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Abstract

The aircraft analyzed in this paper is driven by a
pair of hydraulically powered servo actuators. One
actuator is normally in an active mode and the other is
normally in a passive stand-by mode. In a failure case,
in which the active mode actuator failed, the stand-by
actuator must provide sufficient damping in order that
the airplane can still maintain flutter free condition. For
this purpose, a method for aero-servo-elastic analysis of
an airplane with a stand-by actuator using state space
approach has been developed. The actuator used in this
analysis was assumed to exhibit linear transfer function
and viscous damping behaviour. The eigen-mode, eigen-
frequencies and generalized mass were calculated with
MSC/NASTRAN software package. The generalized
unsteady aerodynamic forces were calculated using
Doublet Lattice Method. All of these data then will be
used to set-up the equations of motion of the airplane
with stand-by actuator. This set of equations will be
formulated as an eigenvalue problem in a state space
form using MATLAB package software program. The
generalized aerodynamic forces were expressed in
Laplace domain using commonly used Pade
approximation technique. Flutter analysis was carried
out for several combination of altitudes and mass
configurations. The results of this analysis is the
impedance curve boundary that will be used as a design
criteria of the actuator in the stand-by mode. Some of
the results were also presented as examples.

Notation
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(8] Generalized viscous damping
n Identity matrix
19} Generalized stiffness
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Laplace operator

Generalized mass

Dynamic pressure

Generalized coordinate in the s domain
Generalized coordinate in the time domain
Generalized velocity in the time domain

State due to Pade approximation in the time
domain

Generalizedaerodynamicforce coefficientmatrix
Laplace operator

Approximation coefficient

Real part of generalized aerodynamic force for

the k' reduced frequency
Approximation coefficient

Approximation coefficient in matrix form
Vector of unknown coefficient a;, a,, a; and a,
Reference semi chord

Approximation coefficient

Imaginary part of term of the generalized
aerodynamic force matrix for the reduced
frequency k.

Numerator coefficient

Matrix of numerator coefficients

Generalized acrodynamic force for the i

integration mode and j pressure mode at the
specific reduced frequency k.

Denominator coefficient

Matrix of denominator coefficient

Free stream velocity

Circular frequency

Plant matrix of combined system

Plant matrix of final moment equation
Coefficicnt matrix of final moment cquation
Time dependent actuator force on control
surface arm.

Time dependent actuator generalized force
Control surface arm distance

Numerator coefficient (stiffness)

Time dependent actuator moment on control
surface arm.

State vector of equations of motion with
airplane, control surface forces, and
acrodynamic forces.



Xy, Xy, X Displacement of airplane at actuator attachment
in the direction of actuator displacement.

A8 Control surface angle with respect to main
aerodynamic surface.

®, Airplane modal angle (about hinge line) at
actuator attachment.

$, Control surface modal angle (about hinge line)
at actuator attachment.

Ad Control surface modal angle relative to airplane
modal angle (¢-¢,)

1 Absolute value of the argument.

[ Viscous damping constant

F Frequency domain force in the idealized system
Time domain distance spring has compresses

Ax Time domain distance idealized system has
compressed

X Frequency domain . distance spring has
compressed

aAX Frequency domain distance idealized system has
compressed

I. Introduction

PT. IPTN (Indonesian Aircraft Industry) is
developing a new aircraft designated the N-250. It has
a high wing and T-tail configuration, will accomodate
64 passengers at 32 inches seat pitch or 68 passenger at
30 inches seat pitch, and powered by two six bladed
Dowty Rotol Propellers where each propeller is driven
by an Allison GMA 2100C Engine. This airplane will
have an Electrically Controlled Hydraulically Powered
flight control system where each control surface
(Rudder, Elevators and Ailerons) is equipped with two
actuators. The use of electrically controlled and
hydraulically powered flight control systems in the
aircraft requires particular attention in its aeroelastic
behaviour.

An important aspect in the aeroelastic analysis of
N-250 Airplane, in particular to meet certification
requirements in aeroelasticity, addresses failure cases,
There are several failure cases in the flight control
system that must be taken into account in order to meet
the regulation stipulated in FAR 25.629 (Amendment
25-77 dated 29 July 1992) ; these are:

a.  Any single failure, or malfunction, or combinations
thereof, in the flight control system, and any single
failure in any flutter damper system.

b. Any single failure of the stability augmentation
system, or any other automatic or power operated
system.

