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Modern construction techniques in aerodynamic surface construction allow long runs of Natural Laminar Flow (NLF) along fuselages
provided that their shape has been properly designed. A numerical optimization iterative procedure for drag reduction by shape
modification of axlalsymmetric and three-dimensional bodies, has been developed. To this aim we propose a geometric
parameterization of a general 3D body. Reduction of drag through an extension of laminar flow runs, for 3D and axialsymmetric
bodies, is shown. An Investigation of existing transition prediction methods has been done with special regard to their applicability to
high Reynolds numbers range. A regrettable lack of experimental data at Reynolds numbers typical of real airplanes is recognized. A
modular numerical code developed to perform shape optimization for drag reduction has proven to be efficient and reliable.

List of Symbols
L  =body length

4,, = nondimensional maximum frontal area, A, /L2

C, = drag coefficient based on maximum frontal
area

U, = frestream velocity

u, =nondimensional external local velocity,
=U/U,,

Cp = pressure coefficient

Jr =fineness ratio

J  =nondimensional equivalent area, =C,, 4,,

x  =nondimensional longitudinal coordinate, =x/L

x,, = nondimensional longitudinal location of

maximum thickness, =x_/L
x, = nondimensional longitudinal coordinate at

transition

X,gp = nondimensional longitudinal coordinate at
turbulent separation

s = nondimensional surface length along body
streamline

6  =boundary layer momentum thickness

H  =boundary layer shape factor

T-S = Tollmien-Schlichting

n = logarithmic exponent of amplitude-growth
ratio of boundary layer disturbances

R, = Reynolds number based on frestream
conditions and body length

R, =Reynolds number based on frestream
conditions and longitudinal coordinate along
the body

Ry = Reynolds number based on frestream
conditions and &

Fop, = Objective function

Y, z = lateral and normal coordinates
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Introduction

Present airplane construction techniques result in the
production of smooth and accurate aerodynamic
surfaces. These surfaces allow for long runs of natural
laminar boundary layer flow (NLF), with a resultant
drag reduction.

A major portion of the past research for achieving
NLF, has been focused on airplane lifting surfaces @,
However, fuselage shaping to increase natural laminar
flow extension has received less attention in the
literature, except for sailplane and hydrodynamic
bodies.

The importance of fuselage skin-friction drag is well
known. It can reach about 70% of the total profile drag
when wing and tail surfaces work in laminar flow @, It
is clear that a significant reduction of the total drag
will be obtained through an appropriately shaped
fuselage. The importance of the laminar flow area
extension on the drag coefficient is shown in tab. 1.
Drag coefficients for an axialsymmetric body with
fineness ratio of fi=S are listed for various transition
locations.

The present study investigates the possibility of
obtaining a fuselage shape with a large extension of
laminar flow, not only for axialsymmetric bodies, but
also for general three-dimensional configurations.

The main goal of this work is to refine and validate
computational methods for the design of
axialsymmetric and general 3D bodies with a large
extension of natural laminar flow area.

Therefore, a computational iterative optimization
procedure to design both low drag axialsymmetric
bodies and general 3D aircraft fuselages has been
developed.
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The design code is based on the numerical
optimization technique and is made up of several
replaceable modules, each of which addresses and
solves a part of the complex problem.

Particular attention has been given to the validity of
existing transition prediction methods, especially for
high Reynolds number flows for which there is lack of
experimental data.

Previous Studies

A comprehensive review of previous research has been
made by Dodbele et al. ©,

Many investigations have been conducted, especially
concerning  under-sea  bodies and  sailplane
configurations. However litfle experimental data is
available for flows characterized by high Reynolds
number (based on body length), i.e., for Reynolds
number range of 30 + 70x106. It seems that the
transition from laminar to turbulent flow occurs
beyond the point of maximum thickness. This would
indicate that the pressure gradient on the forebody of
the configuration is the predominant factor in

designing the body shape.

Xp

se2 . *

_(transition location) Sy
0.50 0.035
0.40 0.042
0.20 0.052
0.10 0.055

*reference area for Cpy calculation was maximum frontal area

Table 1 Drag coefficients for axisymmetric body (fr=5)

Many computational studies have been made in the
past for drag reduction of axialsymmetric bodies,
which include those done by Zedan and Dalton @,
Parson and Goodson ©,

Dodbele et al.® has proposed a method to obtain
minimal drag for three-dimensional bodies. The
method includes summing up a cambered mean line to
an axialsymmetric thickness distribution, which was
previously optimized to have minumum drag.

