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Abstract

Optimisation of manoeuvring in combat promises
significant theoretical benefit. However, in order to
determine if this benefit is real, the optimal rules must
be assessed in a realistic scenario. Optimal trajectories
have been defined for fighter aircraft engaged in
Beyond Visual Range (BVR) combat with medium
range missiles. This has been done for pre-launch and
post-launch / evasive phases of the combat. The first
probiem is a 2-D energy management optimisation.
The second is a more complex two-stage, 3-D
manoeuvre. Control laws have been developed to
match the optimal solutions. These have been adapted
and implemented in a combat model, using realistic
information. A single missile exchange between two
combatants is analysed. The results from this model
have been analysed to provide measures of
effectiveness to allow assessment of the relative merits
of different optimal strategies in a realistic scenario.

L Introduction

Air to air combat tactics and manoeuvring can be very
complex. Considerable analysis and experimentation
can be required to derive suitable tactics to maximise
the effectiveness of the aircraft and weapon system.
Optimisation techniques can be applied to some
elements of the problem. Such optimised trajectories
can help to simplify the analysis of air combat
engagements in combat models by reducing the
number of tactical parameter variations. This allows
analysis to be concentrated on the weapon system
parameters and their effects.

Associated with this optimisation process is an
information problem. There is little point in attempting
to optimise the entire tactical process as one problem,
since the future development of the fight is unknown.
Feedback is required as the fight develops, and any
optimal solution must adapt as new information is
received. Following this approach allows us to
consider limited segments. The opponent is not
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considered as a player, simplifying the analysis to a
one-player game. If the opponent is considered as a
player, then this would require a differential game
analysis, which is complicated by the information
problem.

Reference 1 identified segments of air combat tactics
which could be optimised and applied in combat model
simulations. The paper concentrated on the pre-launch
attack phase. Evaluation was limited to largely
qualitative consideration of the potential benefits of
optimal manoeuvring. Significant potential gains were
identified, but these were shown to be strongly
dependent on the tactical logic of both combatants, in
particular the launch decision. This paper describes
the continuation of the work of optimising further
segments of the combat, and seeks to quantify the
benefits by way of exchange ratios and other measures
of effectiveness. A different combat model and
analysis approach is needed in order to isolate the
effect of the optimisation from that of the firing
decision.

The modelling technique used has some similarity with
that described in reference 2. The study in reference 2
was constrained to two dimensions, and suggested the
use of artificial intelligence techniques, combined with
differential game methodology to determine optimal
launch timing and evasion cues.

The methodology used for this study uses a simple
combat simulation model, operating in three
dimensions. It is based on a simple statistical
assessment across a range of launch times or ranges for
each side. This approach removes the need to optimise
the launch decision process. For the purposes of
comparing weapon systems and tactics, the results
from this methodology have been shown to correlate
well with other, more complex, combat simulations.

The purpose of the paper is to demonstrate potential
improvements in combat effectiveness by the use of
optimised tactics. In doing so, it is also demonstrates
that it is possible to implement the optimal guidance in
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a practical way which might be applicable to provide
on-board, real-time, tactical guidance to aircrew.

2. Models Used
Aircraft Model
The aircraft are modelled as three degree of freedom

point masses for both the optimisation and combat
modelling. The point mass model is :

x= v cosy) cos(y), x(to) = Xo 6
y = v cos(y) sin(x), ¥(to) = o @)
z=vsin(y), z(to) =2, 3)
X = 8o Un/ (v cos(y)), x(to) =x0 @)
¥ = 8o (uy - COS(r)) /v, ¥(t0) =70 ©)

v= (Thrust(z,v) - D(z,v,n)) / mass - gq sinfy ),
V(tg) = Vo ©6)

mass = - B(z,v), mass(ty) = mass, )]

where x and y are the horizontal co-ordinates, z is
altitude, x is heading relative to x axis, y is the climb
angle, v is the velocity, mass is the total mass of the
aircraft and g, is gravitational acceleration, The load
factor is divided into a vertical component (uy) and a
horizontal component (up). These are used as the
controls for the aircraft. Thrust control has been
ignored for this study, since the optimal setting has
been found to be mostly maximum.

