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Abstract:-Aircraft trajectory optimisation frequently
results in significant variation in the short period
response of the aircraft throughout the optimal
manocuvre. The optimisation problem of acquiring
maximum height in a fixed time while minimising a
function of drag and satisfying a desired terminal
constraint on velocity is considered . The resultant
two-point boundary value problem is solved by a
combination of the methods of steepest descent and
quasilinearisation. The variation of the short-period
dynamics on the optimal trajectory is investigated and
in this example the steady-state gain, damping ratio,
natural frequency and lead time constant vary by
factors of up to ten to one. Scheduling of a command
stability augmentation system with respect to
auxiliary variables such as dynamic pressure, mach
number and height, reduces this variation . It is
shown that on the optimal trajectory the gain
scheduling is not single- valued, resulting in a
complex non-linear gain adjustment algorithm. A
unique relationship between aircraft parameter
variations and controller gains is determined and the
combination of these provides a uniform pitch rate
response characteristic throughout the optimal
trajectory. The paper investigates the use of a
quasilinearisation based algorithm for the on-line
identification and tracking of the aircraft parameters.
The subsequent adaptation and re-optimisation of the
controller is performed to minimise the error between
a desired optimal transient pitch rate response and the
actual system response. This re-optimisation of
system performance is achieved using an on-board
digital model of the identified aircraft.

In ion
This paper investigates the variation of aircraft
response characteristics during an optimal trajectory
manoeuvre. The optimal climb manoeuvre of
maximising height acquired in a fixed time while
satisfying a desired terminal constraint on the final
velocity and minimising a function of drag has been
chosen as the starting point for this investigation.
This optimal manoeuvre has been specifically chosen
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as the aircraft encounters a significant portion of the
flight envelope in performing the task. Also the
solution of a similar optimisation problem is
available(1,2) and it has therefore been possible to
verify optimisation software developed for use in this
investigation. In particular the variation of the aircraft
parameters defining the small perturbations equations
of motion representing the short period pitch response
of the aircraft are investigated throughout the optimal
trajectory manoeuvre. It is shown that the aircraft
parameters are not in general single valued with
respect to auxiliary variables such as dynamic
pressure, mach number etc.; hence it is difficult to
determine a satisfactory gain scheduling control law
for a command stability augmentation system which
will provide a uniform response characteristic
throughout the manoeuvre. An on-line identification
scheme is investigated to identify and track the
parameters during the manoeuvre and it is these
identified parameter values which are used to adapt
the C.S.A.S. parameters in place of the normal
auxiliary variables.

A relationship between aircraft and controller
parameters is obtained which significantly reduces the
variation in aircraft closed-loop pitch rate to pitch rate
demand response throughout the trajectory. This
closed loop adaptive system operates within the
transient response time of the aircraft and maintains
the transient response uniform for subsequent
command inputs. It should be noted however that a
finite identification period is required to establish the
aircraft parameters and adapt the C.S.A.S. During
this period the system transient response can deviate
from the desired nominal transient response. At the
end of the identification interval the adapted system
dynamics are defined and this information is used to
augment the control to correct these deviations in the
response and return the transient response to the
nominal desired transient response in an optimised
manner. The augmented control which minimises an
error function between desired nominal and actual
transient response can also be operative during the
identification and adaptation interval. This optimal
adaptive controller reduces the deviations in the
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initial transient response from the nominal when
there may be substantial mismatch between the
dynamics of the closed loop adaptive system and those
of the nominal transient response.

Climb Optimisation

The necessary conditions for optimal control to
minimise a generalised cost functional of the form

J=¢<_x(tf),t,)+fq(_x(tf)¢f)+]{u;c,m) N ot~ Dt

subject to dynamic constraints % (t) = f(x,u,t)
and specified terminal conditions are given below.

The Euler Lagrange equations:
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A fixed time problem has been considered in this
instance for ease of computation. The actual cost
functional chosen to be minimised for this maximum
height in a fixed time problem was chosen as

J==h(t,)+v,(V(t,)—968.)+ %j‘:’azdt.

The initial conditions used for the state equations
were as defined in the boundary conditions for the
study. The optimisation period used was 332.0 sec.
The system states were unconstrained to simplify the
problem. The variation in engine thrust
characteristics and aerodynamic data with Mach
number are as shown in (Figs 16-17) and an
interpolation procedure was used to generate the
appropriate values and required partial derivatives at
each time step in the integration process. From the
aircraft forces diagram (Fig. 1) and applying the
above necessary conditions the state and co-state
equations are as follows.