In this work we propose a method © to design the
optimal shape of a general three-dimensional body,
modifying directly the original geometry and
investigating the effect of the local curvature variation
on pressure distibution, transition and total drag.

Aerodynamic Analysis

The acrodynamic analysis is performed using an
inviscid potential field solver coupled with a viscous
solver which calculates the boundary layer
development along the body.
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Axialsymmetric inviscid calculation

We have developed a code based on axial singularity
distribution, as proposed by Von Karman O,
Comparison of the code results with analytical
solutions and calculations for some bodies which
present a variation of longitudinal curvature, have
shown that this method is accurate in predicting
pressure distribution on regular bodies (see Fig. 1) but
fails for bodies like that shown in fig. 2.

The main advantage of this method is the very low
computational cost. This is an attractive feature
considering the iterative procedure employed for the
shape optimization.

Erratic behaviour of solutions based on axial
singularity distribution was also shown by Hess ®,

Three-dimensional inviscid calculation

One way to overcome the problems stressed previously,
is to employ a three-dimensional panel code based on
surface singularity distribution. Because one of the
main goals of the present work is to design, through
numerical optimization, general three-dimensional
bodies, we developed a 3D numerical code based on
surface singularities distribution ©,

To validate our code, we calculated inviscid pressure
distribution for several different configurations. For all
bodies tested, the code performed well. Comparisons
with experimental or other calculated data showed a
high level of agreement. ( An example is shown
in fig. 2).

Boundary layer calculation

An integral axialsymmetric boundary layer method has
been coded and used to simulate the effect of viscosity
on the external inviscid pressure distribution. The
energy equation has been used in conjunction with the
Von Karman momentum equation and Drela 2D
closure correlations ¢9 have been coded for both
laminar and turbulent parts of the boundary layer.

analyticot solution
AR RS oxio! source distribution  § ]
Ve

1.2

0.8
0.6

()

08

° ' 1.2

Fig. 1 Comparison of analytical and numerical solution for an
ellipsoid of fr=4
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Fig. 2 Comparison of numerical and experimental solution for a
spheroid with anular bump

Drag is evaluated with the Young formula ¢V which is
based on integral quantities of the boundary layer,
evaluated at the body's trailing edge.

For general three-dimensional bodies we have
calculated the axialsymmetric boundary layer along
streamlines contained in the fuselage symmetrical
plane (see fig.3). The calculations were obtained from
the 3D velocity field, using the radius distribution of
an "equivalent axialsymmetric body". This was
obtained from the original body by assigning a circular
shape (of the same area) to every section.

Fig. 3 Dorsal streamline along a fuselage

Transition

Because an accurate prediction of transition onset is a
crucial point in designing bodies with large natural
laminar flow areca, we tested various methods and
compared them to experimental results,

The methods used in such a comparison are those of
Michel (2 | Smith ¢ H-Rx 49, Eppler 9 and the e
method. The e" method is a result of Van Ingen's work
but we used the version proposed by Drela @9,

In particular the »n factor is obtained along the
streamline using the following expression :

n)=[ 2,00 ®

where s, is the point where Re, assumes its critical

value. In general the onset of transition corresponds to
avalue of nof9.

The body used for the comparison is a body with a
large extent of favourable pressure gradient (fig. 4).
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Fig. 4 Pressure distribution and geometry for body
of revolution (fr~5)

We tested the different methods at various Reynolds
numbers based on total fuselage length. It can be seen
from table 2, that at lower Reynolds numbers almost
all methods predict transition close to the pressure
peak, while for higher values of Reynolds numbers
some of them (for example Michel) secem to be
insensitive to the increased Reynolds number.

Body of fig. 4 - transition location |

Rey (million) | Michel | Smith | H-R, | Eppler | ¢'(n=9)
1 .74 .74 .73 74 74
4 74 74 73 .73 74
20 .74 .74 43 48 44
40 74 74 29 33 17

Table 2 Transition locations for various methods - body of fig. 4

Fig. 5 shows the influence of Reynolds number on n
growth. Fig. 6 shows the development of the boundary
layer in terms of Re, - Rey at different values of

Reynolds numbers. The same figure represents the
transition curve as proposed by Michel. It is clear that
at higher Reynolds numbers such a method does not
work well because it predicts transition only if adverse
pressure gradients are present, independently from the
Reynolds number value.
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It should be noted that there is a lack of experimental
data regarding the transition onset at high Reynolds
numbers. In general we can say that at those numbers
there is a strong influence of external streamline
curvature on transition onset.

Furthermore, we are assuming that transition occurs
always for spatial growth of T-§ disturbances.

In general and especially for general three-dimensional
configurations, the instabilities due to crossflow effect
should be monitored.

