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Calculation of Transonic Laminar Flow Airfoils
Using a Navier-Stokes Method and Linear Stability Theory
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Abstract

To study the feasibility of coupling transition prediction by linear stability methods to a Navier-Stokes method,
the accuracy of Navier-Stokes mean flow calculations for laminar boundary layers is examined. Navier-Stokes
solutions of a flat plate boundary layer are compared to the known Blasius solution. The influence of artificial
dissipation level, mesh resolution and mesh stretching is investigated. The severe contamination of the solution
by mesh stretching is emphasized. Next, the Navier-Stokes results for a transonic airfoil laminar boundary
layer are compared to results from a finite difference boundary layer code. Again, the influence of artificial
dissipation level is investigated and shown to be of great influence on solution accuracy. The application of
a matrix dissipation model with careful limiter settings yielded the best results. A procedure is described to
generate a boundary layer adapted mesh for the airfoil case, based on a Poisson mesh generating procedure.
Using the adapted mesh, the accuracy is shown to be greatly improved at no extra computational cost. Finally,
Navier-Stokes computations of a transonic laminar airfoil are presented. Here, the transition location is
provided by a boundary layer method linked to the Navier-Stokes solution via the pressure distribution.

1 Introduction

To save energy and environmental resources, further drag
reduction is a major goal in future transport aircraft design.
By achieving partial laminar flow over wing and engine
nacelles, a total drag reduction of about 20 percent seems
to be possible!2, which is quite a strong motivation for
increased research effort in this area.

Besides the known great benefit in drag balance, the em-
ployment of laminar airfoils also inherits some severe dif-
ficulties. On the one hand, there are mechanical problems
like, e.g. tolerable surface roughness, integration of de-icing
devices and contamination of the leading edge with insects.
On the other hand, the airfoil design cycle becomes more
difficult since reliable measurements of laminar transonic
airfoils at cruise conditions are very expensive. The reason
for this is that no Reynolds number scaling by transition
tripping can be done, and the testing must be realized at or
very near the full scale Reynolds number.

This places emphasis on the theoretical prediction meth-
ods. The most general description of the real physics is
provided by the Navier-Stokes equations. But also with
the efficient and accurate Navier-Stokes solvers available
today, the accurate prediction of transonic airfoil perfor-
mance remains a difficult and challenging task, mainly due
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to turbulence effects. This is especially true for off-design
cases, where strong interactions between the viscous and
the convection-dominated parts of the flow occur. Here, the
assumption of equilibrium turbulence is no longer valid.

To address this problem, based on the widely used
Johnson-King half-equation turbulence model3, an im-
proved model has been suggested by the present authors*,
which gives better results in weak interaction flows while
retaining the ability to predict strongly interacted flows in-
cluding separation.

When calculating transonic laminar airfoils, the transition
location is added to the problem as a new unknown with
possible strong influence on the solution. It is therefore
necessary to dynamically provide the transition location as
the solution converges to steady state. To determine the
transition location, several procedures can be chosen, which
differ both in accuracy level and computational cost.

There exists a wide variety of empirical transition predic-
tion methods, which however are only valid for a certain
type of pressure distribution in the amplification region. In
contrast to that, the ¢¥-method developed independently by
Smith® and van Ingen®, doesn’t show this restriction and is
thus much more generally applicable. Since this method re-
quires alocal linear stability analysis of the laminar boundary
layer, the Navier-Stokes solution should provide the neces-
sary input for the stability analysis, i.e. velocity and temper-
ature profiles and their first and second derivatives with the
required accuracy.
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The computation of local amplification rates and inte-
grated N factors is a task, which requires an appreciable
amount of computer time and also needs some user inter-
vention. Since both attributes are not desirable for the use in
an iterative computing method, approximative ¢"-methods
are constructed from a database of precomputed local am-
plification rates. The latter are usually the result of a linear
stability analysis of a laminar similarity (Falkner-Skan) flow.
Examples can be found in Refs. 7~ 9. For a given boundary
layer, the local amplification rate is then reconstructed from
the database via a suitable set of integral coupling param-
eters, e.g. form parameter H;, and displacement thickness
Reynolds number Re; for an incompressible case.