Aircra ft For‘ces Diagram

*Thrust
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The State and Co-state Equations
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The Optimal Control

The optimal control obtained from the optimality
condition is given by

%5—}4— Tn_t;_{%+ Tcos )} =0
The Boundary Conditions
V(t,)=400.0 ft.sec A, ()=,
v(t,)=0.0rad . A, (t,)=0.0
h(t,)="700.0 ft. A, (t,)=-L
x(t,)=0.01t. A.(t,)=0.0
m(t,) = 1304 .slugs A, (t,)=0.0



This complete set of equations constitute a non-linear
two-point boundary value problem. The solution has
been obtained by a combination of both steepest-
descent and quasilinearisation iterative computational
techniques. In the steepest-descent method a starting
vector was chosen for the control and the state
equations were integrated forward in time. At the end
of the optimisation interval the terminal condition on

7\.V (t ; ) wassettoa weighted function of the error
between the computed and desired terminal value of
Vi(t,) and the co-state equations were integrated

backwards in time using the solution of the state
equations obtained in the forward integration. A new
control vector was computed from

oD, A, oL
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where T controlled the step length along the
gradient, and the process was repeated until the

terminal error on V (¢ , ) was within a small norm.

To test the quasilinearisation programme which is
required for the on-line identification process, the
state and co-state equations were first linearised about
the solution obtained from the steepest descent
procedure which was then used as a starting vector for
the quasilinearisation method of solution of the two-
point boundary value problem. This process was
iterated to convergence and a small improvement was
obtained in the maximum acquired height with the

terminal condition on V ( t,) exactly satisfied. The

results obtained by both methods of the optimum
height versus Mach profiles are shown in (Fig 2.)

HEIGHT v MACH

OPTIMSATION RESULTS
QUN SD

FIGURE 2.

From the results obtained in the optimisation process
the nominal pitch attitude time history was computed
from the optimum time profiles for flight path angle
and angle of attack . Differentiation of this generated
a desired pitch rate profile to be followed in order to
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fly the optimum manoeuvre. This signal was used as
the excitation for the combined C.S.A.S. aircraft
system to investigate the on-line identification of the
aircraft parameters.

Throughout the optimum trajectory at every time step
in the integration procedure the parameters of the
small perturbation pitch rate per elevator transfer
function were computed.

g K,0X(1+sT)

mn s'+280 s+ !
The variation of the d.c. gain, natural frequency,
damping ratio and lead time constant are shown with
respect to dynamic pressure and Mach number in

(Figs. 3-6)
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It is readily seen that during the optimal trajectory the
d.c. gain K o varies by a ratio of approximately ten to

one, the natural frequency by six to one and the lead
time constant by ten to one, while the damping ratio



varies from a value of 0.4 at the start of the trajectory
down to about 0.06 towards the end. It is also seen
that the parameter variations are very non linear and
not single-valued . This increases the complexity of
devising a simple gain scheduling algorithm for the
C.S.AS..
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Because of these difficulties an on-line adaptation of
the C.S.A.S. with respect to continuously identified
parameters was considered.

CS.AS. Structure,

A simple proportional plus lagged integral controller
of the form of (1) was chosen as the C.S.A.S. for the

purpose of the investigation.
el g e
q 5oz (5) s(1+ sT.) (1)

The relationship between controller and aircraft short
period parameters used in this study is defined as

2
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n

where the constant of proportionality on K . 1s

selected to give the desired break frequency of the
combined aircraft and C.S.A.S. closed loop response
characteristic. For the purpose of the investigation .
this was set at 4 rad./sec. To on-line adapt the
C.S.A.S. parameters, the aircraft parameters
including the lead time constant were identified and
tracked during the optimal trajectory. The envelope
of transient closed loop pitch rate step responses of
the adapted C.S.A.S. aircraft system is shown in (Fig
7) and the uniformity of response obtained is clearly
demonstrated. The small variation in this envelope is
caused by the ratio of the aircraft lead-time constant
to the controller lag- time constant . For the purpose
of comparison the envelope of transient responses
obtained with a set of fixed parameter settings for the
C.S.A.S. is shown in (Fig. 8). The controller
parameters were set to the mid point of their adaptive
range in this exercise. The spread of response is
evident in both natural frequency and damping ratio
and at some flight cases on the climb trajectory the
system is unstable. Investigations have indicated that
this response characteristic could be improved by
scheduling the integrator gain as a function of Mach,
however this is not exact and so the on-line
identification and adaptation procedure has been
implemented.
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-line P r Identification And T;