The aircraft model used is a generic supersonic fighter.
The aircraft used in reference 1 were high performance
fighters. In this case, a lower performance level has
been chosen, as this is felt to provide more scope for
optimisation. The aircraft is assumed to have a datum
operational mass of 10000 kg. Figure 1 shows the 1g
Specific Excess Power (SEP) for this aircraft.

The manoeuvres of the aircraft are constrained within
realistic limits, as follows :

22 Zmin ®)
-30°< v < 30° )
9 S dmax 10

n= \‘ (uy? +up?) < Byax an

where q is the dynamic pressure, and n is total load
factor. The load factor limit, np, 4y, is the the lesser of
the stall limit or structural limit.

In addition, the heading, x , must be restrained during
the post launch manoeuvre to allow continued
command update of the missile for a time tyack.

Ix1 < f(radar gimbal, geometry, tyrack) 12)

Missile Model

The missile used in this study is a generic medium
range missile. The kinematic performance of the
missile is the same as that described in reference 1.
The missile is assumed to require command guidance
until 10 km range. At this point the missile is able to
use its own autonomous radar seeker.

A simplified function representing missile speed,
integrated for range, is used in the optimisation
models, The function is of the form :

Range = R(Alty , Machy , Altt) (13)

where Alt is the altitude, Mach is the Mach number.
Subscript L represents the launcher state, subscript T
represents the target state at the estimated impact point.

This function was derived from the results of a flyout
model. This flyout model also forms an integral part
of the combat mode] used for the evaluations.

Scenario

The scenario chosen for this study is a one versus one
BVR missile exchange. The tactical sequence
followed by the aircraft in this type of engagement is
shown in figure 2.

The pre-launch phase is triggered by detection of the
target. This normally involves a climb and
acceleration on a collision course with the target.

A pre-fire pointing manoeuvre may be carried out a
few seconds prior to launch. This involves pointing on
a missile collision course to minimise missile
manoeuvre during flight. There may also be benefit to
be gained from lofting the missile. Control laws for
lofting have not been developed as part of this study.
In order to simplify the evaluation process, the
elevation demanded for launch is y = 0°,

Post launch manoeuvring involves a turn away from
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the target. This will initially be limited to the gimbal
limits of the radar, as the aircraft must command guide
the missile until it acquires the target. This turn is
coupled with a dive. This takes the aircraft into denser
air, reducing the effective range of any threat missile,
Acceleration during the dive is used to generate a good
speed for out-running the threat missile.

A final turn and dive to out-run the threat is cued by
either :

- detection of threat missile seeker, or

- own missile autonomy.

The elements examined in this study are :

- Pre-launch and pre-fire elevation control,

- Post launch and evasion elevation and azimuth
control.

3, Optimised El :

The work in reference 1 concentrated on optimisation
of the pre-launch phase. Further analysis of this phase
is included in this study. Much of the work for this
study has been concered with the post launch and
evasion manoeuvres.

The optimisation problems are formulated as a cost
function of the form :

V(X(to) ; to) = FX(tf) ; tf) (14)

where X entirely describes the state as set out in
equations (1-7) and V is the function to be minimised.
The goal at time tgis described modelled by F.
Subscript ’o’ describes the time at the beginning of the
optimised segment and subscript 'f’ the end of it. The
Optimisation method used is a modified version of
Differential Dynamic Programming. This method has
been in use at Saab-Scania for r{%ny years and is
adapted to aerospace problems ‘7,

Pre-Launch Qptimisation

Four criteria are chosen for the optimal pre-launch
manoeuvres, giving the following forms of equation
(14):

1. Maximise energy,

V(X(to)ito) = -2(tf) - Vava(tplgo (15)

2. Earliest launch,

V(X(to)ito) =-x(tf) - R(z(tf),Machy ,AltT) 16)

where Machj  corresponds to v(tf) and Altt is an
estimate of target altitude at impact.

3. Maximise launch range,
V(X(to)ito) = -R(z(tf).Machy ,AltT) an
4, Maximise launch range advantage.

V(X(to)to) = R(Altr, MachT, Alteya) -
- R(z(tg),Mach_,AltT) (18)

where Altgy, is own altitude following evasion. This
is a function of z(tf) and Machy . The dominating term
in equation (18) is found to be the second term. This
equation therefore degenerates to be close to equation
(17). This solution was therefore not considered for
further analysis.

