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Abstract
The flow around the forebody of a generic space-

plane configuration is investigated. A conical upwind -

Euler method is used to calculate aerodynamic

forces and flow structures of the delta wing geome-

try with blunted leading edges. The leeside flow
structure at hypersonic Mach numbers of 4 and 6 is
studied. Two types of shock-induced vortical flows
are found at high angles of attack for both Mach
numbers. The influence of discretization errors on
the calculated conical leeside flow structures are ad-
dressed. The inviscid flow is compared to 3D Navier-
Stokes solutions. The limits of conical Euler methods
as fast design tools are discussed.

1.Introduction

Future hypersonic cruise configurations have to
meet both, excellent high and low speed aerodyna-
mic performance. These requirements and the de-
mand for large fuel volumes and a heat protection
system drive the spaceplane’s planform and cross
sectional design. Blended body double delta wing
configurations are expected to meet the aerodyna-
mic and volumetric requests. Such double delta geo-
metries generate additional vortex lift on their lee-
side at high angles of attack. That improves the
configuration’s aerodynamic performance. The fore-
body’s pressure side is shaped to maximize the pre-
compression of the engine’s input mass flow. Tem-
perature boundaries of the materials determine the
amount of body nose and wing leading edge biunt-
ness for hypersonic flight conditions. Flight mechani-
cal characteristics and the engine integration pose
additional constraints for the design.

Because of the multifold constraints and the required
high aerodynamic performance at different speed
regimes spaceplanes are difficult multipoint designs.
Fast and accurate numerical toois capable of esti-
mating aerodynamic performance and associated
flow structures are therefore necessary. Modetn
materials enable the design of relativly sharp geo-
metries. Spaceplane forebodies which consists of
delta wings blended with a body have relativ small
nose radii. They can be approximated as pointed
conical thick delta wings. For pointed forebody geo-
metries conical Euler methods seem to be adequate
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numerical tools considering the tradeoff between
accuracy and numerical effort.

A generic spaceplane design for cruise at M. =4 is
shown in Fig. 1. The configuration consists of a
doubie delta wing planform blended with a body.

The present paper adresses the flow structure of the
forebody shape of Fig. 1 at two hypersonic Mach
numbers. The calculated conical vortex flow is inve-
stigated and compared to 3D Navier-Stokes results.
Limits of conical Euler methods are described to
evaluate the applicability of these tools in designing
hypersonic forebodies.

2.Governing Equations
The integral form of the three-dimensional Euler
equations using nondimensional variables in a carte-
sian coordinate system can be written as

d s _

g Ads = 1

aJdejF Ads = 0 (1)
v oV

where

W = [p,pu, pv, pw, pE]”

is the vector of conserved quantities with p,u,v,w and
E denoting density, cartesian velocity components
and specific total energy, respectively. V denotes an
arbitrary control volume fixed in time and space with
boundary av and the outer normal #. The total ent-
"halpy is given by

H=E+p/p . (2)

The flux tensor F is given as

puf(x + pvfcy + ;)wf(Z
(pu2 +P) ﬁx + puvfcy + puwf(Z
F= (puv) f(x + (pv2 +p) fcy + pvwf(z
(puw) f(x + pvwfcy + (pw2 +p) ﬁz
L (puE +up) 12,( + (pvE+vp) ﬁy + (pwE +wp) fcz_
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where k,, k,, k, denote the cartesian coordinate di-

rections. Assuming that air behaves as a calorically
perfect gas, the pressure is calculated by the equa-
tion of state

2 2 2
p=(-DpE-2TE (3)

where v denotes the ratio of specific heats. The Na-
vier-Stokes equations governing viscous flows may
be found in textbooks.

3.Numerical method
3.1 Spatial Discretization

The numerical method solves the unsteady Euler
equations in integral form. The approximation fol-
lows the method of lines which decouples the discre-
tization in space and time. Using the finite volume
approach, the approximation of the integral for a
hexahedral control volume surrounding the grid
node (i, j, k) (see Fig. 2) yields a system of ordinary
differential equations with respect to time

a S
Vi,j,k‘"é'iwi-j,k =

-Rijx - 4)
Here, Wi\ = [p,pu,pv, pw, pE ] L} x represents the

conserved quantities at grid node (i, j, k), where p, u,
v, w and E denote the density, Cartesian velocity

components and total energy, respectively. ﬁi, ik
represents the net flux (residuum) of mass,
momentum and energy over the control volume (i, j,

k) with volume Vv, ; . It is calculated as

1

Rii«=R -R +R -R (5)
ok 1 1 o1 o1
]+2,j,k i 2,‘|,k l,_)+2,k ij 2,k
N -
+ R 1-R 1,
iL,j k+= Ljk—=
2 2
with R | - denoting the flux through cell face
1+

E,J,

i+1/2 . In the following the flux vector splitting for
the approximation of the convective flux is briefly
described.

As shown in {1},[2] the discrete inviscid flux can be
interpreted as a sum of a Mach number weighted
average of the left (L) and right (R) state at the cell

face i+1/2 (see Fig. 2) and a scalar dissipative
term. It reads

pc pc
. | pcu pcu
Ri+%,j,k = |S|i+%,j,k -Z-Mi+.1.,j,k pevi Tpev] |7
2 pcw pcw
pcH L pcH R
pc pc 0
1 pcu pcu SxP
—E‘D 1 pcv| —|pev +|s,p (6)
i+=Jk
2 pcw pcw s,p
cH cH
Peile  PeHIL ‘O‘i+%,j,k
where
_ T
i+%,j,k = [Sosys, ] i+-12-,j,k @

denotes the surface vector normal to the cell face

i+1/2 . The quantities ¢, H and p represent the
speed of sound, enthalpy and pressure, respectively.