Obviously to have an accurate transition prediction, a
linear stability analysis of laminar boundary layer
velocity profile, should be performed. However, this is
impratical especially for an iterative design process
because of the long computational time needed to do
such an analysis,
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Fig. 5 Logarithmic disturbances amplification factor growth for
body of fig. 4 at various Reynolds number

The prediction of transition onset is particularly
difficult for bodies characterized by a high fineness
ratio because the pressure distribution is almost flat for
a large part of the streamline, leading to an uncertainty
in the predicted transition point.
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Fig. 6 Boundary layer development for body of fig. 4 and

Michel/Smith transition prediction curves.

NLF design optimization procedur

A computational design procedure has been developed
to obtain extensive runs of laminar flow, in order to
achieve lower drag coefficient for axisymmetric and
three-dimensional bodies.

The numerical optimization method includes three
elements : a constrained minimization program, a
direct acrodynamic code (a solver to evaluate at each
iteration the objective function that we want to
minimize) and a parametric modification technique
applied to the geometry. The computational design
procedure used to obtain natural laminar flow bodies is
described in the flow-chart presented in fig. 7.

As an optimizer, the constrained-minimization method
proposed by Vanderplaats ®9 has been used in the
present investigation.

The objective function to be minimized is taken tobe a
function of a certain number of parameters :

Fou~F(x,, X,y .0 Xy) @

These parameters must satisfy some constraints
conditions :

Gj(x,,x,, ........... X)S0  =L.N, 3)
and must be included in prescribed limits :

xLl<x <xU i=1,..N )
The numerical optimization in acrodynamics has been
used previously and tested by the authors for the
optimization of mono and multi-component airfoils @7,
1t was observed, and it will be re-stated in this work,
that a good choice of the geometric parameters is
imperative in order to obtain good optimization
results. It is important to chose parameters which the
objective function is more sensitive to.

Furthermore, it is important to choose the correct
number of parameters for geometric representation
because there must be sufficient numbers to allow
significant shape modifications, An excess number of
parameters could render obtaining the desired results
infeasible.

It is important to note that it is of fundamental
importance to introduce and control both geometric
and aerodynamic constraints for the problem under
consideration. This will help to avoid obtaining
unsatisfactory solutions and will force the optimizer to
achieve good solutions. The selection of pertinent
parameters requires superior knowledge of the physical
problem by the designer.

Results of axialsymmetric bodies design

Designing minimum drag axialsymmetric bodies is a
common problem for hydronautic applications and in
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some cases for glider fuselages or tip tanks in the
aeronautical field.

- J SHAPE

location in this condition is mainly influenced by the
shape of the pressure distribution and not by the

pressure peak location).
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Fig. 7 Flowchart of design iterative procedure for NLF fuselage.

A preliminary check of validity of aerodynamic
analysis has been made for an axialsymmetric body
proposed in ref. 18 at various Reynolds numbers.

The geometry and the pressure distribution of this low
drag axialsymmetric body is shown in fig. 8.

The body presents, at "low” Reynolds numbers (Re, up
to 20 million) a transition location immediately after
the pressure peak.

Fig. 9 and 10 show the transition location and the drag
cocfficient based on maximum frontal area, varying
the Reynolds number.

For Re, less than 9 million the transition location
numerically evaluated is fixed at the pressure peak
location and the drag coefficient decreases with Re,
because the boundary layer becomes more thinner.

For Re, greater than 20 million the laminar boundary
layer becomes more unstable and the transition
location moves toward the leading edge.

Due to the laminar flow extent reduction, the drag
coefficient C, begins to increase and it reachs a
maximum value when the transition is Jocated near the
leading edge.

For greater Reynolds numbers, the drag coefficient
slowly decreases due to the effect of viscous stresses
that now play a lesser role with respect to inertial
forces.

It is possible to define, for every slender body, a
Reynolds number range in which there is no effect on
the transition location (fixed approximately at the
maximum thickness location) and a range in which the
transition location is strongly effected even by a small
variation of the Reynolds number value (the transition
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A comparison with experimental data ® for an
axialsymmetric body tested in water up to a Reynolds
number of about 16 million, shows agreement between
numerical and experimental values (fig. 11).

There is uncertainty about the transition location at
high Reynolds numbers (Re, = 40 million) and no
experimental data is available to suggest how much the
laminar flow extension is influenced by high values of
Reynolds number.

The geometric parametrization used to represent
axialsymmetric bodies is the same adopted by Parson
and Goodson © . The body of revolution is described
by seven parameters, and the fineness ratio fr.