¢. Control surfaces, including tabs, should be
investigated for nominal conditions and for failure
modes that include single structural failures (such
as actuator disconnects, hinge failures, or in the

case of aerodynamic balance panels, failed seals),
single and dual hydraulic system failures and any
other combination of failure not shown to be
extremely improbable. Where other structural
components contribute to the flutter stability of the
system, failures of those components should be
considered for possible adverse effects.

The flight control system is considered to be operating
in one of two modes, normal flight or failure condition.

1) In normal flight, one actuator has Power On and
the other one is in standby. In standby a bypass
valve is actuated allowing fluid to flow to each side
of the actuator piston through an orifice sized to
give damping required to prevent flutter, in case
the Power On actuator fails. The schematic of the
system is given in Figure 1. Therefore in the Finite
Element Model, under normal flight conditions
each control surface has one actuator which is
represented as stiffness only and another one which
is represented as a stiffness and damper in series.
The stiffness is represented by the stiffness of the
back up structure and the actuator in series. The
actuator sustem can be modeled as depicted in
Figure 2.
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Figure 1. Schematic of the actuator system

Figure 2.

F damp = Ap . P = Cd (X3 - X2)"
n = 1.0 lincar damper
n = 2.0 wvelocity square damper

Ks = Back up (Reaction Link) Structure Stiffness

Kb = Actuator Stiffness including hydraulic Bulk Modulus
Ap = Piston Area

Mb = Mass of Actuator Body

Mp = Mass of Piston

Cd = Damper Coefficient
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2) In failure condition, The Federal Aviation
Regulation (FAR) of USA requires the flight
control surfaces to be flutter free with adequate
damping up to the Design Dive Speed (Vd) for
any single failure, two hydraulic failures or a
combined hydraulic and structural failure.

This paper will describe the modeling idealization of an
airplane in case the active actuator fails, it means one
hydraulic and one structural failure. In this condition the
stand-by actuator will take part and is represented in the
FE Model by stiffness and damping in series. The
natural frequencies, mode shapes as well as the
generalized unsteady aerodynamics were calculated by
MSC/NASTRAN package, the results then transfered to
the MATLAB software. The equation of motion of the
airplane without stand-by actuator is setup in S-domain.
In order to do that, the generalized unsteady
aerodynamics must be transformed in to Laplace domain
using commonly used Pade approximation technique.
These were done in the next first two chapters.

The actuator transfer function is derived as
presented in Chapter IV. The assumption made is that
the actuator can be represented as spring and damper in
series. The same procedure is followed in Chapter V to
setup the equation of motion of the aircraft with stand-
by actuator.

The flutter analysis is performed for several "a"
values, see equation (30) in Chapter IV. With those
analysis, the minimum damping coefficient required, C,
can be obtained from the most critical V-g diagram.

IT, A State Space Form For An Aeroelastic
Airplane

In the following chapter will derive the set of
equations that represent the airplane with unsteady
aerodynamics written in a state space or first order
form.

Modern control theory and state space methods
have been convenient and hence popular inobtaining the
solution of dynamic problems. This seems to be the case
because of increased ability of quality sofwares (such as
MATLAB, MATRIXx, MSC/NASTRAN, STICM,
EASYS5, MATOP, DIGICON, and a lot more) that will
solve these first order matrix forms. These softwares
were mainly developed to solve control problems but the
numerical approach to the solution of the mathematics
is very robust and will work on a wide range of
problems. MATLAB is such a matrix algebra solver
computer program and has been considered to be very
convenient.

Unsteady aerodynamic computer codes such as the
doublet lattice codes in MSC/NASTRAN computes the

aerodynamics in the reduced frequency domain. This is
ideally suited for a k type flutter solution but does not
lend itself to a time domain or s domain system of
equations. Recently, an approximation using a form of
Pade approximation has become popular in the
aeroelastic and aeroservoelastic analyses. With the
unsteady aerodynamics written in this form a state space
formulation is possible. In this state space form, s
domain, time domain, and z domain transformations are
not only possible but simple. At this point the airplane
can be treated as any other control block and combined
with other control blocks using common block diagram
algebra.

