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Abstract:

The optimization of branched ascent trajectories
is considered as applied to two cases: a discrete
branch set and a continual one. Different types of
limitations are taken into account including
global ones, relating to several branches
simultaneously, and those on extrema of the
function of state variables on the continuum of
branches.

The problems of the first type with global limita-
tions arose, as a rule, in the consideration of re-
quirements for safe staging, of aerospace trans-
port systems (ATS). Those of the second type
are characteristic of, e.g., the optimization of
fail-safe injection trajectories from every point of
which a recoverable vehicle can be returned.

A regular computer procedure for numerical so-
lutions of the problems using the maximum prin-
ciple is developed. Some examples of computa-
tions for different ATS classes are given.

Introduction

By branched trajectories are understood trajecto-
ries with a variable dimensiality of the state vec-
tor. In practice, the branched processes occur in
the case when the objects recombine, i.e., divide
into several components or, vice versa, group
together forming a united object or, in the gen-

eral case, k’ objects divide (group) into k’*

objects at certain time moments {t’ J =1,...,m}

with maintaining, as a rule, their quantity be-
tween the branch points. Methods of optimiza-
tion of such systems are considered, e.g., in
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works(1-3). Each object can move according to its
own control program (objects may also be
uncontrollable), its motion can be described by
different equations, and the state vectors can
differ both quantitatively and qualitatively.

One such example is a branched injection trajec-
tory for an aerospace transport system (ATS)
when it is necessary to account for limitations on
reentry stages. In this case, the motion of distinct
ATS components at different flight phases can be
analyzed using diverse mathematical models. The
limitations on control and trajectory may be
global and relate to several branches simultane-
ously. For example, the consideration of re-
quirements for safe staging restricts their relative
position in the vicinity of the time moment when
the stage linkages break down.

In more complicated problems, a set of the ob-
jects under consideration can form the contin-
uum at some motion phases. For example, in ar-
ticle® the problem is formulated for fail-safe
ATS injection trajectories from each point of
which a recoverable vehicle (RV) can be
returned to the Earth. In this problem, imaginary
RV trajectories form a continuous sheet shed-
ding from the ATS injection trajectory. Then

At =t,,~t,—0, and the condition of con-

servation of object quantity on the branch dege-
nerates. In the general case, the control optimi-
zation in these problems requires the application
of techniques used to optimize systems with dis-
tributed parameters®).

The present report considers problems of both
types. General optimality conditions based on in-
direct techniques and some examples of nume-
rical solutions of several practical problems of
optimal ascent of ATS with horizontal and verti-
cal launches are given. The computations were
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performed using a modified computer program
package ASTER® intended for automated
(without user's intervention) solution of optimi-
zation problems based on the maximum prin-
ciple.

2. Optimization of Trajectories With Discrete
Branch Set.

2.1. General problem statement

Consider a branched trajectory. Branch points
can be both on the stem and on the offshoots
which in turn can also branch out. Number se-
quentially all branch points. Fictitious points can
be introduced, if necessary. Combine all branch
points with the same order number, that are
reached, in the general case, at different time
moments, in one node (Fig.1).

b,
0= S OE=C
b,

Figurel. A scheme of a trajectory with a discrete
branch set.

Make use of the following notations: 4/ is the i-
th branch between the (j-1)-th and j-th branch
nodes,

v ={p, 1<si<k’}, b={V, 1<j<m}.
Accordingly, x/ is the »/-dimensional state
vector on b’; ' is the p’-dimensional control
vector on b/; t/ e [z;’ , T ] is the independent
variable on 5/;

x/(2) =x!(<), x/(1) =x/(7),

¥ ={xl, 1sisk’}, w={u, 1si<i’},

¢ ={t, 1si<k’}, x={x’, 1<j<m},

u= {u", 1_{j_<m}, t = {t’, 1_<j_§m}.
Let the motion of the body system under discus-

sion be imposed by the following conditions:
1) condition of the type of equality at branch

oints
i O(x(2).x(7).7,7) =0, 1)
Q= {Qx” 1<i Sq};

2) condition of the type of inequality on control
of separate branches or group of them

W(x,ut) <0, W={W,1<i<r};, (2)
3) differential or functional couplings

{g%—F(x,u,t) =0, t €7, T]}J, (3)

for branches b/, whereg/ is the diagonal matrix

i

n! x n’ whose elements assume values from set

{0,1}.