One of the most important parameters is the location
of maximum thickness x, , that strongly influences
the transition location at low Reynolds numbers.
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Fig. 9 Predicted transition location for F57 body of revolution
(ref.18)

Starting from an initial configuration which present a
fineness ratio of 5.0 and a x,,, value of about 0.5 , drag
optimization has been realized. This occurred through



larger extensions of natural laminar flow, in two
Reynolds number conditions, i.e. for Re, =4¢6 and for
Re, =40¢6.

The fineness ratio f+ in the optimization process was
fixed and geometric and acrodynamic constraints were
imposed. In particular the maximum thickness
location x,, was limited to the value of 0.8 (to avoid
blunt trailing edge shapes) and completely attached
flow was imposed at the trailing edge (xsep >.95).
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Fig. 10 Predicted drag coefficient (based on maximum frontal
area) for F57 body (ref. 18)
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Fig. 11 Comparison of calculated and experimental drag
coefficients for Hansen & Hoyt body (f=4.5) (ref. 11).

At Re =4c6 the code provides a larger extension of
laminar flow than the original body and a drag
reduction moving the location of maximum thickness
toward the trailing edge. In this way a larger
favourable pressure gradient zone is obtained (fig. 12).
The transition location moves from x,=.60 to x,=.76
and the drag coefficient based on maximum frontal
area is reduced by about 15% (from 0.0206 to 0.0180).
Fig. 13 shows the distribution of the amplification
factor n for the two configurations. It can be seen that
a stronger favourable pressure gradient delays the
location at which the amplification of disturbances
begins inside the boundary layer (n >0).

The optimization of the same initial shape at a
Reynolds number of 40 million, shows interesting
results,
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Fig. 12 Axialsymmetric drag optimization - Rey =4¢6 - geometry
and pressure distribution for initial and op{tmlzed shape.
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Fig. 13 Logarithmic disturbance amplification factor growth for
initial and optimized shape at Re; =de6

To obtain more conservative results, and to take into
account greater instability of axialsymmetric boundary
layers, the value of », at which transition is thought to
take place, is set at 6 instead of at 9.

For the initial shape, at this Re  condition, the
transition location is x,,= 0.23 and the drag coefficient
is C,=0.035.

The optimized shape presents a pressure distribution
with a peak closer to the leading edge than that
predicted for the initial shape (see fig. 14).

The different growth of » for the two shapes (fig. 15)
shows that the different curvature of the pressure
distribution delays the growth of n at higher values of
X.
The transition location for the optimized shape is
x,=0.32 and the drag coefficient is C;=0.024, showing
a reduction of about 30%.

It is clear that at this high Reynolds number condition,
the curvature and the shape of the pressure distribution
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along the forebody , influences the transition location
more than the maximum thickness location (the flow is
not able to remain laminar up to the peak).
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Fig. 14 Axialsymmetric drag optimization - Reld=40e6 -
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Fig. 15 Logarithmic disturbance amplification factor growth for
initial and optimized shape at Rey =40e6

Results of Three-Dimensional Fuselages Design

With the aerodynamic analysis technique previously
described, we have done a preliminary drag calculation
for two different fuselage shapes to estimate the
influence of the forebody.

The two shapes tested are a conventional transport
aircraft fuselage and a business aircraft fuselage
(PIAGGIO P180).

Figg. 16 and 17 show the pressure distribution along
the top and the bottom surface for the two fuselages.
The transition location on the top is x,=.16 for the
conventional transport fuselage and x,=.33 for the
business aircraft fusclage. The business aircraft
fuselage shape presents a smoother and longer
favourable pressure gradient.

In table 3 transition locations and drag coefficients for
the two fuselages are shown.

The business aircraft fusclage presents a drag
coefficient of 0.043, with respect to the value of 0.054
relative to the transport aircraft fuselage.

The equivalent area, indicated by f (product of drag
coefficient for nondimensional maximum frontal area)
is 20% lower for the business aircraft fuselage.

Figg. 18 and 19 show the pressure and the skin friction
coefficient distribution around the two fuselages.
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Fig. 16 Pressure distribution on dorsal midline for a business
aircraft fuselage (PIAGGIO P180) and a transport aircraft
fuselage
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Fig. 17 Pressure distribution on ventral midline for a business
aircraft fuselage (PIAGGIO P180) and a transport aircraft
fuselage

To set up an iterative computational procedure, to
design three-dimensional fuselage shapes, we had to
solve the problem of the parameterization of such
shapes. The problem is to represent a modification of
an initial shape with a limited number of parameters.