The equations of motion of an airplane with
unsteady aerodynamics can be expressed as a set of
generalized coordinates in the s domain. This expression
is

s*[Mlg+s[Clq +[Klq

where the {F} are the other forces (internal or external)
acting on the airplane and may or may not be needed in
more extensive equation development. These forces
could be gust forces for a gust loads analysis, control
surface forces caused by inputs of the flight control
system, landing gear forces for taxi analysis, discrete
velocity square damping terms, or many others.

= 3[Qlq+1A W

The generalized aerodynamic forces of equation (1)
can be approximated from equation (22). This is an
approximation and some caution is needed for its use.
With this approximation the aircraft equations of motion
become:

s2[Mig}+s[Cligt +[R]ig} =
q[Ay) {g} +sq[A}] g +s2§[A2](q)
+q[NJ[DI ™ g} +s [N, [D] " + {7 2
The next task is to put equation (1) into a time domain.

This can be accomplished by a series of inverse Laplace
transforms. Let

{@,) = L)) (32)
{0} = L7'(s{g)) (3b)
(@) = LM (s*g}) (39
{a5) = LMD {g)) ‘ (3d)
(g} = L7(IsD1" (g)) (3¢)
(g = L (s> 01 {a)) (39

(7 = L) &

when these Laplace transformations are substituted into
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the equations
[m {qz} + [é] {q;} * [Ie] {qx} =
q[A}{g,} + a4, ){g;) +d14,1{¢;)

+q[Ngl (as) + [N, (g} + {7} Q)

and if similar terms are collected and the highest order
derivative is put on the left hand side, the equations of
motion become

(&2} = [A){a1} *[aa){a} +[as){a5} +[Ad) {2}

+ (]~ () ®)
[4) = -((M]- q[A )‘( ‘IAO)
[2) = -(#1)-aja,))" (I¢]-apa)))
[2] = - a((¥]-g[ay])" [V
(4] = - a((¥)-g[a,))" V]

Equation (5) is in the desired first order form but there
are four unknowns. Three other differential equations
must be obtained. These are arrived at by identity
relationships. The first two of these identity relation-
ships are easily obtained from equations (3) which
define the Laplace transformations and are given by

{41} = U] {43} (6a)
{45} = 11] {44} ©b)
The third identity relationship is less straight forward

and involves several steps. These steps are :

1) A simple identity relationships is established in the
s domain

{a} =11 {g)
2) The right side is expanded by [I] = [D] [D}!
{g} = [D) (D] {q)
3) The [D] (not the one that is inverted) is replaced by
the matrix expression s [I] + s [R{] + [Rg]
{q) = (s*M+sR)+[R}) ) (DI {g) ™

4) The Laplace relationships of equations (3) are used
to transform equation (7) into the time domain,

(1) = U140} *[Re @) “[Re) )

5) Finally the equation is solved for (q) for the desired
form

{da} = ({41} -[Ro){95) ~[Re}{4a) @®)

Equations (5), (6a), (6b), and (8) are collected into a
single first order simultaneous differential form

{d,) o[l o o 0

@) | _[a] @] B @] (1-@,)” B o
0

@yl |o o o [n
gy LT 0 R -R 0

In a state space form this can be expressed as
{x} = M1 + B1{Y)

where [A] is called the plant matrix and has all the
imformation that is needed to compute the stability of
the linear system.

(10

It should be noted that the approximation of the
unsteady aerodynamics is nothing more than an
approximation. The engineers needs to understand this
problem, asumptions and limitation of the tools being
used in the analysis.

III. A Simplé Approximation For The Unsteady

Aerodynamics In The S Domain

The generalized aerodynamic force coefficients are
computed in the k (reduced frequency) domain and
cannot be directly transformed in to the s domain. This
approach is a variation of a technique that is commonly
known as Pade approximation. This technique takes
advantage of

k=2 1)
v

Many variations of this fit is possible. The unsteady
aerodynamic force matrices as a function of k can be
examined one term at a time and the fit accomplished in
that manner. The coefficients of the fit can then be
assembled in a matrix form. Let

AR) = R(Q;(0) (122)

B() = S$(Q;(%) (12b)

where i is the integration mode and j is the pressure
mode.

