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Abstract Within a linear formulation (in particu-
lar, potential subsonic or supersonic flows) - using
a boundary element method for the aerodynamics,
a modal approach for the structural dynamics, and
optimal control theory for active control - we intro-
duce a recently developed least-square procedure for
the finite-state approximation of the aerodynamic ma-
trix in order to reduce the aeroservoelastic system to
the stardard state space form x = Ax+ Bu, y = Cx.
The state-space vector x includes certain aerodynamic
states introduced in the modeling process which can-
not be measured in order to control the system. The
advantages of the approach and some issues related
with the use of a reduced-order observer of the state
for the control of the system are discussed. In particu-
lar, if the finite-state aerodynamic model introduced is
stable, the reduced-order observer used for estimating
the state of the system can have a dynamics closely
related to that of the aerodynamic portion of the state-
space vector. Numerical results on assessment of the
model accuracy and on the pratical use of the reduced-
order observer for a 3D system are included.

Introduction

The objective of this paper is to present some applica-
tions of a recently developed finite-state aerodynamic
model. In particular, we show how one may develop
a simple reduced-order observer for the aerodynamic
portion of the state vector under the assumption that
(1) the complete structural dynamics portion of the
state vector may be obtained from the output and (2)

Copyright © 1994 by ICAS and AIAA_ All rights reserved.

the matrix of the aerodynamics portion of the model
(see matrix Ayz, Eq. 23) is stable.

In order to clarify the above issue, in the following
we introduce some basic concepts on aeroservoelas-
tic model in terms of state-space variables and finite-
state aerodynamics. Consider an aeroelastic system
described in terms of the amplitudes, g,(t), of the
natural modes of vibration, ¢,, which are here as-
sumed to be normalized, so as to have the generalized
masses equal one. The corresponding Lagrange equa-
tions of motion, neglecting structural damping and
gravity, are given by

d’q 2

— 4+ Qq = f 1
d tz q qp ( )
where € is the diagonal matrix of the natural frequen-
cies of vibration of the structure, and ¢p = 9o, UZ /2
is the dynamic pressure, whereas the components of

f are the generalized aerodynamic forces associated
with the n** mode, ¢, (n = 1,..., N), as

qun=ﬁ§st-¢nds B

where t is the aerodynamic force per unit area acting
on §.

In the following, we consider the presence of control
surfaces as additive degrees of freedom. For the sake
of simplicity, we consider only one control surface,
corresponding to the state-space variable, q;. This
yields a system with one control variable (single-input
system). The formulation for several control surfaces
(multiple-input system) is closely related.(*?)

2089



In order to take into account also the control-surface
motion, a servolaw is added to the Lagrangean equa-
tions, and Eq. 1 is modified into

d?q N
Mﬁ+Kq:qu+bu (3)
with
q1
I m
M= _J -
q an
m” ms qs
02 n ’
0 .
K .= P O Y
9D fn 0
OT mﬁwzs f& 1

where ms and msw?, are, respectively, the moment of
inertia and the hinge stiffness of the control surface,
whereas m is the vector of the coupling generalized
masses, ¢pfs is the control-surface aerodynamic mo-
ment (linear function of q), and u the applied control
moment).

Here, we assume that the aerodynamic forces de-
pend linearly upon the Lagrangean coordinates ¢, (t);
specifically, in the following we limit ourselves to po-
tential subsonic or supersonic flows (although the ap-
plications do not include supersonic flows). Hence, the
Laplace transform of the generalized force vector can
be expressed as*

i) = B(3-) ) (1
o

where E is the so-called aerodynamic matrix. As well
known and as emphasized in Eq. 4, E is a function
of s and Uy only through the variable p := sf/U,
which is known as the complex reduced frequency.
Note that E(p) may be obtained analytically for some
simple cases (e.g., classic Theodorsen incompressible
2-D aerodynamic theory); otherwise, E(p) is evaluated
numerically, for instance, by lifting-surface, doublet-
lattice, or panel methods. Typically, the algorithm
for the evaluation of E(p) is available only along the
imaginary axis: E(p) is then the analytic continuation
of E(ik), with k = wl/Us (reduced frequency).

