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Abstract

The paper describes an unsplit Generalized Riemann
Problem (GRP) method for solving numerically the
equations governing time-dependent compressible flow in
two space dimensions. Unstructured curvilinear grids are
used for efficient treatment of flows subjected to complex
geometrical boundary conditions. The time-integration of
the hydrodynamic conservation laws consists of two
distinct phases. First, cell-interface fluxes are computed
using analytical solutions to Generalized Riemann
Problems resolving discontinuities in flow and flow
gradients between discretised approximations at adjacent
cells. Second, these fluxes are used in a finite-volume
scheme to integrate the hydrodynamic conservation laws
by a single time-step in each cell. The versatility and
robustness of the method are demonstrated by treating
complex shock reflections from airfoils at high angles of
attack. Solutions exhibit a high degree of resolution of
shock and contact discontinuities. It is concluded that the
method shows promise in handling compiex flow fields
arising from shock wave diffraction phenomena,
combining the features of high resolution and scheme
robustness.

Introduction

Shock wave diffraction around airfoils at a high angle
of attack results in complex flow features. Mandella and

Bershaderl1] investigated the unsteady process in a shock
tube experiment. A schematic description of their
experimental apparatus and the investigated flow field are
shown in Fig. 1. In the recent study by Lee and
Bershader!2] the same experimental setup was used as the
first step in studying head-on parallel blade-vortex
interaction. An NACA 0018 airfoil at angle of attack of
300 around which the shock wave diffracts was used as a
vortex generator. At the trailing edge of the airfoil a two-
dimensional shock-induced starting vortex was generated
and convected downstream to interact with a target NACA
0012 airfoil. Moon & Yeel3] and Young and Yeel4]
simulated numerically the shock wave diffraction around
an airfoil using a TVD scheme.

The present paper describes an unsplit GRP method
for two-dimensional compressible flow around airfoils. It
uses a curvilinear grid to simulate the complex flow
resulting from shock wave diffraction around the airfoil.
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Fig. 1 Illustration of the facility used for studying
experimentally the shock wave interaction with an airfoil.

The Generalized Riemann Problem (GRP) scheme was
originally proposed by Ben-Artzi and Falcovitz[3] for
compressible quasi-one-dimensional duct flows and was
later extended to multi-dimensional flows employing
Strang's operator splitting; at present it was applied to
more complex flow problems[6s7’8]. The method
described subsequently pursues a finite-volume form for
the integration of the conservation laws and body-fitting
coordinates. An advantage of this technique is in the
relatively easy implementation of the flow boundary
conditions. An unstructured data organization is adopted to .
cope with the complex flow simulation.

In the following the main features of the numerical
scheme are given and the kernel steps needed for solving a
Generalized Riemann Problem are outlined.

Numerical Method

The Euler equation may be written in two-dimensional
conservation form as
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1t consists of four equations expressing conservation of
mass, momentum in the x and y directions, and energy of
the fluid. In Eq. (1) U is the state vector expressing the
variables of density, the two-components of momentum
and the total energy. The vectors F and G represent the
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convective fluxes. The equations are integrated over an
area S as

3U OF 3G )._

The integration of the second integral appearing in Eq. (2)
is evaluated using Green's theorem,

% [ ! UdS+¢ (Fn, +Gn,)dL =0 3)

The flow domain is divided into a collection of
quadrilateral cells. Equation (3) is considered for each one
of the cells and the averaged values of the state vector in
cell i obeys a partially discretised ordinary difference
equation as follows:

d
S,('&%) = ’"2 (an + Gny)ALon—-cell—edge (4)
i i=1

4
here Z means summation of fluxes over the four sides

i=1
of the i-th cell and the flux functions (Fny + Gny) on the
cell edges are obtained by solving a Generalized Riemann
Problem arising at the cell boundaries from a piecewise
approximation of the flow in each cell. GRP initial
conditions include jumps in flow gradients as well as flow
variables. Local characteristic analysis for the GRP leads
to a solution for the primitive physical variables at the
cell boundary to a second-order accuracy which is
subsequently used in a conservation law scheme,
producing a high resolution shock capturing capability
and also second-order accuracy in the region of smooth
flows.

