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Abstract

A system of automatic stabilization for motion
parameters of the remotely-piloted vehicles based
on an optimal control algorithm is discussed here.
An optimal, in terms of square performance
criteria, solution could be completed using
dynamic programming method by solving of
matrix  algebraic  Riccati  Equation. The
asymptotical stability of the control loop is
characteristic of this method. The Riccati
Equation is solved numerically using standard
mathematical methods on the computer. The
algorithm gains could be regulated to minimize the
weight of the parameters, which could not be
measured, in the control law. The described
method could be used to create a control
algorithms for the attitude and trajectory
stabilizations of the remotely-piloted vehicles in
longitudinal and lateral fast and slow motions

Introduction
Control and monitoring systems for the
remotely-piloted vehicles have received

considerable attention in recent years as a possible
solution to the problem of minimizing the
payment for objective operations without any lost
of efficiency. Technology apart, the way of
improving tracking and control algorithms makes
a major contribution to the solving of the problem
and has already been rather considered (I and
also by the author of this paper (5.

One more system of automatic stabilization for
motion parameters of the remotely-piloted vehicles
based on an optimal control algorithm is discussed
here. The composition and the quantity of
measuring sensors on board the vehicle could be
different. It is necessary to provide a satisfactory
characteristics of the transition processes in the
loops of control and stability of the whole system
irrespective of the dynamic model complication in
longitudinal and lateral fast and slow motions of
the vehicle.

The flight regime (horizontal flight, lift, descent
etc.) change time is rather more than the transition
time in the loops of control system under
consideration, so the flight dynamic characteristics
of the vehicle change insignificantly and the
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associated equation coefficients could be taken
constant for the flight regime. Consequently, flight
dynamics could be described by the linear system
of differential equations with associated set of
coefficients and an optimal closed-loop of control
could be analytically constructed using the
dynamic programming method(®) for every flight
regime. ’

An optimal, in terms of square performance
criteria, solution could be completed by solving of
matrix algebraic Riccati Equation(”. The
asymptotical stability of the control loop is
characteristic of this method. The Riccati
Equation could be solved numerically using
standard mathematical methods on the computer.

Motion models

It is ‘assumed here that the regime for sample
calculations is horizontal direct flight. Forces and
moments increments are have been expanded-into
a series till the first-order derivatives. Only the
most important partial derivatives were taken into
account.

The "A" means variations relative to the
undisturbed flight regime. Subscript "o means the
values of the undisturbed flight regime. Super
scripts mark partials.

Longitudinal aircraft dynamics

Longitudinal motion of a rigid aircraft in an
undisturbed air could be described as(®:

[-F sin(a,) - QOp Jda + [ B cos(a,) - Q5 14V

4V = -g46
my
46 < [Rroos(a0) + Y 4a + B sin(a,) +Y, 14V
myV,
Ady = (M5 da+ MBEAS, + MEAw, + My AV) I,
AE= AV )]
A =V,40
A8 = Ao,
da=49- 460
where m is the mass of the aircraft, V is the

velocity relative to the air, P is thrust, g is gravity
acceleration, () is air resistance, Y is lift, I, is
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longitudinal moment of inertia, M, is pitching

moment, « is an angle of attack, @ is slope of the
flight path, w, is rate of pitch, & is the path moved,

n is the altltude 8 is pitch angle, 6, is control
surface angle. v

Lateral aircraft dynamics

Lateral motion of a rigid aircraft in an
undisturbed air could be described as(®):

A%, ={(F,~Q, ~ Z{) AB- (R, sinay) + Y, 147, }  (myV)
Ay, = (MFAS, + M7 Aw, + MEAB+ MP Aw)) /1,

A, = (M A5, + MY Aw, + MPAB+ M™Aw,) | I,

A=~V 4%, | @
A¥=Aw,

Ay = Aw,

AB=A¥-A¥,, Ay, =4y

where 7,1, are lateral and yawing moments of
inertia, M, M, are roll and yawing moments, Z is
lateral force, ¥’ is course, ¥ is heading, o, is roll
rate, , is yawing rate, yis roll, y, is velocity roll,

B is the bank angle, ¢ is lateral move, 6,, §, are
control surface angles.
Control algorithm
Generally the equations (1,2) could be

represented in matrix form as:

-

X=AX+BU
X(t) =X, 1,=0

where X is the state vector of the system of n
dimension, U is the vector of control variables of
m dimension, A is a transition matrix of the
system of nxn dimensions, B is a matrix of control
coefficients of nxm dimensions, n is a quantity of
state variables, m is a quantity of control
variables.

The control low which must be found in general
form could be depicted as:

U=C"X

where C is some matrix of mxn dimensions.
So as the functional

J=[(X"QX+0U0")dr
[¢]

could get a minimum with any initial values of
state variables X, the C matrix must be defined as:
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C=-PB

where Q is a positive definite square matrix of nxn
dimensions, P is a symmetric matrix of nxn
dimensions, which could be found as a solution of
algebraic matrix Riccati Equation:

PA+A’P-PBEP+Q=0 3)

The solution of the equation (3) could be
calculated on the computer through using
standard procedures such as Repin-Tretjakov
method(”), for example.