Construction of the matrices for different numbers
or terms is straight forward once the basic approach is
understood. This is in the form of the approximation for
the fit is made

AR) + iB(K) = a, + (K)a, + (ik)’a,
@ik)a, . (iK)a,
@) +b,  (#)+b, (13)

where the a’s and b's of equation (13) are not known.
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If the b’s are assigned a value (say b; = 0.5 and b, =
0.5),then a solution of the a’s is possible (and described
below). After the solution is obtained, graphical
techniques can be employed to check if the fit was
good. If the fit is not good,the b’s can be adjusted until
a good fit is obtained.

Equation (13) is separated into real and imaginary parts
as

) ka, k*a,
AKk) = a, - k*a, + 5 > (14a)
bZ+k:  BI+k?
b,k bk
B = ka, + 20, DM (14b)
bl+k? Bl +k?

Note that as k approaches zero the value of the function
becomes

AQ) =a, ; BO)=0

The low reduced frequency response is often very
important for most aeroservoelastic analyses. Thus, the
a term is often assigned to the real part of generalized
aerodynamic force evaluated at the lowest (very nearly
zero) reduced frequency.

a, = A(ky) (15)

The imaginary part of the generalized aerodynamic
force is zero at k=0 and very small for small values of
k. Variations of this assigment of the a, term are
possible and well within the range of acceptable results.

With the a, term assigned, equation (14a) is put
into a slightly different form with the unknown a’s on
the right hand side of the equation.

2 2
ka, . ka,

AK) - a, = k*a, +
T Pl pRest

(16)

The generalized aerodynamic force can be found for a
range of reduced frequencies that bound the problem.
As with any fit method it is important that the range of
reduced frequencies be chosen such that the analysis
does not have to extrapolate the data. This curve fitting
procedures does not extrapolate very well. On the same
note it is also not reasonable to include too large a range
of reduced frequencies because 1) the unsteady
aerodynamic theory does not hold well for high reduced
frequencies and 2) the fit approach puts emphasis on the
larger values of the generalized aerodynamic force.
Thus it is important that only the needed range of
reduced frequencies be chosen for the problem.

The reduced frequency distribution should also be
selected with some care. One rule of thumb that the
author likes to use is that the delta k should double with
each increase in k. Which ever method that is chosen

the distribution of reduced frequencies MUST be such
that the character of the curve is captured and there is
no doubt of the shape of this smooth well behaved
curve. Graphic methods can be employed to assure this
requirement in the easily stages of the unsteady
aerodynamic development.

Equations (14b) and (16) are evaluated at several
reduced frequencies (the same that were used to build
the generalized aerodynamic forces) and can be put into
the following form:

0 -k Ho_H

bi+kl by+k;

: & K

Ak -a, ¢k baz "’kzz b42 "’kzz

el | B8
A)-a, v gt | [

: e e | " an

B | Lo Bk bk |
B | el el | s

B(.kg) - bk, &

| Gt bk

b o b A

B Bk

where the only unknowns are the coefficients a,, a,, a,
and a,. This equation is in the form of an over
determined system of equations. In a short notation this
is often written as

{Y} = [H{4) (18)

and solved in a least squares sense (also call a
pseudo-inverse method) for the unknown

(4) = ((HI"tH])" (H)T (1) {19
The approximation in equation (13) is in a form that is
easily used to solve the coefficients but needs some
changes to arrive at the final form that is desired. The
relationship of ik and s from equation (11) in equation
(13) to obtain

, b b\
A(s) + iB(s) = a, + (;)sal + (—v-) sa, +

o (e
( éwbs ( %‘jﬁb‘ (20)

The common denominator is obtained for the lag terms
making a second order numerator and a second order
denominator. This second order form is reduced (by
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polynomial division) to the normalized (coefficient of
the highest denominator term is one) form