Functions 2, 3 and 4 were chosen based on experience
from reference 1, and optimisation of profiles against
passive targets.

Realistic constraints are applied to these profiles. Most
notably, the final climb angle, v, is restricted to 0°.
This is achieved by adding a penalty term to the cost
functions (15-18). Although the work in ref. 1 showed
a considerable benefit for launch range from lofting the
missile using high climb angles at launch, for the
purposes of this study the additional variability
introduced by lofting was removed in order to clarify
the analysis of the optimal manoeuvres.

As in reference 1., "Master Curves’ have been
generated to meet these criteria. These curves are
defined as v(t), z(t) and y (t). The term iny is
necessary to bring the aircraft smoothly to the desired
trajectory. The master curves are shown in figure 3,
along with the approximation used in the GAMBIT
baseline tactics.

The master curves involving missile launch range
show a characteristic zoom prior to launch. This is
because increased altitude has a strong influence on the
range of the missile.

Control laws have been developed to bring the aircraft
smoothly onto the curve, matching closely optimal
solutions from any state at t=tg,.

Additional control laws were developed to control the
pre-launch zoom (where applicable) and retumn to 0°
for 1aunch.

The master curves have been developed for a straight
flying aircraft. It is possible to make an allowance for
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manoeuvre. Figure 4 shows the effect of allowing for

a constant horizontal manoeuvre component of 1 gor2

g during a maximum energy climb.

Post Launch and Evasion

The trajectories for post launch and missile evasion
were developed in three dimensions.

A simple, single master curve solution does not exist
for this problem. The optimal trajectories are matched
using control laws.

In order to simplify the problem for implementation,
start points for the optimisation are chosen in the
region of the flight envelope indicated by typical
pre-launch trajectories.

The problem requires an initial turn away, restricted to
the radar gimbal limit, as given by equation (12). After
some time, tyrack, the aircraft is threatened by an
incoming missile. A further turn is made to attempt to
out-run the missile. The final turn is made through an
angle 6 50 as to place the threat directly on the tail.
The goal is to fly as far away from the missile as
possible, and also to exhaust it. This requires a high
final velocity. The cost function for this manoeuvre is
given by :

V(X(to)to) = -x(tf)cos(e ) - y(tf)sin(e ) +
+ R(AltT, Machr, z(tp) 19)

The stop condition is given by :
tf= alig{v(t) = Vmissile(t) - Vhit} (20

where vpj; is the minimum closing speed for the
missile,

The nature of the post launch and evasive manoeuvre
is shown to depend on :

- the time before evasion, tyrack,

- the radar gimbal limit,

- the final evasive turn required,s .

Figure 5 shows two very different geometries of the
evasive turn, depending on variations in tycx and 6.
Figure 6 shows the speed and altitude variations for
these cases. In these figures, the times given refer to
time from the start of the manoeuvre (own missile
launch). Tlaunch is the time of the opponent’s missile
launch, Topen is the seeker switch-on time
corresponding to tyyack and Tend corresponds to tf.

Given a very long evasion, such as that shown in figure
6, it can be seen that the aircraft requires a control law

to limit speed as it approaches the qmax limit. This
has been derived and incorporated in the modelling.

4. Combat Medelling

Optimal trajectories for pre-launch, post launch and
evasive manoeuvring have been implemented in the
BAe GAMBIT combat model.

GAMBIT

The GAMBIT combat model simulates a 1-v-1 BVR
duel with one shot only per side. In order to simplify
the engagement as much as possible, the launch time
for each side is fixed. This removes the effect of
tactical variation for this decision, allowing an
assessment which is independent of launch range
tactics.

By varying the launch timing on each side, a matrix of
possible engagements is built up. Analysis of this
matrix forms the basis of the evaluation used in this
study.

Each possible engagement in the matrix has a number
of possible outcomes.

- Blue dead, Red survives (Blue win)

- Red dead, Blue survives (Red win)

- Blue dead, Red dead (Mutual kill)

- Blue survives, Red survives (Null result)

There is one other result, which stops the engagement
if the aircraft get too close. If the aircraft pass within 5
km, it is assumed that this would no longer be a BVYR

. combat. Since GAMBIT has no close range tactics, the

engagement is declared invalid.

