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Abstract A boundary element method for the sim-
ulation of two- and three-dimensional transonic po-
tential flows is presented. The method is based on a
boundary integral equation formulation for the full-
potential equation. The latter appears in the form of
non-linear wave equation for the velocity potential.
All the nonlinear terms, which are expressed in con-
servative form, are moved to the RHS. This formu-
lation represents a novel approach to the analysis of
the full-potential transonic flows using integral meth-
ods. Numerical results are obtained for steady two-
and three-dimensional transonic flows. The compar-
ison with existing finite-difference and finite-volume
results shows a remarkable agreement.

1. Introduction

The present, paper deals with a boundary element
method (BEM) for the solution of two- and three-
dimensional transonic flows, and is based on the work
of lemma.(® The integral formulation is based on that
of Morino,(**) who presents a general theory for po-
tential flows aroud aircraft having arbitrary shape
and motion. The main difference of this formulation,
with respect to other integral approaches, (222 (11) jg
that the full-potential equation appears in the form of
nonlinear wave equation. The nonlinear terms are ex-
pressed in conservative form, and moved to the RHS
of the equation. This yields that the linear differen-
tial operator is the D’Alembert operator, whereas, for
the other integral approaches is the Laplacian.

In the present work, two different interpretations
are presented.-for the numerical evaluation of the non-
linear terms. In a first formulation (referred in the
following as approach A), the integral term repre-
senting the volume nonlinear sources is integrated by
parts (in order to avoid the evaluation of the diver-
gence of V¢), whereas, in the second one (approach
B), the volume integral is discretized in its original
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form. Both formulations are applied to subcritical
and supercritical, two- and three-dimensional flows.
In order to capture shocks, dissipative effects are in-
troduced in the supersonic region of the flow in the
form of artificial compressibility, linear and nonlinear
artificial viscosity, and flur upwinding.

The formulation of Morino(¥) is applied to tran-
sonic small perturbation (TSP) by Tseng and
Morino,®*) who use approach A and show that the
method is able of capturing shocks. Iemma et al.(")
present the first validation of the method for three-
dimensional, unsteady, supercritical flows. The first
applications of approach A to two-dimensional full-
potential analysis is due to Morino and Iemma®®),
who present, to the authors’ knowledge, the first con-
servative scheme applied to a boundary integral for-
mulation of the full-potential equation. Approach B
was introduced in Iemma.(®) Preliminary applications
of approach B to the transonic analysis of helicopter
rotors in hover are presented in lemma, Gennaretti,
and Morino.(®)

Section 2 deals with the boundary integral formu-
lation of the full-potential differential model. Even
if the formulation is valid for unsteady flows around
bodies in arbitrary motion, here we make the assup-
tion that the body moves in uniform translation. The
treatment of the nonlinearities is also presented in
Section 2. The numerical discretization is briefly out-
lined in Section 3, whereas, the artificial dissipation
schemes are discussed in Section 4. The numerical
results presented in Section 5, and compared with
finite-element, finite-difference, and finite-volume so-
lutions of both the full-potential and (when applica-
ble) Euler equations.

2. Full-potential integral formulation

The equation governing the motion of an isentropic
and irrotational flow, is the full-potential equation,
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which is written here in the form of nonlinear wave
equation. In a frame of reference rigidly connected
with the body (BFR) we obtain

1 d?
v%——-—-i—%’i:a (1)

where o represents all the nonlinear terms, whereas
dp/dt = 8/8t + Us0/8zx is the time derivative writ-
ten in the BFR (which moves with velocity vp =
~Us 1),i.e., following a point fixed in the air frame
of reference. Eq. 1 is derived by combining the
conservative form of the continuity equation with
Bernoulli’s theorem for isentropic potential compress-
ible flow, taking into account the isentropic density-
hentalpy relation. Indeed, it can be shown that an
inviscid non-conducting shock-free flow, initially irro-
tational and isentropic, remains isentropic and irro-
tational at all times. The expression for o is