Formulate now a problem of choosing a control
uop,(t) that, in view of couplings (1) to (3), gives
minimum to the functional

f(x( 2).x(7), 7, T) = }1{1:{1 4)

Note 1. Conditions (1), (2) make it possible to
encompass cases of state limitations of the s-th

order
[Ax.0)] <0.
To do this, the point at which limitation

[[J(xt)]: =0 is in force should be taken as the j-

th branch point with imposed limitations of the
type of (1) .
- 7 Ax(1), 1) T
7| =o,.., =0,
ke, 1] - 0. 520
xij(T) - xij’”(r) =0, T/ -7,=0,
and limitations of the type of (2)

ds'Qz .Q(‘)(x,u,t)_jfl <0
dtS H

imposed on control u/”.

Note 2. m npodes are applied only for
convenience of geometric representation of a
trajectory. To derive the optimality conditions
and especially to construct a universal
computational algorithm it suffices to have two
nodes at which all left and all right ends of
branches are grouped together.
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1.2. Optimality conditions.

Consider an extended functional

L=f+VQ +2{f[ v (F &%) +/LTW]dt}], 5)

{i.i}

where v, y, A are the Lagrangian multipliers,

T

T o
[ T means transposition. It suffices to take ac-
count of term A, W, only in one of those integrals
in (5) where it is essential; A, =0, if W, <0.

The analysis of variations of extended functional
(5) made in the same manner as in( yields equa-

tions for conjugate vectors y/

T r Y
dy (JF ow
8 I + - + ﬂ-f = 09 6
Ii dt (é’x) v (o”x) } (6)
specific transversality conditions at branch points
and control optimality conditions

o0+ () v+ -
- (285 2] o
() (%QT-)T - %} _o,

—o”x(T) i )
[ o0y  orf |
H(T)+(E) V+_ﬁ_7} =0,

L i J

N

where H? =y F/,
and control optimality conditions

j
{uopt =arg n{zz}n(}[ + lTW)} . (8)
In the general case, relations (6) to (8) reduce
the initial problem to a closed boundary-value

problem for 2n, equations (3), (6), where

ny, = Y n!, with q+2n, boundary conditions
i

(1), (7) containing g unknown Lagrangian
multipliers ().
The boundary-value problem is solved nu-

merically using program package ASTER®
based on a modified Newton method of solving
boundary-value problem and the method of
uninterrupted parameter continuation of the
solution which eliminates the need to choose a
"good" initial approximation.

1.3. Comprehensive optimization of ATS ascent
trajectory with accounting for requirements for

safe staging.

As an example, consider the problem of
branched ascent trajectory optimization for an
aerospace transport system of the type of
MAKS®? or An-225/Interim Hotol(19, The ATS
consists of a subsonic aircrafi-carrier (AC) from
which an orbiter (OR) starts to inject payload
into a given orbit.

Fig. 2 shows a schematic of the ascent
trajectory: O- initiation of AC/OR prestart
maneuver; 1 - time moment of AC/OR linkage
breakage; 2- termination of AC/OR separation;
3 - attainment of a given orbit by OR.

Figure 2.ATS ascent trajectory including AC/OR
separation section.

Branch b] corresponds to a joint AC/OR flight,
branches b7, to an autonomous OR flight, and

b; to an autonomous AC flight.