Next, consider finite-state aerodynamic modeling, i.e.,
a process whereby the aerodynamic transfer function
is approximated by means of appropriate rational ex-
pressions. Probably, the earliest example of this ap-
proach is the work of Jones(*) who gives a ratio-
nal approximation for the Theodorsen function and
the corresponding time-domain approximation for the
Wagner function. In more recent examples of this
approach(® 7 closely related techniques are used in
order to obtain approximate expressions, either of the

* In this paper the Laplace transform of a time depen-
dent function f(t) is indicated as f(s), where s is the Laplace
variable.

Theodorsen function, or directly of the aerodynamic
matrix.

As a result, the aeroelastic model, Eq. 1, may be
rewritten, in the time domain, as (see Egs. 10 and

10)
x = Ax +Bu
()
with the output y given by {see Eq. 18)
y =Cx (6)

This yields apparent advantages for the aeroelastic
analysis (for instance, the V-g method may be re-
placed by a simple root locus) and for active control
utilization (for instance, in the use of optimal control
techniques). The approach used here is that of Refs.
8 and 9 and is summarized in the next section.**
Next, let us consider some issues which arises with the
application of finite-state aerodynamics to aeroservoe-
lasticity. In order to discuss this issue, let us review
some basic concepts from the theory of active control.
Ify = x (i.e, if C =1, see Eq. 6), then, in order to
accomplish a certain objective (such as, flutter sup-
pression or gust alleviation), one may design (either
by eigenvalue assignment or by optimal-control tech-
niques) a regulator, i.e., a feedback of the type

u=-Kx (7

This is still possible whenever x is measurable (i.e., if
the state vector x may be obtained from the output
vector y, for instance, if C is a nonsingular square
matrix).

However, in our case, this is not true. Indeed, a ba-
sic feature of finite-state aerodynamic modeling is the
introduction of additional state variables. These addi-
tional variables (corresponding to aerodynamic states)
cannot be obtained from the output. Whenever the
state vector is not measurable, a full-state observer
(state estimator) may be used in order to obtain, from
y and u, an estimate, X, of the state variables x.(*?)
Then, in designing a suitable regulator, one may use
the separation principle,(*?) which guarantees that one
may design this regulator as if all the state variables
were available, and then use the estimate % (i.e., the
output of the estimator) as the input to the regulator.
The above issues (i.e., full-state observer) has been
addressed, in connection with aeroservoelastic prob-
lems, by Lu and Huang(l"‘), with applications limited
to 2D problems.

In this paper, we want to take the formulation a step
further, ¢.e., we want to address the problem of the

** The approach of Refs. 8 and 9 is closely related to that
developed independently by Ghiringhelli and Mantegazzal!?:
whereas the basic formulations coincide, the implementations,
in particular the higher-order approach, differ considerably. A
synthesis of the two approach is presented in Ref. 11.
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reduced-order observer. Specifically, in the case under
consideration, one may use a specialized formulation,
under the assumption that all the structural-dynamics
variables, q and q are available for control (indeed,
this is the best one may hope for). For simplicity, we
adopt here this assumption, i.e., that

yi= C {%} = [C1[0]x (®)

where C, is a square nonsingular matrix, whereas the
matrix O eliminates the additional state variables. In
this case, the reduced-order observer gives an estimate
only of the variables that are not accessible (Ref. 12,
pp. 276-279; for a more general case, t.e., that in
which C is a full-rank matrix with less rows than
columns, see Ref. 12, pp. 284-286).

In particular, in this paper we will review the finite-
state aerodynamic model of Refs. 8 and 9, and of the
theory of the reduced-order observer.(*?) In particular,
we apply the formulation to a specific case and show
that, if the finite-state aerodynamic model is stable,
the design of the reduced-order observer of this state
may be naturally given in terms of the finite-state
aerodynamic model (Ref. 12, p. 227). Mastroddi and
Morino are responsible for the theoretical formulation;
Mastroddi, De Troia and Pecora for the numerical re-
sults.