dgb

whereas p/pso is obtained from the Bernoulli the-

orem, p/poc = [1 - (¢'S+v2 /2) /hoo] Y (differ-
ent expressions for the nonlinear terms o are dis-
cussed in Morino and Iemma®®). In order to iso-
late the steady part of ¢ we introduce the notation
o = Vb 8b/6t, where b = {b, — Uncb,by,b. . The
boundary conditions complete the differential prob-
lem. These are: the ipermeability of the body sur-
face, Sg, or 8¢/0n = vp-nfor x on Sp, ¢ = 0
at infinity. In addition, we have the conditions of
no penetration between fluid and wake, and conti-
nuity of pressure across the wake surface, Sw. This
yield A{(0¢/0n) = 0, Dw /Dt (A¢) = 0 for x on Sw
(where Dw /Dt = 8/8t+vw -V, and vy is the veloc-
ity of a point of the wake); Dw /Dt (A¢) = 0 states
that A¢ is constant in time following a wake point
xw and equal to the value it had when xy left the
trailing edge. In addition, we introduce homogeneous
initial conditions.

The integral formulation for the differential prob-
lem presented is outlined in the following. Since we
deal, in the present paper, with applications to fixed
wing analysis, the integral equation presented is limi-
tated to bodies in uniform translation. As mentioned
above, the extension of the analysis to flows around
bodies in arbitrary rigid motion (helicopter rotors
and propeller) is presented in lemma, Gennaretti,
Morino(® and in Iemma(®.

The fundamental solution G for Eq. 1 is the solu-
tion of the problem

d%¢
dt2

where § denotes the Dirac delta function. The
initial and infinity boundary conditions associated
with the above problem are, respectively, G(x, 00) =
G(x,00) = 0, and G(oo,t) = 0. The expression of G
for subsonic flows is(14)

VG - —--B2G = §(x — x.)8(t — ta) (4)

Gx, %o 1, 1) = 4—;1%5(1: —t,+6) (5)

where 75(x,x«) = /MZ(z—=z.)?+p%? and

0(x,x4) = (1/aooﬁ2) [rﬁ + Moo(z — x,)] with M, =
Uo/o0, B=1+/1—MZ andr = |r| = ||x — x,||.

The integral formulation of the problem is obtained
by multiplying Eq. 1 by G and Eq. 4 by ¢, sub-
tracting, and integrating in time and over the entire
domain V. Applying the Gauss theorem, using the
boundary condition at infinity for G and ¢, and in-
tegrating with respect to time (taking into account
the initial conditions on ¢ and G), introducing the
Prandtl-Glauert variables, 2o = z/8, yo = ¥, 20 = 2,
yields

_ d¢ 8G, 8¢ . 86
P 1s) _—#:SB ':Goano ¢3no + BtGOBn ] dSo

aGy  9A¢ ., 9o
~ A =G ds,
//SWO[ Yo Bt °on 0] °

+ ] ] [ Golol” v (6)

where, Gp = —1/4nrg, with ro = |{|xo —Xo, ||, Whereas
[...]% denotes evaluation at the retarded time t =
t.—0p, with o = [ro—Moo(x0—20, )] /aco3. Moreover,
Sp, and Sw, are the surfaces of the body and of the
wake in the Prandtl-Glauert space, whereas 9/dng
denotes the normal derivative.

If 0 = 0 (i.e., in the linear case) and x, € V, Eq. 6
is an integral representation of ¢(x,,t.) as a function
of ¢, 8¢/8ng on Sp, and of A¢p on Sw,. On the other
hand, if x, is on Sp, Eq. 6 represents a compatibil-
ity condition between ¢ and 0¢/0ng on Sp, and A¢
on Sw, for any function ¢ satisfying Eq. 1. Since
0¢/8n is known from the boundary conditions, and
A¢ from the preceding time history, then Eq. 6 yields
a boundary integral equation for ¢. In the nonlinear
case (0 # 0) we take advantage of the evaluation of
nonlinear terms at retarded times. Indeed, only the
current value of o needs to be extracted (by numer-
ical differentiation) from ¢ in the field, whereas the
retarded one is known from previous time steps.