The separation trajectory section is of a com-
paratively small extent. Nevertheless, it has an
appreciable influence not only on injected pay-
load but also on the configuration of ATS as a
whole. The basic causes of the influence are as
follows:

1) requirements for safe separation impose strict
limitations on AC and OR motions;

2) injection trajectory is very sensitive to
variations in flight regimes at the initial section,;
3) payload is governed by a difference of great
closely-spaced numbers, therefore, small errors
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of optimal trajectory simulation can change qua-
litatively real dependences of payload on para-
meters being studied (e.g., on orbiter engine
firing time).

The comprehensive ascent trajectory optimi-
zation with simultaneous consideration of all
flight phases in view of a common functional
(injected payload) enables one to obtain an
objective estimation of the functional and
optimal control program, as well as the influence
of different parameters on them. The last point
renders the application of strict optimization
methods and complete motion models indispen-
sable starting with initial designing stages. The
more so as the experience of servicing program
packages based on strict methods shows that
they reduce considerably scope and time of
computing compared to approximate techniques
since a more effective purposeful search for opti-
mal solution is used (it can be automated) and
the results obtained are more informative.

Assumptions. The ATS motion is described by
full equations(® accounting for three-dimensional
nature of motion (for section &), central
position of field of gravity, aerodynamic forces,

and dependences of thrust delivered by AC and
OR on flight regimes.

Because of small length, section 4] of prestart

AC/OR maneuver and sections b;, of AC/OR

separation will be considered in a vertical plane
neglecting mass decrease due to operation of AC
air-breathing engines.

Consider the ATS motion in the coordinate sys-
tem fixed to the launch point. Introduce the fol-
lowing notations: 7 is the radius-vector from the
start point to the vehicle center-of-mass, v is the

speed; m is the vehicle mass, %= {77},
X = {fm} Because of assumptions used, the
dimensiality of state vectors is 5 in sections &,
and b;,, and 7 in section b; . Control  is a unit

vector €, directed along the longitudinal ATS

axis. Thrust vector 7 has a fixed application
point and directed to the vehicle mass center.

General limitations. Each branch has own limita-
tions on control and state vector in terms of’

- angle of attack @, cos a = (e.e) & =v/v,

[amin(x) SaSamax(x)],j, (9)

1

- normal and longitudinal accelerations

[a <a, fa /

Zmin z zmax]f ’[ Xmin

<a,<a,,]; (10

pv’
- dynamic pressure g = - where p is the

atmosphere density

aam J
lg<a ] ; (11)
- Mach number ( for b, and 57)
[M <] (12)
Limitations on safe separation. The requirements
for safe AC/OR separation involve the

conditions of impactless relative motions of AC
and OR, and maintenance of admissible levels of
thermal, aerodynamic and acoustic effects of
orbiter engine (provided they are fired before or
during separation) on the AC characteristics.

q .= const |

/;". ’ \"'-.\1 5
;i A \\ 9
q = const ; !
f/ >,
---------- \ 2
R ~ 14
r’]l .................
_>
< r;

Figure 3. The scheme of AC/OR separation with
fired OR engine.

It is assumed that the distributions of heat fluxes
qz,;>» aerodynamic g, and acoustic g, distur-
bances caused by orbiter engines do not depend
on the AC position (Fig. 3): g, =qz(7’) >
where 7’ is the radius-vector in the OR-fixed
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coordinate system.
Let

7'=1(p,), 7"=L(p,), p € B, p, €,
be parametric equations of OR and AC loops in
the coordinate systems fixed to these vehicles,

g = g2(p,) be the known distribution of ad-
missible loads from orbiter engines along the AC
loop.

Then the limitation on admissible relative
positions of OR and AC is governed by the

conditions

W =g A-8)-7)-¢p) <0, (13)
where p,,:
M(Pz.):é’qE _ \d—;(Pzt) dq)zzm(;pp) _
op, ——?ﬁ_—’A(lgg 9?/ dp, dp, =0 (14)
, . 8 sind
o= AN, A9 S )

&) =(cos9/,sin ), j=12.

If critical point (p,,) on AC is fixed, contact
condition (14) is not imposed.