By using a parameterization shape relative to the
airfoil shape modification @® , that is based on the
Legendre polinomials equation, it is possible to
establish a parametric dependence by using 6
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parameters for each of the following functions: K,(®),
Kj(x), Ky(x).

K(x) is'used for the upper surface modification, Kj(x)
for the lower surface modification, and Ky(x) for the
lateral variation of each fuselage section.

Through these 18 parameters, it is then possible to
obtain a modification for each section as shown in fig.
20. The advantages of the parameterization are the low
number of parameters and the homotopic section
modification.

The results clearly show that this kind of parametric
modification is particularly efficient for fuselages,
because it permits preservation of the characteristics of
the original shape.
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Fig. 18 Pressure distribution on business aircraft fuselage and
conventional transoport aircraft fuselage - Rey =40e6
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Fig. 19 Skin friction coefficient distribution on business aircraft
fuselage and conventional transport aircraft fuselage - Rey =40e6

a=0° Re;=40e6
| [ xr | C C C, |r10?

D

up | low | up low | TOT
business | 6.45 |0.33 | 0.10 | 0.039 | 0.046 | 0.044 | 0.803
transport | 6.30 | 0.16 | 0.11 | 0.052 | 0.055 | 0.054 | 1.060

Table 3 Geometrics and aerodynamics characteristics for
business aircraft fuselage and transport aircraft fuselage.

A drag optimization of the conventional transport
fusclage has been done with the parametric
modification technique illustrated above.
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Fig. 20 Cross section shape modification technique

Initially no geometric constraints were imposed on the
fuselage's shape (for example, maximum fineness
ratio).

The code found a shape with a greater laminar flow
extension, but with a greater maximum frontal area
(fig. 21). The result is that the drag of the optimized
fuselage is greater than that of the initial shape.

A new optimization was performed with a constraint
on the fineness ratio, attempting to increase the natural
laminar flow area. As it is shown in fig. 22, the shape
modification in the forebody region done by the code
led to a lower pressure peak level and a larger
favourable pressure gradient.

The effect is that transition takes place at x,=0.24
instead of at x,=0.16 (initial shape).

A drag reduction of about 6% was obtained. Table 4
illustrates geometric and aerodynamic characteristics
of the two fuselages. Fig. 23 shows the section
modification performed by the code at two stations
(x=0.075 and x=0.30).
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Fig. 22 Fuselage drag optimization, Rey =40e6, pressure
distribution along dorsal midline for InlthlL and optimized shape
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Fig. 23 Fuselage cross section of initial and optimized shape at
two longitudinal stations.

o=0° Re;=40e6
fr | xr | xr | C C c, | ri0?
up | low u; 103 T(fl‘
initial 630 |0.16 |0.11 [0.052 | 0.055 |0.054 | 1.060
optimized | 6.15 |0.24 | 0.11 |0.047 | 0.052 | 0.049 | 0.990

Table 4 Geometric and aerodynamic characteristics of initial and
optimized aircraft fuselage

In the first forebody the section has been reduced,
especially in the horizontal direction, trying to obtain a

*fish-head" shape.

Figg. 24 and 25 show three-dimensional shape,
pressure and skin friction distibution for the initial and

the optimized fuselage.

A typical run that requires about 400 iterations, using

500 surface panels took about 30 seconds per iteratio

of a CONVEX 34 cpu time.
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Fig. 24 Pressure distribution on initial and optimized conventional
transport aircraft fuselage.
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Fig. 25 Skin friction coefficient distribution on initial and
optimized conventional transport aircraft fuselage.
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Conclusions

A numerical optimization procedure, to design
axialsymmetric and three-dimensional  bodies,
characterized by large areas of Natural Laminar Flow,
has been developed.

The code is completely modular, in that it is easy to
change a module and address a different problem (for
example two-dimensional multi-component airfoils
design). Upon investigating existing transition
prediction methods, we found the current methods are
sufficient for a limited range of Reynolds numbers.
However, existing methods were not adequate or
accurate predictors for higher Reynolds numbers.
Furthermore, there is a lack of existing experimental
data obtained in this high Reynolds numbers range (30
+70 million) to modify current transition methods.
Sensitivity of the methods to the choice of the objective
function and constraints has been highlighted.
Furthermore, we have proposed an extension of the
existing optimization procedures to general 3D
fuselages.

In doing this, a way to parametrize the geometry of a
three-dimensional body has been suggested.

Presented are results of an optimization process,
showing drag reduction up to 20% and an increase in
the transition location,

Due to the pratical difficulties in maintaining Natural
Laminar Flow along fuselages, the extension of this
work for the inclusion of Laminar Flow Control (LFC)
technique is under consideration.
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