Two different approaches are introduced in order
to evaluate numerically the volume integral of equa-
tion 6. In the first one (referred as approach A), an
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integration by parts of the nonlinear integral term is
introduced, in order to avoid the evaluation of the
divergence operator. Specifically, considering that
[V- B]o =V- [B]o + [BB/Bt]o - V8 (subscript 0 has
been dropped in order to simplify the notations), and
applying the divergence theorem, we obtain

///G = - ﬁ m-b6’Gds (1)
Jrseo 58

This approach, with the assumption of small pertur-
bation, has been applied in the past to the analysis of
two- and three-dimensional unsteady transonic flows
around fixed and rotary wings,(* ()05 and extended
by the authors to the full-potential analysis.(1)(s)

In the second approach (approach B) the volume
integral is discretized in its original form. Approach
B appears to be computationally convenient with re-
spect to approach A, as we will see in the next section.

0
-VO|G dV

3. Numerical discretization

In order to solve numerically the problem, the above
integral equation is discretized using a zeroth-order
formulation. The surface of the body is divided into
M elements S,,, that of the wake into N elements
Syn and the fluid volume into @ volume elements V.
Using the collocation method, and setting the collo-
cation points at the centers of elements, approach A
yields

¢k(t) = Z Bk:m Xm o’"" + Z Ckzm ¢m eokm

m=1

=+ Z ka ¢m Okm ZFkn A¢ %okn

=1 n==l

N
+ ZGkn Adpn)%rn + ZHkq [bo Foxg

=1
Q

+ ZHkq [bo, %0 +2Hk by (8)
=1

(where Xm =8¢/0no —1no(Xm) - bo(X,,), and [...]%%mn

denotes evaluation at the retarded time t — 6, ),
whereas for approach B one obtains
¢ Z Bkm Xm Ok"‘ + Z Ck:'m ¢m Bkm
m=1
M .
+ Y Dim [dm]P%m + }: Fen [App]P0en
m==1 n=1

N Q
+ ) Gin[Adnl%n 43 Higloo, ™ (9)

n=1 g=1

The coefficients of the linear part of equations 8 and
9 are identical for both the formulation

N 3 8Go,
_//Sm Go, dS, Cim = //m S5, - (10)

whereas the nonlinear ones are considerably different.
Indeed, for approach A we have

Hkq = —// VoGode
Vq

Hy = // Go, VobxdV (11)
Vg

Hy, = // Go, dV
Vq

whereas for approach B we have

// s Go,dV (12)

In addition, we have
—— [ab ob _]
0 o . 1 0 e —
0= V. [b] + [Bt + VB] (13)
where V - [13]9, the mean value of V - b on each el-
ement, is calculated as the flux of b through the

boundary 8V,
]
= AV
q Vq //vq

= Vqﬁ{wq[b] ‘ndS (14)

being n, the unit normal to the surface 9V,. Note
that the first formulation requires the evaluation of
seven coefficients for each pair kg (two vector quanti-
ties plus a scalar one), whereas only one single scalar
is needed in the second approach. Considering that
the number of nonlinear coefficients is proportional to
the square of the number of elements in the field, can
be easily seen that approach B is much more conve-
nient from a numerical point of view, in both terms
of computer time and storage space.

V- [b]

4. Artificial dissipation

In order to capture shocks, the present formulation
needs the addition of dissipative effects in the super-
sonic region of the flows. The first form of conserva-
tive artificial dissipation for a boundary integral for-
mulation is presented in Morino and Iemma (). The
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schemes presented here are the extensions of that first
approach to different forms of the dissipative terms.
In particular, four different schemes are considered
and applied to the boundary integral equation pre-
sented above. In approach A, the artificial dissipa-
tion is included in the form of linear and nonlinear
artificial viscosity, as well as artificial compressibil-
ity, whereas, for approach B, a flur upwinding tech-
nique is applied in the evaluation of b-n on aV,. All
these concept are an adaptation to the boundary in-
tegral equation method of existing CFD techniques
(see Ref.(**) and(® for a historical review).