The direct stability analysis of a Navier-Stokes solution
places the highest demand on the accuracy of the Navier-
Stokes-computed velocity and temperature profiles in the
boundary layer, since also the first and second derivatives
of the profiles are required. The application of database
methods slightly alleviates the accuracy problem because of
the use of integral parameters. But as clearly shown in Ref.
10, also the computation of these integral parameters is not a
trivial task in connection with a Navier-Stokes method. This
will be further discussed in this paper.

Besides accuracy, some other problems arise when cou-
pling linear stability analysis to a Navier-Stokes Solver,
namely (i) identification of the boundary layer, and (ii) back-
ward shift of the transition location into the turbulent region.
To solve the first problem, a method was suggested by the
present authors!!, which will be briefly summarized in the
next section. The second problem will arise, if up to the
last found transition location no amplified mode with a crit-
ical N factor could be found and thus the analysis had to be
continued inside the turbulent region.

When using a boundary layer method to completely gen-
erate all input to the stability analysis, all of these coupling
problems vanish since the only link between Navier-Stokes
solution and stability analysis is the Navier-Stokes pressure
distribution. On the other hand, this method of course ex-
hibits minimum integration of the transition calculation into
the Navier-Stokes method.

2 Identification of the boundary layer

In a Navier-Stokes method, the identification of the bound-
ary layer, i.e. the finding of the boundary layer edge, is not
trivial. This is due to the recursive definition of the bound-
ary layer thickness 6. Assuming constant total enthalpy
together with the isentropic relation outside the boundary
layer allows the computation of the boundary layer edge ve-
locity U, from the wall pressure p,,. Unfortunately, small
total pressure variations in the Navier-Stokes solution and
the above mentioned assumptions make it infeasible to use
this U, for the determination of the boundary layer edge.
Using the approach of Stock and Haase!? for turbulent
boundary layers as a starting point, a similar method was
developed in Ref. 11 for laminar boundary layers. The

boundary layer thickness is found to be in a constant relation
to the wall distance of the maximum of a functionf,,,, where

Jiam =y°’g—;l, o = 4.755.

Now, the boundary layer thickness is given by

Oam = 1.486¥pa0
=y (fim = max) .

(1a)
Yinax (1b)
Figure 1 displays the function fi,,, computed from solutions
of the Falkner-Skan equation for different pressure gradient
parameters m, showing the location of the maxima to be
independent of m. More quantitative information is provided
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Figure 1: Function f = (y/6)* 3(u/U,)/d(y/6) for dif-
ferent pressure gradient parameters m

by figure 2, which shows the loci (y/8),,,, for 106 different
pressure gradient parameters m, ranging from m = —0.09
(separation) to m = 1 (stagnation flow). The (3/8),,,, values
are essentially constant in the positive m range, with some
deviation to larger values in the negative m region.
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Figure 2: Location (3/6),,,, for a range of pressure
gradient parameters m, using « = 4.755
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3 Numerical methods

Navier-Stokes method

The Reynolds averaged Navier-Stokes equations are solved
with the finite-volume, cell centered, block-structured
Navier-Stokes code ENSSO!3-14,  The code uses central
differencing spatial discretisation and consequently needs
artificial dissipation to assure stability. Since the artificial
dissipation is of particular interest when computing lami-
nar boundary layers, the flux formulation will be described
briefly. At the interface between two cells i and i + 1, the
modified flux reads

1
F,:=F, (z(Ui‘j*‘ Ui+l,j)> +Dy, 2)

where U is the vector of conservation variables, and DE is
the artificial dissipative flux in £ direction. Dy is a blend of
second and fourth order differences!s:

—(n? _ nt
D, = (D} - DY)U,,.
The second and fourth order differences are given by!6
D; lAle,b,,U;
D |Ale AV, A, U,

[F i A AL

Where A and V are forward and backward difference op-
erators, respectively. The parameters ¢, and €, control the
switching between second and fourth order dissipation:

