D streamlines and the flow
features in some appropriate cross-sections.

Figure 4 shows the off-surface streamlines in
the five cases. The streamlines issued from the
grid points nearest to the body surface will usu-
ally detach themself from the body surface along
the saddle-node (including focus) segment of the
closed separation line or near a converged open sep-
aration line. In our computation, there are tornado-
like vortices at two foci F; and F; in case A and B,
but by the decreasing thickness ratio they-will dis-
appear as shown in case C. As the slenderness ratio
increases( from case A to D or from B to E), the
vortex at leeward focus F, disappears and the one
at focus F| becomes weaker. The influence of thick-
ness ratio on open separation is evidently illustrated
in the sequence A—B — C or D — E. For example,
open separation in case B occurs at % ~ 0.65 and
tends to roll up after % s~ 1.0. In case C, open
separation happens as early as at %— = 0.45 and
the separated shear layer begins to roll up to form
primary vortex at Zlf- s 0.75. In order to describe
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Figure 4. Off-surface streamlines illustrating the
separation patterns on ellpsoids with different axes
ratios.

the separation more clearly, the so-called Poincré
cut is given. It is the projection of intersection of
the streaklines released from all points nearest to
the body surface onto a plane normal to the major
axis . In Figure 5 the Poincré cuts show the vis-
cous shear layer from the open separation in case
C rolls more tightly than in case B at the same ax-
ial station. Figure 6 shows the comparison of axial
vorticity distribution for case B and C at several
axial stations. We see an earlier formation of a vor-
tical region in case C, and the vorticity in outer
vortical region in case C is greater than in case B
at %—=0.95. This indicates the vortex strength in
case C is greater than in case B. This comparison
shows that the primary vortex due to open sepa-
ration occurs earlier and becomes stronger as the
thickness ratio decreases.

Aerodynamic loads

To see how aerodynamic loads are related to
flow separation patterns, the lift, drag and pitch-
ing moment are computed from the surface pressure
and wall shear stress. Denoting by Cr,Cp and Cy,
respectively, the coeffcients of lift, drag and pitch-
ing moment are defined as
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Figure 5. Comparison of Poincaré cuts of the vis-
cous shear layer emanating from near the body sur-
face between case B(£ = 0.167) and C(£ = 0.1).
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Figure 6. Comparison of the axial vorticity w dis-
tribution between case B and C. + denotes where
maximum vorticity exists. Aw is the increment of
vorticity between two adjacent lines.

2 o o
CL=;-I-J-2—§//(Tw—pn)-e_LdS

2 4 -
CD=pU2S//(Tw—pn)-ewdS (7)

2 " "

where 7, is surface stress vector , €5 , €; and @
are unit vector along and normal to the free stream
direction, and normal to the body surface respec-
tively. § is the projection area from the top and ¥




denotes the position vector from the center of the
major axis to the element dS. Fig.7 shows the vari-
ation of aerodynamic loads with thickness ratio at
10° incidence. The Cp and Cj; increase with the
decrease of thickness ratio, which is consistent with
the fact that the primary vortex due to open separa-
tion provides nonlinear aerodynamic loads because
the flow past thinner ellipsoid produces stronger
primary vortex and larger area dominated by the
open separation. Comparing Fig.7 (c) to (e), we
see Cp,, is larger but Cp; is smaller for larger slen-
derness bodies(D and E). However, the total drag
is nearly the same for different slenderness bodies.
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Figure 7. Variation of the coeflicients of Lift Cf,
pitching moment Cjs and drag Cp with the thick-
ness ratio. o = 10°, Rer, = 11700.

Conclusions

The incompressible flows over ellipsoids with
five axes ratios have been studied by solving the
3.D incompressible complete Navier-Stokes equa-
tions numerically. The separated flow patterns
ar¢ compared with respect to different axes ra-
tios. Flow patterns are determined via the com-
puted skin-friction lines, off-surface streamlines and
their Poincaré cuts in appropriate crossflow planes.
Common feature can be deduced that there is al-
ways a region of closed separation at the rear part
of the body identified by the skin-friction line hav-
ing critical points. Tornado-like vortex may ex-
ist on this line and become evident as the ellip-
soid becomes thicker. The evidence of open sepa-
ration is illustrated by the squeeze of skin-friction
lines in the region where skin-friction vector field
has no critical point, the detachment of off-surface



streamlines and the trend of rolling up viewed in a
Poicaré plane. The open separation will occur ear-
lier if thickness ratio decreases, and the area behind
the closed separation line will expand if the lateral
scale increases. The primary vortex formed by the
rolling-up of open separated shear layer will become
stronger for thinner ellipspoids. These change of
flow patterns with body geometry affects the aero-
dynamic loads in a consistent way with the well-
known fact that the open separation-induced vortex

usually produces large nonlinear aerodynamic loads
through the change of pressure. Finally an infer-
ence can be made that open separation might begin
in the region at the apex and form the strongest sep-
arated vortex when the thickness approaches zéro.
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