Artificial viscosity

In approach A, a technique for including dissipa-
tive effects in the full-potential equation deals with
the addition of artificial viscous terms within the su-
personic region of flow. These terms should be pro-
portional to upwind derivatives of the velocity in the
local direction of the flow, This technique could be
considered as a direct evolution of the original type-
dependent differencing, introduced by Murman and
Cole(®) for the non conservative TSP equation, ex-
tended to conservative TSP by Murman(?, and to
the full-potential equation by Jameson for both the
non conservative(® and the conservative(*?) forms of
the equation. The adaptation to the present bound-
ary integral equation formulation is considered in two
different ways. In the first one, the viscous correc-
tion is introduced at the level of the evaluation of the
z—component of the velocity. The modified quantity
has the form

N "

where ¢S indicates the centered finite difference ap-
proximation for the xz—derivative of the potential,
and pu{M) represents the switching function that ac-
tivates the dissipation terms where M > 1. The
typical expression suggested in the literature for u
is p(M) = Cmax [0,1 — M./ M?], where M, is a cut-
off Mach number, and C is a constant. The use of
M, was introduced in order to avoid the occurrence
of instabilities, due to the discontinuity of the slope
of the function (M) € C° This is accomplished
by moving the commutation slightly below the sonic
point. A new expression for the switching function is
introduced by Iemma(®) in order to achieve the same
stability with M, = 1. The function p(M) € C* is

C

w(M) = T e M) (16)

where X controls the slope of the function at M = M.
Numerical experiments revealed an increased stability
using the Eq. 16. This formulation has been applied

to two- and three-dimensional analysis, revealing a
good agreement with other numerical solution of full-
potential and Euler equation.

The expression of % in Eq. 15 is introduced in the
Bernoulli theorem (to evaluate p/po), and then in
Fq.2. It can be shown that the dissipative term actu-
ally added to the inviscid nonlinear term is nonlinear.
In the second approach, the artificial viscosity term is
introduced as an artificial mass-flux in the evaluation
of the nonlinear source terms

a 0 [0
] :0+As—é; [}l/b—; ('5%)] (17)

After the integration by parts (approach A) the above
expression assumes the form

~ - o
kabk——-AS,u/k ﬁ

| i (18)

k

where i represents the unit vector of the z direction.
The latter approach yields a linear artificial viscous
term. This peculiarity seems to have a favorable in-
fluence on the stability of the iteration process.

Artificial compressibility

St:ll for approach A, including the dissipative ef-
fects only in the calculation of the density, results
in a different interpretation of the artificial dissipa-
tion terms. This point of view, first proposed by
Eberle(®), generalized by Hafez, South and Murman®®
and Holst and Ballhaus,®®) and known as artificial
compressibility, has been successfully applied in the
past to the finite element solution of the full poten-
tial equation. The adaptation to the boundary inte-
gral formulation is very simple. Consider the modified
density

dp
Js
where s is the streamwise direction, the dissipative

effects are introduced by substituting p with g in the
calculation of the nonlinear terms

b= (1-—’1>v¢-—Uw (—’7—+Uﬁ%> (20)

Poo Poo 03 O

p=p—n(M)As (19)

Flux upwinding

In approach B the nonlinear terms are not inte-
grated by parts, and the evaluation of V - b is re-
duced to the evaluation of the flux of b through the
boundary of each element V,. The introduction of
dissipative terms in such a formulation can be easily
done using a so-called fluz upwinding scheme. This
class of dissipation schemes derive from an accurate
reformulation of the artificial dissipation concepts, in
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order to develop monotone converging schemes for
the numerical solution of the Euler equation. First
application of this technique are due to Engquist and
Osher(®) for the small-disturbance equation, and to
Osher(?) for the full-potential equation. A very gen-
eral form for these schemes can be given by denot-
ing with f; 1/ 5, fix1/2,5, fij+1/2, fij—1/2 the mass
flux flowing through the four faces of the element sur-
rounding the control point x;;, and by identifying i as
the index following the local stream direction. Dissi-
pative effects are introduced at supersonic points by
d

means of the modified flux f% , /2,5

Fia; = fixryo; — Dixiya (21)

where D represents a general form of dissipation.
In the present formulation we have fiii/p,;, =
b- n[i +1/2,5° and for the additive term D a first order
expression is used. We obtain

of

Fhijeg = Fixyog — Mizry2 Be As (22)

i+1/2,5

This scheme, limited here to two dimensions for
sake of clarity, has been successfully applied to
three-dimensional problems. Higher-order dissipation
schemes, involving second derivatives of the density,
are currently under investigation.