Matrix C must be calculated only once for
every flight regime.

The concrete form of vector and matrix for
longitudinal and lateral motions are depicted
below.

Longitudinal aircraft dynamics

AV 0
A® 0
. g 0 .
x=| 71 B | U=[as,]
Aw, Mz, /1,
AE 0
| A7 L 0
14 a4 . ~Ne
R e R R
m, my
P B AR £ C R
m, moVy
~P,cos(ay) ~Yy Pycos(ag) +Yy
= , A[2,3]=0 T 0
A[2,2] e [2,3] Y
v a a
ApA=1, =M gqa=--Mo g43-Ma
IZ z z

A[51]=1, A[6,2]=V,

Lateral aircraft dynamics

(4%, ] [0 0 ]
Ao, MEII, 0 ,

% | 4@ | © Mfgu, - Aa,]
A 0o 0 45,
A¥ 0 . 0

L 47 ] L 0 0 ]
B-Q,-Zf
A= ——————P Q-2 yn5)-5-%-Z
Vo myVy
Au,e]:_w, A[z,u:_ﬁ”;_ A2 =M
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oy Y] M2 M=
A[2,31=M-*°—,A[2,51=M*°,A[3,11=— 2 A[3,2]=—2
1, 1, 1, 1,
M2 M7
413,3)= =2, A13,51= 2, Al4)]=-V;, A[5,3)=1
A[6,2] =1

Simulation results

The simulation has been employed to
demonstrate the ability to stabilize the motion
parameters of flight vehicle in longitudinal and
lateral slow and fast motions with the developed
algorithms.

The control loop performance was tested
through the simulation which represented the fully
vehicle kinematic and dynamics using standard
computer procedures based on several different
integration methods.

Longitudinal aircraft dynamics

The values of coefficients for equations (1) are
shown in Table 1, The Q matrix is:

0 0 0 0 0 0]
02 0 0 0 0
o0 2 0o 0o o
Q=10 6 0 0020 0
00 0 0 0 0
00 0 0 0 001

Table 1

V.1 45 | mis |[MZ | 54 |kgmis
my, | 12.3 | kg-s*Im || M% | -3.59 | kg-m* /s
1942 | kg-ml s || MY | -65.2 | kg-m* | §°
v 10.53| kgls || My, |-0.03]| kg-m/s
Y2 1190 | kg-miI s || PV |-0.26 | kgls
Y | 7.1 | kgls

The C matrix was calculated using Repin-
Tretjakov method as:

CT =[0.03156 2.90573 5.67612 1.04141 0 0.09991]

The disturbing factor which is reflected in pitch
angle variations in fast and slow motions and the
system reaction on the disturbing factor for the
case of using of the developed algorithm and
without it (the control surface is fixed) is depicted
in Fig 1.

Lateral aircraft dynamics

The Q matrix is:
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1 00 0 00
000 0 00
SRR
000 0 10
000 0 0 1]

The C matrix was calculated using Repin-
Tretjakov method as:

[ —6.409  2.523 ]
0.0739 -0.0077
c-| 01152 03211
0.0955 -0.0296
-0.1727  0.4822

[ 12173 -0.0706

The disturbing factor which is reflected in roll
variations in fast and slow motions and the system
reaction on the disturbing factor for the case of
using of the developed algorithm and without it
(the control surfaces were fixed) is depicted in Fig
2.

The eleron surface reaction for the case of
using the developed algorithm is shown in Fig. 6.

It can be observed that the low frequency part
of the disturbing factor, which reflects the slow
motion of the vehicle, is decreased almost at all by
the control system. The high frequency part of the
disturbing factor, which is near the aerodynamic
bandwidth of the aircraft, is also rather

suppressed. However, there is no unstabilities in

the control loop and transitions are relatively
quick and almost without any oscillations.

The gains of the control algorithms can be
regulated, without loosing an optimality, by
choosing the elements of matrix Q. For example,
the increasing of diagonal elements could result in
high dynamic characteristics of the control system
but the values of the control variables are
restricted by the technology and the control law
could become not optimal. It is also could be
useful to less those gains corresponding the
clements of the state vector which could be
measured with difficulties or could not be
measured at all.

The simulation results depicted above are only
illustrative and simply strengthen the principal
ability to create a control system using optimal
regulator construction methods.

Simulation of the developed algorithms was
made using personal computer IBM PC/AT 386
DX in the programming language TurboPascal 6.0
of Borland International. The software developed
could be used as an instrument for analyzing the
control quality of the algorithms of a given class.

Conclusions

The above described method was used to create
a control algorithm for the attitude and trajectory
stabilizations of the remotely-piloted vehicles in
longitudinal and lateral fast and slow motions.
The control laws developed combine the regulation
of the fast motion as well as the slow motion at
once and it is characteristic of this approach,

The method could also be used to construct a
dynamic system control loops, which are not in the
field of the professional interests of a designer, and
as a cause the information on that loops is poor
but it is necessary to provide the simulation and
analyze of the whole system so as the model of the
unknown loops could be rather adequate.
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