Finite-State Aerodynamic Model

The basic model used and proposed in Morino et al
(8) consists of approximating the aerodynamic matrix

E(p) as
E(p) ~ E(p)
= p’Eq + pE; + Eo + (pI + G")_1 Fp (9)
where G and F are full square matrices which are

independent of p. The aeroelastic system resulting
from Egs. 1, 4, and 9 is given by, in the time domain,

2

2 4+ 2%q = ¢p (E2d + E1q + Eoq + 1)
i+ Gr=Fq (10)

with r(0) = 0 and where the overdot denotes differen-
tiation with respect to Uxt/f. The matrices By, G,
and F are obtained by a least-square approach which
consists of setting

g2 = f ” w(k) Tr [Z*(ik)Z(ik)] dk = min  (11)
o}

where k = Smag(p) and

Z(p) := (s + G)[p°E; + pE; + Eo — E(p)]+ pF (12)

whereas w(k) is a suitable weight function in the fre-
quency range of interest (see Morino et al (®) for de-
tails). In addition, Tr denotes the trace of the matrix,
and Z* denotes the Hermitean adjunct of Z (complex
conjugate of the transpose of Z). Note that from Eq.
9, we have

E(p)| =Eo (13)
p=0

Accordingly, in the following Eq is considered as pre-

scribed from the above equation (and not available

for the minimization process). Thus, Eq. 12 may be

rewritten as

Z(p) = p>N3 + p’Ny + pN; + GEq
— (pI+ G)E(p) (14)

where N3 = Ey, N3 = E1+GE;y, Ny = E¢+GE+F.
The least-square minimization in Eq. 11 is performed
with respect to G, N1, Ny, and N3. Note that the er-
ror function in Eq. 11 is a quadratic function of the el-
ements of these matrices. Therefore, the least-square
process yields a system of linear algebraic equation.
Once G and Ny (k = 1,2, 3) have been obtained, the
above expressions for N3, N3, N3, may be used se-
quentially to yield Ey, Eq, and F, respectively (for
higher-order formulations, see Refs. 8-11).

Formulation of a Reduced-Order Observer

Combining the Eqgs. 3, 4, and 9, one obtains, in the
time domain,

x=Ax+ bu (15)
where
9 0
X = __(_1_ b:=<{ by (16)
r 0
0 I 0
A :=| P(gpEy—~K) | ¢pPE, | P (17
0 O -G

where P := (U2 M/£2 — qpE3)~1, by := Pb, whereas
E; (i=0,1,2), F, and G are the (N +1) x (N +1)
aerodynamic matrices (see Eq. 10) which take into ac-
count also the degree of freedom relative to the control
surface.

The standard description of the aeroservoelastic sys-
tem is completed by the output relation, Eq. 6. In
the following we assume that the output vector y is
composed by the normal displacements é; and veloci-
ties vg in N + 1 suitable points of the wing where the
sensors are locked:

y = {61,,,.,6N+1,’01,‘..,’UN+1}T (18)

2091



Then, the output matrix is defined as

C= [‘(I)’ . g] = [C1]0] (19)
where @ := ¢, ; - ny is the square modal matrix the
columns of which are the normal component of the
N + 1 modes used in the analysis (evaluated in the
N + 1 sensor locations). Here we assume that the
location of the sensors is such as the matrix ® is non-
singular. Then, in this special case, it is possible to
group the state variables into two sets:(*) those that
can be measured directly by the output vector y,

T
—) 4 -1
= {1} =cry (0)
and those that do not,
X9 =T (21)

Accordingly, Eqs. 16, 20, and 21, Eqs. 15 and 6 may
be written as

X1 = A11X; + A1axo + bru (22)
X2 = Ag1X; + Agxy + bau (23)
y = Cixg (24)

with obvious definitions of all the matrices (in our
case by = 0, see Eq. 10). If we were to use the
full-state observer, we would obtain the estimate % =
{X1|%2}" of the state vector x, from a system (full-
state observer) given by (Ref. 12, p. 277)

X1 = Anxy + ApXe +biu+ Qi(y — Ci1x1) (25)
X2 = A21X1 + AgaXs + bou + Qa(y — C1x1) (26)