5. Numerical results

The formulation presented above has been applied
to the analysis of steady two- and three-dimensional
transonic flows around fixed wings. Particular em-
phasis is given to the validation of the algorithm in
subcritical and supercritical regimes, through com-
parison with existing numerical solutions of the full-
potential and Euler equation. Indeed, as mentioned
above, the full-potential model is exactly equivalent
to the complete Euler model, since no entropy or vor-
ticity sources (such as strong shock waves) are present
in the field. Moreover, even if weak shock waves oc-
cur, comparisons between the two formulations are
meaningful, since the entropy jump introduced by the
shock remains negligible. The applications presented
in the following deal with both approach A (nonlinear
terms integrated by parts) and approach B (nonlinear
terms in divergence form). Two-dimensional, steady,
subcritical (no shock waves) problems are presented
first, and compared to numerical solution of the Euler
equation, in order to validate the nonlinear algorithm.
Note that the steady solution is obtained by march-
ing in time, and that a two-dimensional problem is ap-
proximated by a three-dimensional one with very high
aspect ratio. Results of a convergence analysis are
also presented. Two-dimensional steady supercritical

problem are then analyzed. Comparisons with exist-
ing numerical solutions of the full potential and Euler
equation are presented, including the validation of the
dissipation schemes described above. Finally, prelim-
inary results obtained for three-dimensional steady
transonic flows about fixed wings are presented.

Two-dimensional subcritical

In order to assess the accuracy of the nonlinear po-
tential model, the present method has been applied
to two-dimensional subcritical cases, and compared
to numerical solution of the Euler equation. Two dif-
ferent tests are considered: the flow around a circular
cylinder at M,, = 0.38, and a NACA 0012 airfoil
flying at Mo, = 0.63 with angle of attack a = 2°,
These test cases are choosen just below the critical
(4.e., sonic) conditions, in order to ensure a strong
influence of the nonlinear terms, and, at the same
time, to guarantee the isentropicity of the flow. The
results of the present methodology are compared to
accurate numerical solution of the Kuler equations
obtained by Lerat(*® and Dadone(*). Figure 1 de-
picts the velocity potential distribution on the sur-
face of the cylinder at My, = 0.38. The nonlinear
solution is compared to the linear potential, in or-
der to verify the influence of the nonlinearities. The
solution is strongly affected by the nonlinear terms,
as confirmed by the pressure coefficient distribution,
presented in Fig. 2. The prediction of the nonlin-
ear boundary integral nonlinear formulation shows
a remarkable agreement with both Euler solutions.
The convergence of the nonlinear terms appears to
be very fast, as shown in Fig. 3, where the time his-
tory of the quantity |RHSp+1 — RHS,|/|RHS,:]| is
presented (RHS represents all the nonlinear terms
of Eqq. 8 and 9. As we will see, the convergence
rate depends on the regularity of the computational
mesh. Non uniform meshes require a higher num-
ber of iteration to reach convergence. Indeed, a non
uniform grid is used for the test case of Figs. 4, 5, 6
(NACA 0012 airfoil at M, = 0.63 and angle of attack
o = 2°). The solution is still very accurate in terms
of pressure distribution when compared to the Euler
solutions,(** () but the steady state is reached after a
higher number of steps. Nevertheless, this number re-
mains considerably lower than that required by other
CFD methods.

Convergence analysis The subcritical problems pre-
sented have been used as test cases in order to evalu-
ate the rate of convergence of the numerical solution
as the number of elements increases. Results obtained
by the convergence analysis are presented in Figs. 7,
8 (for approach A) and 9 (for approach B). The con-
trol parameter used for the non lifting flow around the
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cylinder is the local value of pressure coefficients on
the body at § = n/2, whereas, for the lifting flow, is
the lift coefficient Cy,. The boundary integral solution
converges to a value very close to that predicted by
Lerat.(*®) This is not surprising, since the numerical
solution obtained by Dadone(") is affected, as stated
by the author, by a numerical production of vortic-
ity, inconsistent with the potential flow assumption.
When we focus our attention to an integral quantity,
such as the lift coefficient, these small differences to-
tally disappear. The boundary integral solution con-
verges to a value in excellent agreement with both the
Euler solutions, and this is true for approach A (Fig.
8), as well for approach B (Fig. 9).