. b b 2
A(s) + iB(s) =a, +a, + a, + (_)Sax + (_) szaz
v v

2
() bad (3] btute,a)

s? u(%) (by+b) +(%)2b3b‘

which can be written in a simplified notation
N, +N,
A(s) + IB(s) = Ao + SAI + S2A2 + ._f_‘:_.f'_ 21
s2+sR +R,

(20a)

+

where

Ay =a, +a, + a,

h S
s
i}
——
< o
SN
)

b\?
A, ==
v
N, = —(; (byas+bya,)

R-1 = (X (by+b,)

2
Ry = (-IE) byb,

Equation (21) is in scalar form, however, the
generalized aerodynamic forces are normally used in a
matrix form. The elements of the Aj, A;, A,, N; and
N; matrices (i integration mode and j pressure mode)
are made up of the corresponding term of the Ay, A,
Ay, Np, and N, scalars which were obtained in the
corresponding unsteady aerodynamic fit of the (i)
integration mode and (j) pressure mode. The Ry and R,
matrices are diagonal with the scalars values R, and R,
respectively. The matrix equivalent form of equation
21) is

{Q] = [Ao] * S[Al] + Sz[Az] + [No][D].x + S{Nl][D]-‘

(22)
where

[D] = s*(1] + s[R] + [R] (23)

Equation (22) is in the final desired form.

IV. Formulation Of A Viscous Damper
In Series With A Spring

The purpose of this chapter is to derive the
equations of a viscous damper in series with a spring.
The force in a spring is related to the spring constant,
and the displacement across the spring. The spring force
is

f = KGy-3) @4
The force in a viscous damper is related to the damping

coefficient, C, and the velocity across the damper. The
damper force is

f = Cl,-%,) 25
Since this is a series connection, the forces are the same

for each of the components. The forces in equations
(24) and (25) are the same and can be set equal

K@,-x) = C(%;-%,) (26)
To arrive at the desired form several steps are needed.
Equation (26) can be simplified by substituting

X = Xy-X ;o Ax = xy-x,

This simplified equation becomes

Kx = C(Ax-1%) @7

A Laplace transformation of the variables in equation

(27) can put this equation into a frequency domain. The
pertinent transformations are :

X = L(x)
sX = L(®
AX = L(Ax)

sSAX = L(AX)

F = L({f)

With the Laplace Transformations, equ.(27) becomes
KX = sC(AX-X) (28)
Equations (28) can be solved for X

X = écK AX (29)
S +

or

X =" Ax (30)
S+a

where
K
Q = =

c

Finally, the force in the system is the stiffness times the
displacement across the spring

F= Sf AX @1
sS+a

Equation (31) is in the desired form.
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V. Linear State Space Approach To Airplane
With A Stand By Actuator

(Viscous Damper and Spring in Series)

Next we will derive the equations of motion of the
aircraft equipped with a standby linearized actuator.
These equations are put in a suitable form for the
determination of stability. This set of equations will be
formulated as an eigenvalue problem using state space
methods so that the existing software, MATLAB, can be
used for the solution and stability determination.

The need for a model of an actuator in the standby
mode comes from the way the flight control are
integrated into the airplane. The actuator can be "on",
"standby"”, or (failed) "disconnected”. In the "on"
condition the actuator is modeled with stiffness and
damping in series. In the "disconnect" condition the
actuator is in a "free" condition with no stiffness or
damping (both structural and hydraulic failures).

Previous section formulates the airplane in a state
space form with a generalized force as the input. In this
section the equations of the actuator force are written
and combined with the airplane equations. The actuator
moment (output) will be written in terms of the aileron
rotation (input). The airplane aileron response (output)
will be written in terms of actuator moments (input).
These two blocks will be combined into a single system
of equations from which the stability will be seen from
the eigensolution.

The actuator in the standby mode looks like a
velocity squared damper in series with a linear spring.
The model for this formulation of the actuator was
selected as simply a mathematical curve, because it was
desired to have an impedance curve boundary to be used
as design criteria of the actuator in the standby mode.
The curve selected as the mathematical model of the
actuator is

f = __Ié?_ Ax (32)

Though less important, this curve does have some
basis in a physical system. This physical system is a
viscous damper in series with a spring which is not like
the actual actuator. In the next section we will derive
the impedance of a viscous damper in series with a
spring in the same form as equation (32).