Q:
Q>

in order to have stable eigenvalues for the matrix
A — QC. In contrast, in the reduced-order observer
formulation,(*?) we choose %; = x; = C;ly; then, Eq.
25 may be dropped, whereas Eq. 26 reduces to

where, the matrix Q =

] should be designed

X2 = A%z + A CTly + byu (27)

The design of the controller, either by eigenvalues as-
signment or by optimal control, yields (see Eq. 7; note
that, in the present case of single input, K is a row
matrix denoted by k™)

L7 - SECD

The resulting system is given by Eqgs. 15, 27, and 28.
The dynamics of the system is clearer if one introduces
the observer error e; := x3 — X3; then Eqgs. 15, 27,
and 28 are replaced by(*?

x = (A —bkT)x + bkle, (29)
é2 = Azzez (30)

which describe the closed-loop dynamics. From these
equations we see that the dynamics of the error e;
(which goes to zero if Ay = —G is stable) is indepen-
dent of x and produces a driving terms to the ideally-
controlled system (u = —kTx instead of u = —kT%),
i.e., the system in absence of observer, as it would
be obtained if the state vector is measurable). Con-
sistently, as the characteristic equation of the overall
system is

[pI — (A —bk™)| |pI— Ags| =0 (31)

In the case of stable aerodynamics this implies that
the global closed loop system (observer plus regula-
tor) has eigenvalues which are those of the ideally con-
trolled closed-loop system plus those of the observer
(i.e., Azz = --G).

Note that the system matrix A and, specifically, the
submatrix Agg, is a matrix over which the designer
has no control: then, if there are no assurance on the
stability A s, a more general system for the recostruc-
tion of X4 is needed for which the reader is addressed
in Ref. 12. However, in the case of sufficiently sta-
ble finite state aerodynamic model, the design of the
reduced-order observer is clearly unnecessary as nat-
urally given by Eq. 27 (for the case in which Ay is
not sufficiently stable, see Ref. 12, pp. 278-279).

Numerical Results

In this Section some applications are presented. First,
some aerodynamic and aeroelastic results are shown
in order to show the high accuracy of the system. In-
deed, the fundamental premise of the use of the esti-
mator is that the model of the plant is sufficiently ac-
curate. Then, we present the design of aeroservoelas-
tic estimator-compensator for flutter suppression: in
these applications the finite-state aerodynamic model
is stable (¢.e., the eigenvalues of the matrix Asy = —G
have negative real part).

All the aerodynamic and aeroelastic results shown are
relative to the test case of the wind-tunnel-test wing-
tail provided by ALENIA (see Fig. 1 for the geome-
try) at Moo = 0 (however the formulation is identically
applicable to potential subsonic and supersonic flows).
The terms of the 4x4 aerodynamic matrix of the above
test case are shown in Figs. 2 and 3, Ref. 8: for all
the 16 terms of the matrix, the agreement between the
finite-state approximation and our aerodynamic data
(markers) obtained by the unsteady subsonic panel
method introduced by Morino,(**) is highly satisfac-
tory (for discussion of other issues such as influence
of the sampled data, higher-order models convergence
and comparisons with other finite-state modeling, the
reader is referred to Morino et al(®)).

Next, consider the aeroelastic applications. Figure 4
depicts the root locus of the three-mode system (with-
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out the control): the experimental results obtained in
the wind tunnel of the D.N.W. laboratory indicate
that flutter occurred at Up = 103 m/s. With the
present analysis the flutter speed has been evaluated
to be Ur = 98 m/s. Additional aeroelastic valida-
tions of the aerodynamic model based on the above
finite-state aerodynamic are presented in Refs. 8-11,
for 2D and 3D cases compared with experimental and
numerical results. For instance, for the experimental
case studied by Dogget, Rainey, and Morgan(*®) (who,
for My, = 913, find Up = UFAbwz =4.94 and kp =
wp2b/Us = .122), we obtain Up := Up/bwy = 5.19
and kp := wp2b/Uy = .136, in excellent agreement
with the experimental results, better that those of Gu-
ruswamy and Goorjian(? (Up := Up/bw; = 8.80,
kr = wp2b/Us = .045), obtained using a transonic
finite-difference code.