Two-dimensional supercritical

The present boundary integral method is capable
of capturing sharp shocks, when they occur. Fig. 10
depicts the pressure distribution on the surface of a
cylinder at Mo, = 0.5. The integral solution (ap-
proach A with nonlinear artificial viscosity) for two
different mesh sizes is compared to finite volume full-
potential solution.(?®) In this particular case, no Euler
solutions are considered as reference results, since the
strenght of the shock yields a strong entropy jump;
in this condition, potential and Euler model are no
longer comparable. The discontinuity in pressure pre-
dicted by the integral method appears as an actual
Jjump, confined within one single element. The agree-
ment with the finite volume result is very good in
terms of shock position and intensity. Note that the
convergence of the solution to the steady state is ex-
tremely fast and monotone (see Fig. 11). This occurs,
in our experiences, whenever a regular O-type grid is
used,

Fig. 12 deals with a non-lifting NACA 0012 air-
foil flying at M, = 0.82. The velocity potential dis-
tribution obtained with both boundary integral ap-
proaches is presented. The shock appears as a sharp
discontinuity for the potential slope, smeared only by
the numerical discretization used to evaluate the pres-
sure from the potential. In Fig. 13 the pressure distri-
bution is compared to finite volume solution of both
full-potential and Euler equations. This is meaning-
ful, since the entropy jump introduced by the shock
is negligible (weak shock). Note that the pressure co-
efficient distribution obtained by approach B reveals,
after the sonic point, some differences with respect
to the reference results. This lack of accuracy, con-
fined within the supersonic region of the domain, is
attributed to the different impact of the artificial dis-
sipation schemes used in the two formulation.(®) The
H-type mesh used in the computation is stretched
and not uniformly distributed. The convergence rate
to the steady state (Fig. 14) is higher than in the

preceding case in agreement with what stated above.

In the results presented above, the dissipative ef-
fects are introduced in approach A in the form of
nonlinear artificial viscosity, whereas, in approach B,
using the fluz-upwinding technique. Two additional
schemes ‘have been applied to approach A, in order
to verify the applicability to a boudary integral for-
mulation of concepts inspired by other CFD methods.
In particular, dissipation is included as artéficial com-
pressibility, or in the form of kinear artificial viscosity.
The results are presented in Fig. 15. The test case
deals with a biconvex parabolic airfoil, with thickness
ratio 0.2, at M., = 0.82. Since the concept of modi-
fied density has been widely investigated in the past
within the framework of the finite element method, a
finite element solution for the full-potential equation
is used as reference result.(*?) The pressure coefficient
distribution presents a shock discontinuity, which ap-
pears sharper for the integral solution. The agree-
ment is good for both the formulation, even if the
artificial compressibility approach presents a shock
intensity slightly increased. Furthermore, the latter
approach, which is nonlinear, presents a slower con-
vergence of the iteration to the stady state, as shown
in Fig. 16. Note that in both cases u(M) € C*.

Three-dimensional supercritical

In this section, preliminary three-dimensional re-
sults are presented. Fig. 17 depicts the pressure co-
efficient distribution on the upper and lower surfaces
of a rectangular biconvex-section wing with aspect ra-
tio 4, thickness 6%, and angle of attack « = 1.5°, at
Mo, = 0.857. The integral solution is obtained us-
ing approach B. The comparison with a finite differ-
ence solution(*®) for the root section (Fig. 18) reveals
a good agreement in terms of position and intensity
of the shock. Validation of the approach A has not
yet been performed for this particular test case (be-
cause the higher computational effort required over-
takes the storage capacity of the available machine).
In order to compare the two boundary integral ap-
proaches, a non-lifting flow around a swept, tapered
wing has been examined with both the formulations.
In this case we take advantage of the z-symmetry of
the flow, in order to save CPU time and storage ca-
pacity. The wing section is a NACA 0012 airfoil, the
sweep angle is A = 10°, and the Mach number at
infinity is My = 0.82. Figs. 19 and 20 depict the
pressure distribution on the wing surface, whereas
Fig. 21 presents the comparison of the two formu-
lations for the root section. The latter reveals that,
in the three-dimensional analysis, approach A pre-
dicts a shock slightly weaker than that obtained using
approach B. The reasons for this behaviour (totally
absent in the two-dimensional analysis) is currently
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under investigation.