The grid generation is conducted in the following
manner. First an algebraic grid generation method is used
to generate a C-type grid around the airfoil as shown in
Fig. 2a. All the data are stored in a matrix form, i.e.,
x(1,j), y(i,j), etc. Then the flow domain is specified as a
rectangular with the airfoil positioned at about its center.
A reorganization procedure is carried out that rotates the
same angle as the angle of attack of the airfoil and records
all the data for the cells within the rectangular domain
into a one-dimensional array. All others, not in the
domain are excluded. The flow domain with unstructured
data organization is shown in Fig. 2b having a feature of
zig-zag boundaries, on which the computation is to be
conducted.

Numerical Results

A description of the physical problem to be computed
is shown in Fig. 3. A planar shock wave of Mach number
1.5 moves towards an NACA 0018 airfoil positioned at
an angle of attack of 309, This is an approximation to the
flow conditions existing at the moment of impingement
of a diffracted curved shock wave with the airfoil in

(a) ¥

(b)

Fig. 2 Geometry of grids used in the numerical solution.

Mandella and Bershader's experiment[l]. The ambient

pressure and temperature are set at 1 atm and 15°C,
respectively. The initial condition is obtained from the
Rankine-Hugoniot shock relations. Along the upper and
lower boundaries of the flow domain the planar shock
wave condition is applied for tracing the leading shock
wave. Along the upstream (or downstream) boundary an
Inflow (or outflow) condition is implemented. A solid
wall condition is imposed along the airfoil surface.

Fig. 3 Schematic description of the investigated flow field
prior to the collision between the planar shock wave and
the airfoil.
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We define here a dimensionless time E, t= Eam, and

: - = X y .
coordinates (x,y) = —,T where L is the length

of the airfoil chord and a.. is the ambient acoustic speed.
Initially the incident shock wave is located at a pre-

specified distance ahead of the airfoil. We define t =0 as
the time when the incident shock wave hits the airfoil and
the interaction process starts.

In Fig. 4 five sequential interferograms describing
various steps in the shock wave airfoil interaction recorded

in shock tube experiments (1] are given. A numerical
simulation of this interaction process, at smaller time
intervals, is shown in Fig. 5. A sample of distribution
curves for the flow Mach number along the airfoil surface
for a few of the cases shown in Fig. 5 are given in Fig. 6.

The processes demonstrated by these two sets of
results have clear similarities (Figs. 4 and 5). Due to the
positive angle of attack of the airfoil on its upper surface
close to the leading edge, the flow undergoes a rapid
change from compression to expansion. Since the initial
flow deflection on the airfoil upper surface, in proximity

to the leading edge, is higher than 50° the incident shock
wave will initially reflect as a regular reflection (not
shown in Fig. 5). Soon thereafter the reflection will
change into a Mach reflection; this type of reflection is
clearly shown in Figs. 5a to 5g. The contact surface
starting at the triple point (where the incident shock wave,
the reflected shock wave and the Mach stem meet) is
hardly noticed in the isopicnics shown in Figs. 5a to 5g
due to the small density variations through it.

On the lower surface, the fluid is always under
compression behind the leading shock wave and the angle
between the leading planar shock wave and the tangent of
airfoil surface increases monotonicly. Now the transition
from a regular to a well-defined single Mach reflection is
clearly visible (Figs. 5a, b and c¢). A very sharp contact
surface emanating from the triple point is also visible in
Figs. 5b to 5f.