Next, consider aeroservoelastic results. The configu-
ration test used is the same as that discussed above,
for Figs. 1-4. '

The results are obtained using the classical linear-
quadratic optimal control theory, Frieland(*? and
Bryson(**) which is here summarized. Considering for
the system given by Eq. 15, the linear control law
given by Eq. 28 minimizes the performance index

1 fpir _ _ _
J = —/ (x"Qx + u™Ru) dt + ExTPx (32)
2 0 2 t=t;

where i 1s the final time, Q and P are positive semi-
definite, and R is a positive definite. The optimal
control matrix Kop¢ is given by

Kopt - *R—IBTS' (33)

where S is the definite positive solution of the station-
ary Riccati equation

SBR™'B'S—SA-A"S—-Q =0 (34)

For the above applications Qij = 100 é;; and Ry =
100 where §;; is the dirac delta function and with the
optimal control law evaluated at U = 66 m/s (ma-
trices A and B are function of the flight speed U,,).
Figure 5 depicts the root locus of the controlled system
with reduced-order observer. In this case the flutter
speed has been increased to Up = 123 m/s; note that
the eigenvalues of Ay; (A = —0.2210, Ay = —0.5074,
Aza = —1.1313 £ 40.56894) are the only contribu-
tion to the global stability given by the observer (see
Eq. 31). They are not functions of Uy, and there-
fore they do not move in the root locus (crosses).
In Figures 6-9 the time histories (initial conditions
xo = {0.15,0,0,0,0,0,0,0,0,0,0,0}") of the first four
generalized degrees of freedom in an uncontrolled flut-
ter condition (U = 100m/s) with control off and then
on (when ¢; > 0.2). Two curves are presented. In
the solid curve we examine the ideally controlled (no

observer) case, in which the control law is applied as
if the whole state space vector were known. The pres-
ence of the reduced-order observer is considered for
the dashed curves which are obtained by assuming
to have an observation error ez, = {1,1,1,1}" at the
switch-on time (see Egs. 29 and 30). This value of e,
is intentionally high in order to emphasize how small
its influence is. The reason for difference is apparent
if we examine the root locus (Fig. 5): the eigenval-
ues of Agy have small real part and therefore they are
not sufficiently damped; in addition their imaginary
part is small and this explains the lack of oscillatory
behavior. Indeeed, the transient of es are shown in
Fig. 10. As mentioned above, in this case, if a higher
damping is desired one should use the more general
theory for reduced-order observer, as presented for in-
stance in Ref 12, pp. 278-279; this aspect is now under
investigation.
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Figure 1: Geometry and aerodynamic mesh of the
wind-tunnel-test wing-tail considered for the anal-

ysis: geometical and structural data provided by
ALENIA.
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Figure 3: Imaginary part vs reduced frequency of
the 4 x 4 (4 modes assumed) aerodynamic matrix
for the wind-tunnel-test wing-tail provided by ALE-
NIA.
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Figure 2: Real part vs reduced frequency of the
4 x 4 aecrodynamic matrix (4 modes assumed) for the
wind-tunnel-test wing-tail provided by ALENIA.
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Figure 4: Root locus (60m/s < U < 145m/s) for the
stability analysis of the wind-tunnel-test wing-tail
(Mo = 0) without control (Ur = 98m/s).
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Figure 5: Root locus (80m/s < Ux < 180m/s)
for the stability analysis of the wind-tunnel-test
wing-tail (M = 0) with optimal control law evalu-
ated at U = 66m/s (Up = 123m/s).
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Figure 7: Time history of the second Lagrangean
variable for the case of Fig. 1 in flutter condition:
optimal control off and then on at ¢t = 2.8.
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Figure 6: Time history of the first Lagrangean vari-
able for the case of Fig. 1 in flutter condition: opti-
mal control off and then on at ¢t = 2.8.
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Figure 8: Time history of the third Lagrangean vari-
able for the case of Fig. 1 in flutter condition: opti-
mal control off and then on at £ = 2.8.
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variable for the case of Fig. 1 in flutter condition:
optimal control off and then on at t = 2.8.
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