(3a)
(3b)

€ = Komax(Vy_y;,V;j Vi s Visj)

€ = max (O, (k4 — a52)),
with v being a shock sensing function'>. The default setting
for x, and x4 is 1/2 and 1/64, respectively. This can be
changed by user input. |A| is the absolute value of the flux
Jacobian given by

| =TIAIT,

where |A| is the diagonal matrix of the absolute eigenvalues
of A, T and T~ ! are the matrices of the right and left eigen-
vectors of A, respectively. Using this formulation for |A|,
a matrix dissipation model is constructed. The eigenvalues
for the £ direction are given by

A= (ynu—-xnv)+c1/x%+y}’
Ay = Opu—x,v) —cy /a2 +)2
Ay = Qpu—xv) =Xy

Since the linear eigenvalues A; = A, vanish at stagnation
points and under certain situations of grid alignment with
the flow, and the nonlinear eigenvalues may vanish at sonic
points, a limiter must be introduced in the following way:

b = max(iA ], 1,0)
o = max(|A,], Lp)
A3t = max({As], L),

where p is the spectral radius (maximum eigenvalue) of A.
The default values are [, = I, = 0.4. As we will show later,
improved accuracy can be achieved by reducing the linear
eigenvalue limiter for the  (normal to the wall) direction to
liy = 0.1. In the £ direction the default value of [, = 0.4
must be retained for stable convergence.

When |A| is replaced by the spectral radius of A, a scalar
dissipation model is established, as suggested in Ref. 15.

Grid generation

Grids are generated with the recently developed code
GRID2D!7 by solving the Poisson equations for the curvi-
linear coordinates £, 7:

Ag; = P,

The source terms P; are used to control the mesh spacing.
To be solved in the physical domain, the system (4) must be
transformed to the x, y coordinate system:

i=1,2. “)

82 (Fee + P’lfg) +811 (%, + P’zfn) —2813%, =0, (5)

where g;; are the elements of the covariant metric tensor,

: . P P
while P and P} are given by P; = %ﬂl and Py = £2,

respectively. Here, g is the determinant of the metric tensor.
The transformed system (5) can be inverted to obtain the

source terms P}, which would be required to generate a

given mesh:
/ 1 _ _
[11;1] = —M Bguxgn ~ 822%¢e ~ g“x,,,,] , (62)
2 Ve 812Ven — 822Y¢e — 811Vnn
where
M = [ 811y —gllxn] . (6b)
—8nYe  82%¢

By fixing the metric coefficients to some desired values, the
source terms determined by egs. (6) can be used to iteratively
drive the generated mesh to this fixed metric. Consider the
problem of generating a boundary orthogonal mesh with pre-
scribed point distribution along the boundary together with
prescribed distance of the first mesh line from the bound-
ary. In this case, g, = O (orthogonality), while g;; = AsZ;)
and g,, = As(z,,) are known from the prescribed mesh spac-
ing tangential and normal to the boundary. Additionally,
the derivatives normal to the boundary are computed using
mirror cells also representing the required local metric.

This approach is used in GRID2D to generate boundary-
orthogonal meshes controlling the distance of the first mesh
line and the boundary point locations prescribed by user
input. As discussed later, this method can also be used to
generate boundary layer adapted meshes.

4 Accuracy of the Navier-Stokes solu-
tion

The accuracy of Navier-Stokes solutions in laminar bound-
ary layers is a problem recently addressed by several
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Figure 3a: Influence of artificial dis-
sipation level on solution error. Mesh
consists of 64 equidistributed cells, 32
in the boundary layer. Above: velocity,
below: second derivative of velocity.
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Figure 3b: Influence of mesh resolution
on solution error, «, = K, = 0. The leg-
end denotes the number of cells inside /
outside of the boundary layer. Above:
velocity, below: second derivative of

Uy — Ups WU},

S.max

Figure 3c: Influence of mesh stretching
on solution error, k, = x, = 0. Above:
velocity, below: second derivative of
velocity.

velocity.

authors!®-20_ It was pointed out by Swanson and Turkel!3,
that, in conjunction with a central differencing spatial ap-
proximation, a matrix dissipation model is essential for im-
proved accuracy, especially when calculating high-Re flows.