Maximum OR pitch angle 9 derived from the
condition of impactless OR 'separation from AC
depends on tangency conditions for OR and AC
surface contours

7272 + A(8)i(p,.) - A(8)L(p,.) =0, (15)

(dl (Pz*)]TA(g+ o gz)dl ,(p1.)

ap, dp,

If critical point ,(p,,) (or Z(p,.)) is fixed, tan-
gency condition (16) is not imposed.

Note. Relations (15), (16) can also be used to
determine maximum OR pitch angle followed
from the conditions of OR engine effect. In this

=0.(16)

case, [ (p,) should be understood as a level line

2:(1(p)) - 42"(p,.) =0,

or an external contour combining the orbiter
contour and the level line.
The specific character of limitations (13) to (16)

is that they relate controls #;, and state vectors

x;, on both branches 47 and 4’ simultaneously.

Boundary conditions. Initial state vector ¥.(z)

belongs to boundary I of possible regimes of a
stationary level flight of the AC/OR system:

x(7) el

Assume that I"is the piecewise smooth curve re-
presented parametrically

r ={ff =L(p). p GL,JT‘ }

where 2, is the smoothness sections I”, then

o' =%/(9)-Lp)=0, ¢'={0.} (D
Initial AC/OR mass is specified:
O EmII(T)_-mAC/OR =0. (18)

At branch point 1 vector ¥ remains to be

continuous
T) ::Or Q = {Q6—8}!} (19)

@ =x5(7)-%
o’ 5x1(7) 2(7) =0, z{Q9~13}»

and the mass conserves
Oy =my(T) - m(2) - mi(2) =0,
Oss Emzz(f)"mAc =0,
Branch point 2 corresponds to the termination of
the separation, i.e., to the time moment when
limitations (13) to (16) on the OR orientation
cease to be essential. Therefore, at point 2 the
OR mass conserves
ngfmf(ﬂ—mf(f)=0, (21)
and remaining state variables are scaled uninter-
ruptedly from the two-dimensional coordinate
system to a three-dimensional one, e.g.,. as
follows:

0 =(72(1),0)" -7

(20)

) =0, Q4 ={Q17-19}r
E(Vf(T),O) 7)=0,0° ={Q,,}

Al
AC state vector x>(7) may be free provided

flight limitations (e.g., on Mach number) are not
violated in a subsequent section of the AC
transition to the cruising return flight.

At final point 3, conditions® Q,, ,,(¥’(7)) of

passing perigee of a given elliptic orbit are speci-
fied.

(22)
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Functional. It is necessary to evaluate control

¢ . (¢) and ATS flight regime ff(r, popt) at the

eToﬁt
beginning of the prestart maneuver to provide
minimum OR fuel mass for the injection section:

(23)

provided limitations (13) to (22) are satisfied.

f =m(2)=m;(c) - m)(2) = min

Transversality conditions. According to (6)-(8),
the specific character of branched trajectories, as
compared, e.g., to®), consists, basically, in trans-
versality conditions for branch points 1 and 2.

Denote conjugate vector, corresponding to

x =(F,%,m), by w=(P,5,P,) as done in®,

w=(P,§). Using (7) for conditions (17) to (23)
and excluding, where possible, Lagrangian multi-
pliers v yield the following simple transversality

conditions
at point 1:

—VI :Wf +~l);;’ Pm; :me’Pm; :0’
1 2 3 (24)
H =H? +57,

at point 2:
sz =(plz’ VI)T’ S713 =(§f: Vz)T»
P2=P] H! =4, (25)

w; =0,

where v,, v, are the free parameters.

As it is obvious from (25), the maximum
principle condition for nontriviality of
conjugate vector may be not satisfied on several

branches. In this case, y’(7)=0, since the

subsequent AC motion does not influence the
functional.

Example of numerical solution. The boundary-
value problem was solved numerically using a

modified program package ASTER®. By virtue
of a small staging section length it is convenient
to divide the general boundary-value problem
into an external problem and an internal problem.
The external problem is related to the boundary

conditions for branches &/ and 5, and the

internal one for 57,. The internal boundary-value

problem is solved in the calculations of each
trajectory during the iterative process of the
external cycle. In this case, taking account of
branched nature of the ascent trajectory
increases slightly (by 1-3%) the problem solution
time.