A secondary, back-stream facing, shock wave is
formed on the airfoil's upper surface close to its leading
edge. This secondary shock wave is needed for matching
between the low pressures existing behind the expansion
wave, seen just behind the airfoil leading edge, and the
high pressure zone which exists behind the lower part of
the incident shock wave (Mach stem) on the upper surface
of the airfoil (Figs. 5g to 5j). This secondary shock wave
terminates the supersonic flow pocket which exists on the
airfoil's upper surface behind its leading edge. The
formation of this secondary shock wave and the
supersonic flow pockets which ends at this shock is easily
detectable in Fig. 6 where the flow Mach number
distribution around the airfoil is shown. In Fig. 6a the
supersonic pockets terminate by a back-stream facing
compression wave. At a later time (Fig. 6b) this
compression wave coalesces into a well-formed shock
wave.

At about t= 0.55 after the impingement of the
incident shock wave on the airfoil, the Mach stem on the
lower surface starts to diffract around the sharp trailing

various time steps during the shock wave interaction with
an NACA 0018 airfoil.
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erical results showing various steps during the
interaction with an NACA 0018 airfoil.

shown in the figures
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Fig. 5 Continue from previous page.

edge (Fig. 5f). Due to the subsonic flow behind the Mach
stem and the rapid flow expansion around the sharp
trailing edge, a well-defined shock-induced starting vortex
is formed there (see Fig. 5g). The Mach stem continually
wraps around, moves forward and interacts with the
downward moving curved shock wave on the airfoil's
upper surface (Fig. 5h). The interacting pattern is first
regular and finally develops into an irregular interaction at

about t=0.89 (Fig. 5j). The lower branch of the curved

shock wave interacts with the induced vortex and then
knocks it off the airfoil surface, see Fig. 5j.

(a)

n (b)

0.0

Fig. 6 Flow Mach number distribution along the airfoil's
surfaces.

Additional calculations were conducted for a much
stronger incident shock wave i.e., one for which Mg = 8.
The obtained results are shown in Fig. 7. In the
computations, results of which are shown in Fig. 7, the
equation of state for a perfect gas was used with one
change; the ratio of specific heats, y was altered from 1.4
to Y = 1.35. This run was conducted mainly in order to
show the robustness of the proposed method in
simulating high Mach number flows without tuning or
readjusting the parameters or schemes. Of course, for an
accurate simulation of such a high Mach number flow,
real gas effect must be accounted for. Comparing the
results shown in Fig. 7 with those of Fig. 5 clearly
shows that the secondary shock wave in the former (Fig.
7) is further away from the airfoil's leading edge than in
Fig. 5. Furthermore, complex Mach reflection forms on
the lower surface (Fig. 7a). Due to the supersonic flow
behind the incident shock wave, the flow undergoes a
Prandtl-Mayer expansion around the airfoil's trailing edge
rather than a vortex-forming expansion as was the case
before (Fig. 5). In the present case (Fig. 7) another
secondary shock wave forms to terminate the expansion
fan around the trailing edge and match it with the lower
speed and higher pressure flow behind the diffracted Mach
stem.

All computations are performed with a Silicon
Graphics Crimson IRIX 4.0.5 computer. The total
number of cells covering the flow domain is about
170,000. The above-presented results clearly show the
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high resolution of the method in capturing all complex
flow features and the robustness of the code.

Conclusion

The paper describes a finite volume Generalized
Riemann Problem method for solving numerically a two-
dimensional, inviscid compressible flow. Unstructured
curvilinear grids are used for efficient treatment of flows
subjected to complex geometrical boundary conditions.
The versatility and robustness of the method are
demonstrated by treating complex shock wave reflections
from airfoils at high angles of attack. The obtained
solutions exhibit a high degree of resolution in capturing
shock and contact discontinuities. A comparison between
experiments (interferograms) and numerically obtained
isopicnics confirms the reliability of the present
numerical results. It is concluded that the method shows
promise in handling complex flow fields arising from
shock wave diffraction phenomena, combining the feature
of high resolution and scheme robustness.
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Fig. 7 Numerical results showing various steps during
the interaction of a strong shock wave (Mg=8) with an
NACA 0018 airfoil. Lines shown in the figures are
lines of constant density.