Flat plate boundary layer cases

In Ref. 11, the present authors have investigated Navier-
Stokes solutions for a flat plate boundary layer with respect
to the influence of artificial dissipation level, mesh reso-
lution, and mesh stretching. The flow was computed for
9.10* < Re, < 2 - 10°. The free stream Mach number was
taken to be M, = 0.4. Figure 3 shows the Navier-Stokes
solution error with respect to a Falkner-Skan (Blasius) solu-
tion. To compare the results, non-dimensional errors against
the Blasius-Solution are plotted. Here, the non-dimensional

quantities
Y

+

u
= e— and =2z
u U y

6
4
are used. The ENSSO Navier-Stokes solution is denoted by
the subscript E and the Blasius (Falkner-Skan) solution by
the subscript FS.

The influence of scalar artificial dissipation level is dis-
played in figure 3a. The mesh consists of 64 equidistributed
cells, 32 in the boundary layer. Since for this case, stable
convergence to steady state could be obtained with no arti-
ficial viscosity at all, i.e. £, = 0 and k, = 0 in egs. (3), an
artificial dissipation free solution can be taken as reference.
In all cases, k, = 0. A very small value of x, = 0.1/32,
which would be clearly too low for other flow fields, already
shows significant deviation to the x, = 0 case.

Figure 3b shows a series of computations with 16 / 32
/ 64 cells in the boundary layer. Dissipation settings were
kg4 = Ky = 0. The 64 cells case achieves no significant
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improvement over the 32 cells case. The remaining devia-
tions with respect to the Blasius solution are mainly due to
compressibility effects present at M = 0.4,

Probably most interesting with respect to “real” airfoil
flows is figure 3¢, which shows the influence of mesh stretch-
ing in normal direction. Again, x, = k, = 0. The mesh
consisted of a total of 64 cells in normal direction, with a
moderate stretching factor of 1.03 being applied in this di-
rection. For the stretched mesh, the error is increased by
a factor of 16 to 20. Since in the present Navier-Stokes
method, the fluxes across the cell faces are computed using
simple arithmetic averaging of the conservation variables,
see eq. (2), in regions of high solution gradients every cell
stretching in the gradient direction leads to severe discreti-
sation errors. This must be kept in mind when generating
meshes for laminar airfoil cases.

In Ref. 11, a Navier-Stokes solution of a flat plate bound-
ary layer flow using &, = 0.1/32 and 35 equally distributed
cells in the boundary layer, was analyzed with the com-
pressible stability analyzer COAST22!. The results are
compared to a stability calculation using the Blasius so-
lution together with the known flat plate boundary layer
development 6 = 83+/x/x;. The N factors calculated from
the Navier-Stokes solution were very close to the N factors
from the Blasius solution, showing the feasibility of a direct
stability analysis of the Navier-Stokes solution despite the
errors seen in figure 3.

Airfoil cases

For linear stability analysis of transonic laminar airfoil flows,
the accuracy of the corresponding Navier-Stokes solution
must be investigated. In Ref. 10, this was carried out with
regard to mesh resolution, using scalar artificial dissipation.
Unfortunately, no information was provided in Ref. 10 re-
garding the values of the dissipation coefficients k, and k,.
It was stated there, that the mesh resolution must be very
high (about 60 to 70 cells in the boundary layer, as com-
pared with 20 to 30 for normal airfoil cases) to produce
sufficient accuracy. In the present work, emphasis is placed
on the influence of the artificial dissipation level and on so-
phisticated mesh generation to reduce the required number
of cells in the boundary layer.