The above technique and program package AS-
TER for optimization of branched ascent
trajectories were applied to extensive parametric
investigations of the aerospace transport system
MAKS®? designed at the scientific production
association "Molnia" and of the Soviet-British
project An-225/Interim Hotol(19),

As an example, Fig.4 shows optimal ascent

trajectory (initial part of branch 4!) and control
program for one of the configuration versions of
the Soviet-British ATS project (the calculations

are performed by O.Yanova).
11000 -
4 optimal initial point
] —
£ 10000 1
iy ]
o
g 1 optimal launch trajectory
s 90001
] \straight & level AC/OR flight boundary
8000 T T T T T T o T T T T T T T T T T T T T T T T T T T T
0.50 0.70 0.90 1.10 1.30 1.50 1.70

Mach

incidence, deg

=
\ﬁy

Figure 4. Optimal ascent trajectory (initial part

of branch b;) and optimal incidence
program for ATS of the type of An-
225/Interim Hotol.
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The effective procedure of the automated search
applied in ASTER to the boundary-value
problem solution by using the parameter solution
continuation made it possible to analyze the
influence of main configuration parameters and
OR engine cyclogram on the functional and
optimal flight conditions with minimum
computation time. The mean iteration number
(for the external boundary-value problem) in
these computations did not exceed 2 to 3,
relative accuracy of meeting the boundary

conditions being of about ~107°.

3. Optimization of injection trajectories with
branch continuum.

3.1. Problem statement.

Consider trajectory b’ of the ATS center-of-

mass described by the equation of the type of (3)
1

a F’(xl,ul,tl) =0, t e[zl, T'].

= 26)

For definiteness, assume initial state vector x’ ( r)

is fixed and the conditions® of motion along a
given orbit must be satisfied at the right end

=T
In the "standard" problem of the injection trajec-
tory optimization (see, e.g.,(®), optimal control

%P(t) must minimize the functional of the form (4)

fsf(xl(z'),xl(?’),zj,f):n{tj}n 27

with taking account of possible limitations of the
form (2) on control # and may be limitations of
the type (1) on the state vector at internal
trajectory points. In® and in examples
considered below, the injection fuel mass

f =m'(z) = m'(T) = min
is taken as a functional.
In addition to the "standard" formulation, let re-
quire that the injection trajectory satisfy the fail-
safe requirements. By fail-safe injection
trajectory is understood here the injection
trajectory at any point of which it is possible to
interrupt the ATS flight program, to separate the
recoverable vehicle (RV) and return it to the

(28)

Earth with given limitations being satisfied. In
practice, both a special vehicle (a capsule, a
detachable cabin, etc.) and an orbiter, a carrier
or an aerospace transport system as a whole can
serve as a RV.
Let the motion of the RV center-of-mass be
described by a vector equation of the form (3)
2

%2—— F(x’u?,%) =0, © €[2,T"], (29)

at initial condition
*(7)-x'(t) = 0. (30)

As proved(?, during atmospheric reentry with

initial speeds lesser than local circular speed v,
limitations on dynamic loads ¢ (dynamic
pressure, accelerations, hinge moments, etc.)
gain in importance. In this respect, the RV
reentry trajectories from the mean section of the

ATS injection trajectory with  speeds of
1

v L . S

Am < 7 e critical(® (the higher is the RV

L/D-ratio, the lesser is the critical speed).

In the general case, the above limitation is
written in the form of an inequality for time-
dependent maximum of a function of the state
vector

Q= ma g(x*)—q“" < 0 (31)

(It can be shown that the limitations on aerody-
namic heating and the condition of RV landing at
a given Earth's region can also be reduced to the
limitations of this kind).

injection trajectory With

Figure 5. Fail-safe
branch continuum.