The resulting matrix is limited by the following
criteria :

- Maximum extent is set just before the "aircraft too
close’ point, on the diagonal.

- Earliest fire times are selected as those which give a
scoring result.

Figures 7 to 12 show typical matrices derived for this
study. It may be possible to perform in-depth analysis
of these matrices, to arrive at an optimal launch
solution for each side. Unfortunately, this almost
always yields a null result, which is of little help in
assessing the effectiveness of tactics. This type of
analysis is pursued further in reference 2. For the
purposes of this study, overall evaluation measures are
based on the relative sizes of ’blue’ and 'red’ zones.

482



This simple measure has been shown to correlate well
with more complex modelling when comparing the
effectiveness of different options.

There is a caveat on interpretation of the scores from
this type of analysis. The score is not the result of
definitive engagements, and relies strongly on the
actions of the opponent. It should not be treated as an
absolute result. It is preferred to consider the resulting
score as indicative of potential performance, or a
margin for tactical error,

Qualitative assessment is also possible by examining
and comparing other matrix characteristics.

Implementati timal

The control laws and master curves developed to
match the optimal trajectories have been implemented
into the GAMBIT combat model with no difficulty.

In order to integrate the control laws, assumptions
regarding the controlling parameters must be made.
This is because the optimisation model effectively
assumes perfect information regarding the key points
in the engagement, such as launch time, tiyyck, evasion
heading etc. Obviously, in a realistic scenario, this
information will not be known.

In GAMBIT, the launch time is pre-set, so this value is
available to the control laws for precisely controlling
the zoom (where necessary), and the push down to

v =0° for launch. In other modelling applications, an
estimate of launch timing may be adequate.
Experience suggests that this would be the case,
provided the estimate converges smoothly to the actual
launch time.

For the post launch manoeuvring, the degree of the
turns and the value of tyyck will depend on the
development of the engagement. In order to
implement this, the following assumptions are made :

- The degree of initial turn to radar gimbal limit is
calculated dynamically, depending on current
relative geometry,

- The degree of the final turn for evasion is calculated
dynamically, based on threat missile position. In the
absence of information on the threat missile (no
launch or not yet active), the target aircraft position
is used.

- Inplace of a predicted value of tyack, the parameter
used is actual time spent in the manoeuvre plus
some ’time to go’. This time to go’ could be used
to control the urgency of the manoeuvre, although a
single value has been found to be acceptable for the

purposes of this study.

Evaluation

Identical aircraft and missiles are used on each side for
the evaluation. Both players are assumed to start at
equal energy states, subsonic at medium altitude. The
only difference between the players is the tactics used.

Base-line tactics used for the evaluation are standard
GAMBIT tactics. These consist of the following :

Pre-launch :

An approximation to an ’optimal’ energy climb using a
constant Mach number climb for the subsonic element,
a level acceleration to transition to the supersonic
climb, and a supersonic climb at constant equivalent
air speed (constant q). The values used are chosen by
analysis of SEP, shown in figure 1. Azimuth control is
simple collision course, as described in section 2.

Post-launch :

A simple constant dive angle is used for the entire post
launch and evasion manoeuvre. A value of -25° has
been chosen as an approximation to a typical mean
value generated by the optimal methods. Further
analysis has demonstrated very little gain from
decreasing this angle to -35°, more than that used in
the optimal solutions. Azimuth steering demands are
as described in section 2.

The following options have been evaluated against the
baseline tactics :

- Optimal energy gain, optimal evasion,

- Optimal energy gain, GAMBIT evasion,

- Optimal early shot, optimal evasion,

- Optimal early shot, GAMBIT evasion,

- Optimal long range shot, optimal evasion,

- Optimal long range shot, GAMBIT evasion.

The resulting matrices are shown in figures 7 to 12.

Relative effectiveness is shown in figure 13 in terms of
an ’exchange ratio’. This is simply defined as (own
hits / opposition hits), including mutual hits.