The investigations are carried out for the RAE 2822 air-
foil, using free stream parameters corresponding to case 9
of Ref. 22. The mesh shows C type topology and consists
of 304 cells in tangential and 64 cells in normal direction.
208 cells are located on the airfoil and 30 cells inside the
boundary layer, with estimated boundary layer thicknesses
of 6 = 0.001c at the leading edge and § = 0.04c at the trail-
ing edge. In normal direction, the grid spacing follows a
geometric progression with different stretching factors in-
side and outside the boundary layer. The distance of the
first mesh line is chosen in a way, that would resolve the
viscous sublayer in a turbulent boundary layer. The far field
boundary is located at a distance of about 10 chords from
the airfoil surface. Figure 4 shows the mesh and a cut-out
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Figure 4: Original mesh for the airfoil cases. Cutout
of the first 30 cells is blown up in g-direction by a
factor of 10.

of the first 30 cells normal to the wall, which is blown up in
n-direction by a factor of ten to make things more visible.
Figure 5 shows the pressure distribution for the investigated
airfoil case.

Transition is fixed to 0.45¢ on upper and lower side. To
investigate the accuracy of the Navier-Stokes solution in a
laminar boundary layer, the form parameter Hs, is compared
to a solution generated by a compressible finite-difference
boundary layer code?® using the Navier-Stokes pressure dis-
tribution. For the finite-difference code solutions, the bound-
ary layer was resolved using approximately 100 points. Mo-
mentum and energy thickness were computed by

6
o ( U)
1—-—]dy
/peUe Ue
0
8 2
pU U
= 1—-| — dy,
g /peUe( (Ue> ) Y
0

respectively. Figure 6 shows a series of computations with
successively lower artificial dissipation level using the scalar
dissipation model. The accuracy of the laminar boundary

layer computation is strongly affected by the artificial dis-
sipation level, while the turbulent part shows considerable

5 =
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Figure 5: Pressure distribution for the investigated
airfoil cases. Triangles denote transition locations.
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Figure 6: Influence of scalar artificial dissipation
level on solution accuracy. First number denotes the
value of k,, second number the value of .

less contamination due to the much higher level of physical
dissipation in a turbulent boundary layer. The lowest filter
level of &, = 1/2, &4 = 1/512 already shows some conver-
gence problems, which is also manifested in the oscillations
in front of the transition point.

Using the matrix dissipation model and the standard val-
ues of k, = 1/2 and k4 = 1/64, the results presented in
figure 7 are obtained. As mentioned earlier, the limiter for
the linear eigenvalues should be set to different values for
the £ and the 7 direction. Using a value of l;, = 0.1 shows
a distinct improvement over the default value of /;, = 0.4.

1.8 ; . ' '
BL code —
1/2,1/256 scalar ===
matrix, }=0.4 -

matrix, 1=0.1 = |

slc

Figure 7: Comparison of scalar and matrix dissipa-
tion model using different values for the linear limiter
b

N

For comparison, the result from the scalar dissipation model
using the lowest «, value showing stable convergence, is
also plotted in figure 7. Obviously, for the matrix dissipa-
tion model to be superior to the scalar model, the limiter
values have to be carefully adjusted to the computed case.

The H,, values achieved using the matrix dissipation
model and [;,, = 0.1, seem to represent the most accurate
solution possible on the present mesh. The remaining devi-
ations with respect to the finite difference code solution can
only be reduced by increasing the number of cells in normal
direction or by better distribution of the mesh lines while
keeping their total number constant. The latter approach
will be applied here. This is done in a five step process.

In the first step, the location of the boundary layer edge
is determined using relation (1) for the laminar part and the
Stock-Haase!? relation for the turbulent boundary layer. In
the “transition” region near the point, where the turbulence
model is switched on, a special treatment is necessary, which
is detailed in Ref. 11.

The second is the determination of the local distance of the
first mesh line from the boundary, As - For this, the friction

velocity u, = /(7,/p,,) is chosen as a scaling parameter:
v
As(ﬂ)() = y(-;—l;—’ (7)
T

where v is the kinematic viscosity. The parameter y{ is set
to a value of ¥, = 1 for the present calculations. Using (7),
the distance of the first mesh line is controlled by the local
wall shear and is thus larger in laminar regions and smaller
in turbulent ones. Hence, the necessary mesh stretching in
the laminar region can be reduced. Additionally, proper res-
olution of the viscous sublayer in turbulent boundary layers
is assured.