References

[

8]

[10]

A. Dadone. Computation of transonic steady
flows using a modified lambda formulation. In
A. Dervieux, B. Van Leer, J. Periaux, and
A. Rizzi, editors, Numerical Simulation of Com-
pressible Euler Flows, GAMM Workshop, pages
122-137, Braunschweig, 1986. Vieweg & Sohn.

A. Eberle. A finite element method for the so-
lution of transonic potential flows around air-
foils. Technical Memorandum 75324, NASA,
June 1977.

B. Engquist and S. Osher. Stable and entropy
satisfying approximation for transonic potential
flow calculation. Mathematics of Computation,
34(149):45-75, January 1980.

Mohammed M. Hafez, M. M. South, and E. M.
Murman. Artificial compressibility method for
the numerical solution of the full potential equa-
tion. AIAA Journal, 17(6):838-844, 1978.

T.L. Holst and W.F. Ballhaus. Fast, conservative
schemes for the full potential equation applied
to transonic flows. AIAA Journal, 17(4):145-52,
1979.

U. lemma, M. Gennaretti, and L. Morino.
Boundary element method for unified transonic
aerodynamic and aeroacoustic analyses of rotors.
In 19** Buropean Rotorcraft Forum Proc., Cer-
nobbio, Italy, 1993.

U. Iemma, F. Mastroddi, L.. Morino, and M. Pec-
ora. A boundary integral formulation for un-
steady transonic potential flow. In AGARD Spe-
cialists’ Meeting on Transonic Unsteady Aero-
dynamics and Aeroelasticity, number 507, San
Diego, California, 1991.

Umberto lemma. Metodi integrali in aerodinam-
ica transonica. Tesi di dottorato di ricerca in in-
gegneria aerospaziale, Universitd degli Studi di
Roma La Sapienza, Roma, 1994,

Antony Jameson. Iterative solutions of transonic
flows over airfoils and wings, including flows at
mach 1. Comm. Pure and Applied Mathematics,
27:283-309, 1974.

Antony Jameson. Transonic potential flow cal-
culation using conservation form, In AJAA Sec-
ond Computational Fluid Dynamics Proceedings,
pages 148-161, Hartford Connecticut, 1975.

[11]

[12]

13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

2799

Osama A. Kandil and Hong Hu. Full-potential
integral solution for transonic flows with and
without embedded euler domains. AIAA Jour-
nal, 26(9), 1988.

D. J. Kinney. Finite Element Simulation of
Compressible Inviscid and Viscous Flows. tesi
di PhD, University of California, 1989.

A. Lerat and J. Sides. Implicit transonic calcu-
lations without artificial viscosity or upwinding.
In A. Dervieux, B. Van Leer, J. Periaux, and
A. Rizzi, editors, Numerical Simulation of Com-
pressible Euler Flows, GAMM Workshop, pages
227-250, Braunschweig, 1986. Vieweg & Sohn.

L. Morino. A general theory for unsteady com-
pressible potential aerodynamics. Contractor
Report CR-2464, NASA, 1974.

L. Morino, M. Gennaretti, U. lemma, and
F. Mastroddi. Boundary integral transonics for
wings and rotors. Aerotecnica Missili e Spazio,
71(1-2):52-61, January-June 1992.

L. Morino and U. lemma. Boundary integral
equations and conservative dissipation schemes
for full-potential transonic flow. Computational
Mechanics, 13(1/2):90-100, 1993.

Earll M. Murman. Analisys of embedded shock
waves calculated by relaxation methods. AIAA
Journal, 12(5):626, May 1974.

Earll M. Murman and Julian D. Cole. Calcula-
tion of plane steady transonic flows. AIAA Jour-
nal, 9(1):114, January 1971.

S. Osher. Shock modelling in aeronautics, In
K.W. Morton and M.J. Baines, editors, Numer-
ical Methods for Fluid Dynamics, pages 1179~
218. Academic Press, London, 1982.