The method of on-line identification selected is that of
quasilinearisation* 5:6), 1n general a non-linear

system of the form x = f(x,u,k,t)where K
represents the unknown time varying parameter set ,
is linearised using the Newton-Raphson algorithm

X £n+l - -'&n
T =1J(x.k,) [ }+ X, U,k t
[k}nﬂ [ ] lc..rn-l - lc..n f( )

Although the actual system parameters are time
varying, it is assumed for the purpose of identification
that during the short time periods required for
identification they are constant. At the end of each
identification the best-fit constant values for the
parameters is determined. The identification process
is continuous and in this manner the unknown time
varying parameters are tracked as piece-wise constant
values. The results are similar to a discrete sampling
of the time varying parameters. In the case under
consideration of the identification of the short period
dynamics of the aircraft four unknown parameters are
required to be identified. Re-defining the aircraft
system as
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with X, representing the pitch rate of the aircraft and
U as the elevator input from the C.S.A.S. controller,
the unknown parameters are now k., k, ., k,, k,
where

k,=28w, ,k, =0, k,=K,0'T, k, =K,0

The linearised equations become

x| [ 1% 0w OTxw %] [ttty oy
| [P 0 0 = O nlxy—x|| Kk thu
,;;:0000001‘;”&-1‘;”+ 0
k| {000 0 0 0|k,%k, 0
k 000 0 0 0|k,*, 0
|, LO OO0 0 00|k 0 |

The identification task is now a boundary value
problem where the initial conditions on the unknown
parameters have to be selected such that the states of
an identification model take on those of the aircraft
states during the identification interval. As there are
twice as many unknown parameters as there are
states, two points in the identification interval are
chosen , namely the mid point and end point of the

interval from which the unknown initial conditions of
the parameters are computed. The identification
procedure commences with selecting a set of starting
vectors for the coefficients of the Jacobian matrix,
The obvious choice for initialising the iteration
procedure is to use actual measurements of the
aircraft system states and actual control input to the
system. Starting vectors for the four unknown

parameters are chosen as k ; = &, where the g, are
constants equivalent to the mid point of the range of
the individual parameters. Expanding the linearised
equations and making the above substitutions, the

linearised equations become

xl -, 1 -x, 0 0T X | [ 8,x,, ]
X2 -8 0 0 -x, O U, i Xana &:%y,
kz _ 0 0 O 0 0 Ofku, + 0
K 00 0 0 0 0fk,||oO
K 00 0 0 0 0fky| | o0
k| Lo 0o 0 0o o0 ofk.] o]

The solution of these equations consists of a particular
integration obtained with initial conditions on the

unknown parameters of ki (0) = &, , together with
a linear combination of ,in this instance four, sets of
homogeneous solutions. The overall time solution
during the identification interval is given by

(%07 [5.©] [%.0] [%:0] [%07] [%,0]
5O [%a®| %0 [%:0| [%.0] | %O
kO | ka®| 1 ho®] ke ku® N k@
kO | 1ha®| k@ | hu®] 1ku®| |5 @
KO | |ka®| [k®| |&®| k@] |k ®

O] (%a®] (k0] [%®] [%a®] [k®)]
EQUATION 2

It should be noted that the particular integration
system as defined is a mathematical model of the
aircraft system having an identical structure but with
estimates for the unknown parameters. As the choice
of the parameters are only estimates they will initially
be incorrect and the model responses will not match
the actual system state responses. These therefore
have to be corrected by the linear combinations of
homogeneous integrations. The initial conditions of
the states of the model for the particular integration
are set to the values of the actual system states
pertaining at the start of the identification interval.
The initial conditions for each set of homogeneous
solution are defined as follows and are specifically
chosen to simplify subsequent computation.
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The complete sets of homogeneous integrations and
the particular integration are computed
simultaneously from the overall system of equations
defined in (3).