In the third step, the mesh points are redistributed in nor-
mal ) direction using 6 from step one, As,, from step two,
and a prescribed number of cells in the boundary layer. This
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Figure 8: Adapted mesh for the airfoil cases. Lower
figure shows the mesh covering the boundary layer
(30 cells) with coordinates in #-direction biown up
by a factor of 10.

is performed by a geometric stretching function with differ-
ent constant factors inside and outside the boundary layer,
which ensures a smooth grid transition over the boundary
layer edge.

Since this algebraic mesh generation procedure has the
unwanted property of propagating disturbances like e.g., lo-
cal change in As,,, through the whole mesh, in a fourth
and fifth step, the mesh is regenerated inside and outside
the boundary layer, respectively, using the Poisson system
(5). To calculate the appropriate source terms. for the Pois-
son system, the approach described earlier is chosen: after
applying step three, the local metric, i.e. g;, at the wall and
at the boundary layer edge is stored and then used in eq. (6).
For each 7 grid line, the source terms P, which control the
spacing in n direction, are set to the value of P} at the wall for
the inner mesh and to the value of P} at the boundary layer
edge for the outer mesh, respectively. Any other procedure,
e.g. interpolation to some different value at the other edge of
the 7 line, yielded unsatisfactory results. The source terms
P} are kept from the initial mesh.

Figure 8 shows the adapted mesh and a blow-up of its
boundary layer part. The number of cells in the boundary
layer was set to 30, according to the results from the flat
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Figure 9: Comparison of adapted vs. non-adapted
mesh. Scalar cases use k, = 1/2, K, = 1/256, while
matrix cases use k, = 1/2, k, = 1/64.

plate cases. This is also the number of cells used for the
estimated boundary layer of the non-adapted mesh.

Navier-Stokes results obtained by using the adapted mesh
are compared to the boundary layer code results in figure 9.
The scalar dissipation results use £, = 1/2, , = 1/256, while
the matrix dissipation uses k, = 1/2, k, = 1/64. Generally,
the accuracy level is greatly improved upon the non-adapted
case, which is shown for comparison. Again, the limiter
value of [, = 0.1 performs better than /;, = 0.4. The scalar
dissipation result shows some oscillation at the onset of tran-
sition. In contrast to the non-adapted cases, the differences
between the various dissipation levels are reduced on the
adapted mesh.

It must be kept in mind, that this improvement was ob-
tained without increasing the total number of cells in the
coordinate mesh, and thus without increasing the computa-
tional cost. This is in contrast to the findings in Ref. 10,
where the total number of cells in normal direction is at least
doubled over the present value of 30, to achieve the required
accuray.

5 Transonic laminar airfoil computa-
tions

While the direct stability analysis of a Navier-Stokes solu-
tion represents the closest possible coupling, it also exhibits
some severe problems regarding the accuracy of the Navier-
Stokes solution, as discussed above. Moreover, the stability
analysis itself may be problematic, both in computing cost
and necessary user intervention.

The next level of integration would be given by applying
a database stability method, see Ref. 7, to predict the tran-
sition location. Here, the Navier-Stokes solution accuracy
problem is also present, but can be resolved with tolera-
ble computation costs, as described in the previous section.
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However, the question of a suitable continuation of the sta-
bility analysis into the turbulent region is still present, see
Ref. 10.

An alternate approach is to provide the input to the sta-
bility analysis by means of a boundary layer method, which
is linked to the Navier-Stokes solution via the pressure dis-
tribution. The boundary layer method can provide the re-
quired accuracy level with less effort than the Navier-Stokes
method. Additionally, the problem of shifting the transition
location backwards into the turbulent region does not arise.

The integral two-equation boundary layer method of Drela
and Giles® provides an integrated approximative " method,
which uses an empirical function dN/dRe;, = f(H,,). This
relation is constructed from a database of precomputed am-
plification rates for a range of solutions to the Falkner-Skan
equation. For every pressure gradient parameter m, the N
factor envelope over a range of frequencies is approximated
by a linear relation, giving one discrete point of the above
mentioned empirical function.