502



By virtue of (30), the RV trajectories depend on

state vector x'(¢f) on the injection trajectory.
Hence, if condition (31) cannot be met only due

to RV control #°(¢), inequalities (31) limit the

admissible state vector x'(f) on the ATS
injection trajectory.

Thus, we finally arrive at an optimization
problem for branched trajectories (Fig.5) in
which functional (28) is determined at the right
end of the stem (injection trajectory), while state
limitations (3) on the offshoots (imaginary RV
rescue trajectories).

The peculiarity of the problem in question com-
pared to that considered in Sec. 2 is that the off-
shoots form a continuous set (continuum). In the
general case, its solution requires the application
of optimization techniques for systems with
distributed parameters®.

3.2. Reduction to the standard Mayer problem.

The optimization problem for a branched
trajectory with state limitations at internal points
of the branch continuum is reduced to the
standard Mayer statement by transmitting the
above limitations to the branch point, i.e., to the
stem, namely to the injection trajectory. To do

this, it is necessary to know functions _é_%nax_)_ of
dx\r

the influence of initial state vector x*(z) on
= mi 2

G = i e 4(x°)

Really, let [’{; 7;'] be the time interval when

limitation (31) is essential for the injection

trajectory, i.e.:

e (¥ (9 =), ¢ € [4,7]) - =0,
D rnax (xZ(T)—'—'xl(tl)’ e [11 T])—-—qadm <0, (32)

q’7q
Denote this trajectory section by
r={x'(t), ¢ [, 7]}

Then, from condition (32) for stationarity ¢,

on section 7, motion equations (26) and
boundary condition (30) it is inferred that

dqmax — aqmax ____.____d)g(r) -—.é,_q_'ﬂa_i‘. ﬁ =
dt | (9 df  o(q) dr|,
2 (33)
=L Fi(x 1) =0,
22(9 e

From (33) it follows that state vector x'(¢) and

control u’ (z‘) on section I’ must ensure the

orthogonality of vector F'(x',u’,¢') and vector

T
( e J , 1.e., the influence function:

x(¢) er
W(xl,ul’tl)ijqzmar .Fl(xl’ul;tl):o' (34)
(9 ()=o)
. . 0q . _—
If influence function —# is known the initial
ox*(7)

problem with branch continuum is reduced to the
standard Mayer problem for equation set (26)
with functional (27) and limitation (34).

Consider conjugate vector y?(f) for equation
set (29) with the following boundary condition

v(r)=(22)

ox?

(33)

If the control is #°(f) = arg '(%’ max g (or

u*(t) = const) then, by virtue by invariance of
the scalar production of the conjugate vector and
state vector variation(!3)

(v2,6%%), =(v*,6x) , =64(T) =64,

we have
r
aqmax - 2
(ﬁxz(r)) =v'(s).

Thus, the influence functions entering into limita-
tion (34) coincide with the initial conjugate
vector value in the solution of a separate
problem of the RV reentry trajectory optimi-
zation according to the criterion

e = -

(36)

G7)
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Optimal control u;p,(t) is found from condition

(8) where, by virtue of (34) and (36), we have
w(x 1) = (w2 () -Fi(xl ). (38)

3.3. Approximate synthesis of optimal control on
fail-safe injection sections

The optimal ATS control on dangerous
trajectory section I” can be synthesized by using
approximate analytical formulas for conjugate

vector ° taken from(12).

Assume that section 7" lies in the region where
the influence of aerodynamic forces is small as
compared to gravity forces (in practice, this
condition is always satisfied, see(12)). Then we
have, according to(12):

!//v_:___aqmax:AB\/z_I’ V/anmax___Atg},;

75 v T oy

é,qmax AB‘R (39)
B TR

Here y is the angle of inclination of the speed
vector with respect to a local horizontal plane, v
is the speed related to the first cosmic speed, R is
the distance from the Earth's center to the
vehicle center-of-mass related to the Earth's
radius, A is the altitude related to the Earth's
radius, 4, B are the known(? functions of

x*(7). Limitation (38) in the case of (39) assume
the form
dyr B-R

| BY -1 dv ,
W= — Iy — + 7 v Siny

=0. (40)

r

v dt dt

If the ATS motion is considered in a vertical
plane then condition (40) governs unambi-

guously ATS control €, at boundary I in the
form of the function of a current state vector

1gp=(1-Bv)cigy, (41)

where ¢ is the angle between €, and V.