M. D. Salas. Recent developments in transonic
euler flow over a circular cylinder. Technical
Memorandum 83282, NASA, Langley Research
Center, Hampton, Virginia, april 1982,

P. M. Sinclair. An exact integral (field panel)
method for the calculation of 2-dimensjonal tran-
sonic potential flow around complex configura-

tion. Aeronautical Journal, 90:227, June-July
1986.
P. M. Sinclair. A three-dimensional field integral

method for the calculation of transonic flow on
complex configuration - theory and preliminary
results. Aeronautical Journal, page 235, June-
July 1988.



[23] J. L. Steger and F. X. Caradonna. A conservative

finite difference algorithm for the unsteady tran-

sonic full potential equation. Technical Memo-

randum 81211, NASA, October 1980.

[24] Kadin Tseng and Luigi Morino.

green’s function method for unsteady transonic

ans Aeronautics. 1982,

0.6

Figures

0.4~

0.2+

0.2

-0.6

+  Full Potential

Linear Potential

T

Figure 1: Cilynder at M,

linear and nonlinear solutions. Approach A.

2]

®

= 0.38. Velocity potential:

) \ 1 I
-Cp ' *M‘&
PR
2.7+ 9_ "r". -, “:h._
£
1.4

- Euler (Lerat)
~ -g— Full Potential

T
0 0.2

—

T
0.4

+  Euler (Dadone}

— -o~ BEM Linear Potential

%
y

Xfc 0.6

Approach A.

1

linear and nonlinear potential vs. Euler solutions.

3

1

0.8
Figure 2: Cilynder at M., = 0.38. Pressure coeff.:

0.8 1
Figure 5: NACA 0012, M, = 0.63, a = 2°. Pressure

coefl.: linear and nonlin. potential vs. Euler.

2800

Nonlinear
flows. In David Nixon, editor, Transonic Aero-

dynamics, number 81 in Progres in Astronautics

0.8
Figure 4: NACA 0012, M, = 0.63, a = 2°. Vel.
potential: linear and nonlinear solutions.

[} 2
Figure 3: Cilynde

0 40
r at Mo
tory. Approach A.

60 8oTime Step 00

= 0.38. Convergence his-

0.05~4

BEM - linear potential

---0@-- BEM - ponlin. potential
approach A
.

BEM - nonlin, potential

T
0.2

---%-- BEM - linear potential
.

BEM - full potential A
°

BEM - full potentiai B

Euler (Lerat)

1
0.4

A 1
x/c 0.6




A1
10 ¥ T ¥ T

0 20 40 60 80Time Step 100
Figure 6: NACA 0012, M., = 0.63, o = 2°. Conver-
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Figure 7: Cilynder at M., = 0.38. Convergence for
Az — 0. Approach A.
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Figure 8: NACA 0012, M, = 0.63, a = 2°. Conver-
gence for Az — 0. Approach A.
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Figure 9: NACA 0012, M, = 0.63, o = 2°. Conver-
gence for Az — 0. Approach B.
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Figure 10: Cilynder at My = 0.5. Pressure coeffi-
cient, Approach A.
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Figure 11: Gilynder at M, = 0.5. Convergence his-
tory. Approach A.
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Figure 12: NACA 0012, M, = 0.82, o = 0°, Velocity
potential.
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Figure 13: NACA 0012, Mo, = 0.82, a = 0°. Pres-
sure coefficient.
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Figure 14: NACA 0012, M, = 0.82, a = 0°. Con-
vergence history. Approach A.
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Figure 16: 20% parabolic arc, M. = 0.82, a = 0°.
Convergence history. Approach A.

Figure 17: Rectangular wing, AR = 4, biconvex 6%,
M, = 0.857, a = 1.5°. Pressure coefficient. Ap-
proach B.
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Figure 18: Rectangular wing, AR = 4, biconvex 6%, Figure 21: Swept wing, AR = 3, NACA 0012,
Mo = 0.857, @ = 1.5°. Pressure coefficient at the My = 0.82, a = 0°, sweep angle A = 10°. Pres-
root section. sure coefficient at y/c = 1.044 section.
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Figure 19: Swept wing, AR = 3, NACA 0012,
My = 0.82, a = 0°, sweep angle A = 10°. Pres-
sure coefficient. Approach A.

x/c
Figure 20: Swept wing, AR = 3, NACA 0012,
My = 0.82, a = 0°, sweep angle A = 10°. Pres-
sure coefficient. Approach B.
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