Applying this alternate approach, the boundary layer
method of Ref. 9 was implemented into the Navier-Stokes
code ENSSO. At certain stages during the convergence pro-
cess (every 5 multigrid cycles on the finest mesh in the
computations presented here), the boundary layer method is
called with the current Navier-Stokes wall pressure distri-
bution. For upper and lower side, it computes an arc length
measured from stagnation point, at which transition occurs.
This is then translated to cell indices in the Navier-Stokes
mesh, at which the turbulence model is switched on.

Figure 10 shows pressure distributions of a laminar tran-
sonic airfoil computed with this procedure. The agreement
with measured data?* is fairly good, though the measured
data experiences some wind tunnel wall effects. In all cases,
convergence of the interacted problem turns out to be very
stable.

Figure 10b: Pressure distribution for
M =0.74,Re = 6- 105, o, = 1.499°,

T T 1 T T ¥ 1

xlc x/c

Figure 10c: Pressure distribution for
M =0.74, Re = 6 - 10%, o, = 3.006°,
o, = 1.976°.

comp

6 Conclusions

The ability of a finite-volume Navier-Stokes method to ac-
curately predict laminar boundary layers was examined.

The influence of artificial dissipation level, mesh resolu-
tion and mesh stretching on the solution error was studied
using a flat plate boundary layer. Especially mesh stretch-
ing in the main gradient direction (normal to the wall) is
shown to dramatically contaminate the Navier-Stokes solu-
tion. Resolution of the boundary layer with approximately
30 (equidistributed) cells seems to yield sufficient accuracy.

For a transonic airfoil case, Navier-Stokes solutions were
compared to solutions by a finite-difference boundary layer
code. In the laminar portion of the boundary layer, the artifi-
cial dissipation level has a strong effect on the Navier-Stokes
solution, as opposed to the turbulent region, where the ef-
fect is nearly negligible. Application of a matrix dissipation
model using a reduced value of the linear eigenvalue limiter
for the 7 direction, yielded the most accurate results. On
the other hand, the standard scalar dissipation model with
reduced values of the fourth order dissipation parameter &,
also showed sufficient accuracy, with CPU times reduced by
approximately 15 percent as compared to the matrix dissi-
pation.

To compute Navier-Stokes results in close agreement with
boundary layer code results, either an increased number of
mesh points in the normal direction must be used, or the mesh
must be carefully adapted to the laminar boundary layer. Ap-
plying the second approach, a five step method is presented
to generate a boundary-layer-adapted mesh, which uses a
Poisson mesh generation procedure. The results obtained
with this mesh are greatly improved upon the non-adapted
mesh while using the same total number of mesh points.
Interestingly, the differences between the different artificial
dissipation levels are also reduced on the adapted mesh.
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Direct stability analysis of the Navier-Stokes solution
seems to be the most straightforward approach, as inside
the framework of linear stability theory, no further simplifi-
cations have to be made. Also, the extension to 3D problems
should easily be possible. On the other hand, the accuracy
level needed for direct stability analysis requires a highly re-
solved laminar boundary layer, thereby increasing the com-
putational costs, and a very careful treatment of the dissipa-
tive fluxes, thereby increasing the requirements for spatial
discretisation and/or artificial dissipation formulation. Addi-
tionally, direct stability analysis causes high computational
costs, and automatic processing without user intervention is
not easily possible. In all cases, where the input to the linear
stability method is generated by a Navier-Stokes method,
the problem of backward shifting the transition location into
the turbulent region is present.

As an alternate approach, an integral boundary layer
method, which includes an approximate ¢"-method, is im-
plemented in the Navier-Stokes code. Here, the only link
between transition prediction and Navier-Stokes method is
the pressure distribution. This interaction scheme greatly
improves convergence stability as compared to the method
presented in Ref. 10. Some results are presented for a tran-
sonic laminar airfoil, which show good agreement to the
experiment.
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