3.4. Numerical examples.

Numerical solutions of the optimization prob-
lems for fail-safe injection trajectories of ATS of

the type of Energia-Buran were obtained for an
approximate (40) and an exact form of repre-
senting limitations (34). Only the flight section of
the second stage was optimized, while the
injection trajectory of the first stage was fixed.
The calculations were performed using package
ASTER®,

Fig.6 compares two optimal injection trajectories
with and without consideration of the ap-
proxlénr:late fail-safety condition.

A

2-nd stage 4

50

1-st stage

dpy

0 0.5 10v
with consideration of the fail-safety condition
without consideration of the fail-safety condition

Figure 6. Optimal ATS injection trajectories
with and without consideration of the
Jfail-safety condition (40).

Doee /4™
A
2 NN
/ AN
/ \
1 b —_—
|
I N
|
L i i >
0 ' 0.5 1.0 v
1-st : 2-nd stage

“““ for RV descent from nominal optimal injection trajectory,
for RV descent from optimal fail-safe injection trajectory.

Figure 7. Maximum dynamic pressure during RV
reentry after emergency injection
interruption at speed v related to
admissible one.

Fig.7 shows maximum dynamic pressures during
the reentry of a hypothetical RV, having the
characteristics close to the orbiter Buran, after
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emergency interrupting the injection at the time

moment when relative velocity v (v <I) is

attained. It is seen that approximate control law
(41) enables one to maintain rather precisely fail-
safety condition (31).

Real limitations (31) can be taken into account in
a more rigorous manner without applying
approximate solutions (39) by means of

interpolating numerically values of g, (x*(7))
calculated for a set of discrete values of initial

state vector x*(7). As shown(?, it suffices to

determine dependence g¢,, only on two

parameters: speed v, and altitude A, at apogee
(y=0) of the RV

... (V,,1,). Fig 8 illustrates the obtained form of

limitations on parameters at apogee of the trajec-
tory of a recoverable vehicle of the type of
"Buran" because of limitations on the admissible

dynamic pressure (boundary 7;) and hinge mo-

reentry  trajectory:

ments (boundary 7). Fig.8 shows also the op-
timal fail-safe injection trajectory of the ATS
second stage (flight program of the first stage
was fixed: gravity turn).

h,, kmy
_——p
100
2-nd stage
50
0 | I { 1
2 4 6 v,, km/s

Figure 8. Optimal fail-safe ATS injection trajec-
tfory.
I,, I, -boundaries of regions for initial
admissible RV reentry conditions due to
limitations on dynamic pressure and
hinge moment.

As follows from the above examples, the dura-
tion of dangerous section I of the optimal injec-
tion trajectory is often more than 50% of the in-
jection trajectory. The optimal trajectory modifi-
cation using the technique suggested provides
the fail-safety of the whole trajectory with a
relatively small penalty of the mass injected.

Conclusion

The techniques and computer program package
developed for the optimization of branched tra-
jectories based on indirect methods of
optimization make it possible to analyze
efficiently the capabilities of advanced ATS by
applying a comprehensive consideration of all
flight phases according to the common criterion
and to account for all required limitations
including those on flight safety.

The application of strict optimization techniques
enables one to estimate reliably not only payload
mass and nominal parameters of the optimal
trajectory and the control program but also the
dependences of criteria under study on para-
meters. Therefore, the program package
developed is a convenient tool not only at final
stages of designing aerospace transport systems
or for the definition of intellectual systems of
optimal ATS guidance but also at initial design
stages.
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