Analysis

The effectiveness results shown in figure 13 show a
significant benefit to be gained from the use of optimal
tactics. This can lead to an improvement in exchange
ratio from 1 to 1.3 in the best case. When interpreting
these results, the reader is referred to the caveat in the
section describing the GAMBIT modelling
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methodology.

However, it can also be seen that when the optimal
pre-launch tactics are coupled with the simple
GAMBIT evasion, these gains disappear.

The results show that, of the pre-launch options
considered here, the energy criteria is the best for this
scenario. The other optimal options may pay off only
in scenarios where the opponent is not expected to
return fire, or there is already strong dominance due to
other factors.

The optimal pre-launch profiles which include missile
range in the criteria show considerably poorer scores.
In the case of the 'Early Launch’ option, the profile
favours speed over altitude, leading to rapid closure on
the threat. This has the consequence of allowing the
threat eatly counterfire opportunities. This is seen by
the increased GAMBIT kill zone for early launch times
in figure 10, compared to those in figures 8 and 9.
However, emphasis on altitude as in the "Maximum
Launch Range’ option, although having a strong
pay-off for missile range, places the aircraft in a poorer
position for subsequent evasion.

The results for optimal energy option and the coarse
GAMBIT approximation show very little difference.
This may indicate that, provided there is not excessive
closure (speed emphasis) or climb (missile range
emphasis), the profile is relatively insensitive. The
energy option, or something very close to it, provides a
good compromise between offensive and defensive
requirements.

It is the optimal post-launch and evasion which pays
off most in improving effectiveness. Analysis of the
matrices in figures 7 - 12 show that gains in
effectiveness are made both by negating opposition hit
opportunities and adding own hit opportunities. Both
these effects occur at early fire times for the optimal
aircraft. The additional hits gained are due to a
secondary effect of the more effective evasion. The
more effective tumn forces the opposition aircraft to
follow a more direct track, flying into the missile in
flight. This effect is strongest for early own launches
coupled with late opposition launches. All this has the
effect of increasing the firing window in which the
aircraft can launch with a possible effective shot, but
without risk from counter-fire. This is important, as it
allows the aircraft to take the initiative early in the
engagement.

Further analysis has been carried out using a lower
initial energy for both sides. The same characteristics
are present in the results from these cases, increasing
confidence in the robustness of the analysis.

5, Conclusi 1 Di .

The study has demonstrated the feasibility of
implementing optimal controls in a realistic combat
scenario. The implementation of the 2-D pre-launch
energy management was also shown in reference 1.
More significantly, the more complex two stage, three
dimensional problem of the post Iaunch and evasive
manoeuvre has been optimised and successfully
implemented in the scenario.

Evaluation using combat modelling has shown that
energy gain is a good criteria for the pre-launch phase.
It has also been shown that this profile is relatively
insensitive to coarse approximation. This profile is the
best compromise between maximising the offensive
performance of the weapon system and subsequent
defensive performance against counter-fire. Other
profiles emphasise the offensive performance, and may
have value for use against non-aggressive opponents.
A more detailed cost function may yield further
improvement. Such a function should include factors
for:

- Closure with target,

- Missile range,

- Energy state for post-launch and evasion,
- Early or first shot.

Considerable potential benefit is shown for managing
the post-launch and evasive manoeuvres optimally.

The work described in this study has looked at
optimising one cycle of an engagement. In order to
close the cycle, further work can be considered on the
re-engagement manoeuvre. This will be a 3-D turn to
re-establish an optimal pre-launch profile. Whereas it
may be possible to compromise pre-launch
performance for evasive performance, as shown in this
paper, it is unlikely that there will be any compromise
in evasive performance for re-engagement potential.
In order to re-engage, survival must be guaranteed. An
optimal evasion will also allow the earliest possible
re-engagement.

Continuing with the 1 versus 1 scenario, it is possible
to formulate the problem as a differential game. In
reference 4, such a duel problem was solved with
perfect information. A differential game will need to
be formulated using realistic combat and information
processes in order to obtain practical, usable solutions.
This optimisation process should be integrated with the
evaluation methodology to provide realistic assessment
of weapon systems and tactics. Reference 5 moves
towards this ideal integrated methodology, although
confined to combat within visual range, without the
information problems associated with BVR combat.
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