The four weighting constants C| ; of the sets of
homogeneous solutions in (2) are computed from (4 )

where £, is the mid point of the identification interval

and £, is the end point.
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EQUATION 4.
The corrected or identified values for the unknown
parameters during the identification interval then
become k, = C, + g, .
As the small perturbation representation of the
aircraft system dynamics is linear, convergence to the
correct values of the identified parameters is single
step and it is unnecessary to iterate the procedure to
obtain convergence. If however a non-linear
representation of aircraft dynamics had been chosen it
would have been necessary to perform several
iterations before a satisfactorily-converged
identification is achieved. This would involve an
extension of the lapse time to achieve identification;
however this situation can be alleviated by time
scaling equations (3 ) for subsequent iterations after
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the first, which of necessity is computed in real time
in synchronism with the actual aircraft response. The
identified values of the system parameters so
determined by the above procedure become the
starting estimates of the unknown parameters for the
next identification interval. In this manner the
identification process is continnous and the time
varying parameters are tracked as constants during
each identification interval. Any identification process
requires persistency of excitation and this can be
checked at each identification step by determining
that the matrix of homogeneous solutions in (4) is
non- singular. Should this prove not to be the case the
values of the identified parameters are held at the last-
identified values until persistency of excitation
resumes. The results of the identification and tracking
of the four aircraft parameters while being controlled
by the adaptive system on the optimum climb
trajectory are shown in (Figs 9-10). The actual
aircraft parameters and the identified parameters are
superimposed on each other and the accuracy of the
identification and tracking of all four system
arameters is evident.
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At the end of each identification interval the
controller parameters are updated as a function of the
identified aircraft parameters. The controller
parameter variations on the optimal climb trajectory
are as shown in (Figs 11- 12). Also shown is the ratio
of the aircraft lead time constant to the controller lag
time constant throughout the manoeuvre. Although
these are not matched exactly the deviation in this
ratio from unity is small and the effect on the
envelope of closed-loop aircraft /C.S.A.S.
combination is negligible. By this technique the
handling qualities of the aircraft in the pitch axis are
maintained virtually uniform on the optimal climb
trajectory. For the purpose of this investigation the
identification interval was fixed at 200ms. which
proved satisfactory. It would be perfectly feasible to
select the identification interval as a function of the
identified natural frequency of the system.

Augmented Control

As the identification and adaptation is occurring
within the transient response time of the system it is
interesting to investigate this further as a separate
exercise. Starting with a nominal transient response
characteristic for the closed-loop pitch rate response,
then during the initial identification period and before
identification and adaptation have occurred the actual
response deviates from the nominal. This is due to the
mismatch of the C.S.A.S. with the as yet unidentified
aircraft. On adaptation the transient response
continues from this point onwards with the now
correct dynamics. This satisfies the handling
criterion; however the actual transient response
characteristic deviates from the nominal. (Fig 13). If
the requirement is to minimise the error between the
nominal and actual transient trajectory this may be
done from the point of identification onward by
minimising a quadratic function of this error subject
to the now known dynamic constraints of the system.,
This optimisation would normally be performed off-
line; however since an on-board tracking model of the
aircraft exists this could be used to perform the
optimisation and on-line generation of the additional
augmented feed back control. The effect of applying
this augmented control at the point of adaptation is
shown in (Fig 14). Here two mismatched controllers
are considered which represent a deviation by a factor
of 100 from the nominal dynamics. The system
response is forced back onto the nominal transient
trajectory, by the augmented control, from the point
of adaptation onwards. The resultant accelerations
produced can be controlled by the introduction of
state constraints, (Fig 15) shows that there is some

benefit in using this optimal augmented control even
during the initial identification period as the
excursions away from the nominal transient response
are significantly reduced.

VARIATION OF CONTROLLER PARAMETERS

ON OPTIMAL TRAJECTORY
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Condlusion
The variation of aircraft parameters on an optimal
manoeuvre has been investigated and it has been
shown that the design of a parameter scheduled
controller using auxiliary variables is complex. An
on- line identification and tracking model has been
implemented using the normal commands to perform
the manoeuvre, and without resorting to additional
test signals for the purpose of parameter
identification. Functions of the identified values of the
aircraft parameters have been used to adapt the
controller, in order to provide a virtually uniform
response characteristic throughout the manoeuvre.
The adaptation is continuous and operates within the
transient response time of the system. An optimum
controller augmentation has been studied which uses
the identified parameter information to compensate
for deviations from a nominal transient response
arising during the identification interval. The
augmented control returns the transient response
trajectory to the nominal in an optimum manner. This
augmented control also reduces deviations from the
nominal transient response when there is mismatch
between the controlier and aircraft dynamics during
the initial identification interval.
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