The actuator force acts over an arm (which is a
distance to the hinge line) to create a moment on the
control surface. This actuator moment is

m = hf (33)
A similar relationship exists that relates the actuator

displacement and the control surface relative angle (see
equation (39) below)

Ax = hA® B34

A substitution of equations (33) and (34) into (32) gives
a relationship of the moment and the control surface
relative angle which is

2
o BKs 4o 35)
s+a

Transforming to the time domain this can be expressed
as a linear first order differential equation

m + am = h2KA® (36)
Solving for the highest order differential
m = -am + h2KAS

In a state space form where the input is the relative
angular velocity and the output is the generalized
moment, equation (37) becomes

(37

m=A,m+ B, A8 (38a)
m=C.m + D, Ab (38b)
where

A, = -a

B, = h’K

C, =1

D, =

The relative angular velocity, A8, can be made as the
angle on the wing side of the actuator and angle at the
control surface side.

Ab =6_ -8, (39)
Since the mode shapes and generalized velocity is

available these angles can be computed and the
expression becomes

86 = () - 0] () “0)
or for shorter notation
A8 = [A9) {g,) 41

The airplane was put into a first order differential form
in equation (9). This form is
{4} o m o o]ln 0
{42} . 4] [4) [4) 4] |a, . ([}:!]-{AZ])" @
{43} 0 0 0 [1||q 0
@r] L1 o - -wil g 0
42)

The generalized force can be expressed in terms of the
actuator moment as

{7} = |6,)m (43)
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Combining equations (38a),(38b), (39),(41), and (43),

ml [-a 0 h%kja¢] 0 o |[m
@y o o [ 0o o |}
e BB e e
gl o o o o |l

\ (44)

i,

)

g 1° 1 0 R} -R]| g}
where

() = (M-[4))" |ouf
or in a short notation

(X} = [Al{x) (45)
The eigenvalues can be obtained in the standard form
[[A1-A[7] = 0 (46)

These eigenvalues of the A matrix look like the roots of
the characteristic equation. For the complex conjugate
(oscillatory) roots

{ = ROYIA] “7
o= [A] (47b)

Plots of the velocity vs damping and velocity vs
frequency and/or root locus give an understanding of the
stability boundary and stability characteristics.

Results and Discussions

Using the equations developed in preceding
sections, computations have been performed for all the
failure cases. It should be noted, however, that in the
present paper, the method has been developed for the
most critical case 3.

MSC/NASTRAN software package has been
utilized to calculate the generalized mass M, mode
shapes, natural frequencies and the generalized unsteady
aerodynamics (using doublet lattice scheme). For the
calculation of flutter solution using p-method, MATLAB
software package has been utilized. Solutions of flutter
equation using both. MSC/NASTRAN PK and
MATLAB p-methods, are satisfactorily close [,

Some of the results, indicating the flutter solution in

frequency velocity and damping velocity diagrams, are
exhibited in Figures 3 to 8, for various values of
stiffness to viscous damping ratio a. The results show
that all cases being considered meet the flutter free
envelope requirements, i.e. the flutter velocity is larger
than V,, for damping ratio of 0.03 %.

Concluding Remarks

A method for aero-servo-elastic analysis of an
airplane with a stand-by actuator using state space
approach has been developed. For the particular aircraft
considered, one actuator is normally in an active mode
and the other is normally in a passive stand-by mode. In
a failure case, in which the active mode actuator failed,
the stand-by actuator must provide sufficient damping in
order that the airplane can still maintain flutter free
condition. The actuator used in this analysis was .
assumed to exhibit linear transfer fuction and viscous
damping behaviour, The eigen-mode, eigen-frequencies
and generalized mass were calculated with V-g method
available in standard software packages. The calculation
of flutter solution is performed using p-method. The
procedure has been utilized in the design to meet
certification requirements. The computational results
show that flutter free requirements up to V, can be met
in all failure cases, for damping ratio of 0.03%, and
for various values of stiffness to viscous damping ratio.
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Figure 3. Velocity - Damping Diagram for a = 75 (MATLAB)
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Figure 4. Velocity - Frequency Diagram for a = 75 (MATLAB)
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