M , denotes the advection Mach number at the
i+ 5,j, k

cell face i+1/2 which is calculated according to [1]

as

M

=M +My (8)
!+§,j,k

where the split Mach numbers MP™ are defined as
polynomials of the left and right Mach numbers
according to van Leer [3].

The pressure p atcell face i+1/2 is calculated ina
similar way as

P, =pi+pp (9)

i+-,j.k
i 23

where pP’™ denote the split pressure defined also
by polynomials of the left and right Mach numbers
[3]. As described in [2],[4] the definition of the factor ¢
determines the amount of numerical dissipation
inherent in the discrete convective part of the flux
vector. Moreover, the definitions of ¢ for the well-
known van Leer flux vector split scheme and the
AUSM scheme [1] with low numerical dissipation dif-
fer only by a Mach number scaled term. This fact
allows easy implementation of a Navier-Stokes sol-
ver which uses van Leer’s flux vector splitting at
shocks and has low numerical diffusion in smooth
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regions of the flow [4]. However, the inviscid flow
solutions presented here are obtained with van
Leer’s scheme applied throughout the computational
domain by which the robustness of the overall
method is increased.

The spatial accuracy of the scheme depends on the
determination of the left and right state at cell inter-

face i+1/2. For a first-order scheme the flow
quantities at the left and right state are given by their
values at the neighboring mesh points i, j, k and i +
1, J, k, respectively (see Fig. 2). Higher order accu-
racy is obtained with the MUSCL approach which
uses extrapolation of flow quantities for the calcula-
tion of the left and right state. The van Albada limiter
function [5] is employed which switches the second-
order accurate scheme to first order accuracy at
shocks in order to guarantee shock capturing
without spurious oscillations.

In supersonic flow around pointed, conical bodies
flow variables are constant along rays which start at
the apex of the body, i.e. the flow field itself is coni-
cal. In order to calculate such a flow field,a simplified
finite discretization is used. The physical domain is
now divided into special hexahedral cells, see Fig.
3. Due to the conical flowfield flow variables are con-
stant at the edges of the front and rear face of the
control volume wich are connected through one ray.
Only one layer of cells between x4 und x, is neces-

sary for the determination of the whole conical flow
field. Applying the discretized equations to this
special control volume results in a kind of source
term which represents the change of metric quanti-
ties in the axial coordinate direction. The solution
scheme itself is unaffected. Note that only one mesh
plane has to be discretized. This is the main effect
which remarkably reduces the numerical effort of
conical Euler schemes.

3.2 Time Inteqgration

The spatial discretization results in a system of ordi-
nary differential equations with respect to time. For
the calculations the solution has been advanced in
time employing an explicit three-stage scheme for
the inviscid and an explicit five-stage scheme for the
3D Navier-Stokes calculations. Local time stepping
and implicit residual smoothing have been applied to
accelerate the convergence to the steady state. For
the Navier-Stokes solutions a multigrid algorithm is
applied in addition.

4 Results
4.1 The calculated conical flow structure at M. =4

The spaceplane planform is drawn on the right side
of Fig. 1. The forebody parn of the present work is
shaded. On the figure’s left side the mesh around
the approximated geometry is shown. The forebody

is approximated by a pointed conical delta wing ha-
ving the displayed blended body wing cross-section
and identical sweep angle as the shaded spaceplane
forebody. Parts of the flowfield around the wing lea-
ding edge where highly accelerated flow is expected
were carefully discretized as shown in Fig. 4. An el-
liptic mesh generation tool [6],[7] was used to create
different fine meshes with 100x20, 200x40 and
400x80 cells.

The calculated conical flow structure on the medium
(200x40 cells) mesh at M_=4 is depicted in Fig. 5

using iso Mach lines in cross-sections. The three
pictures at 5°, 7° and 10° angle of attack (increasing
from top to bottom of this figure) show the outer bow
shock as well as the mesh boundary on the picture’s
right side. The strength of the outer bow shock as
well as the pressure on the delta wing’s lower side
increase with angle of attack. The growing pressure
difference to the leeside accelerates the flow more
and more around the blunt wing leading edge visuali-
zed through increased local Mach number. Crossflow
velocities exist and rise in the expansion region.
They are highest at the body and easily reach sonic
speeds also for low angles of attack. At the symmetry
plane they have to be zero.

Hence, there exists a crossflow shock which reduces
the crossflow velocities and turns the flow direction
from crossflow to axial flow. Its strength increases
with angle of attack. The shock reaches further out
into the field and moves simultaneously toward the
symmetry plane for higher angles of attack. There is
also shock strength variation normal to the body. Be-
eing strongest at the body the crossflow shock wea-
kens with increasing body normal distance and va-
nishes where crossflow velocities are lower than
sonic.

The shock strength variation normal to the body cau-
ses entropy gradients. They may generate vortices
depending on the gradient’s value. Here for a=10° a
crossflow shock exists which terminates the outer ex-
pansion region. This shock is located more inboard
than for a=5° and o=7°. However, more shocks exist
in this solution. Close to the leading edge another
crossflow shock is formed which generates an in-
viscid vortex. A third crossfiow shock is formed bet-
ween the vortex and the wing surface. The leeside
vortex is flat and reaches over nearly 50% of the
delta wing span. The vortex can be detected in Fig. 5
through two wall parallel Mach gradient belts.

In Fig. 6 the flow structures for M_=4 and the three

angles of attack of Fig. 5 are represented by pictures
of conical streamlines. They are projections of 3D
streamlines onto a sperical surface centered at the
apex of the wing. Undisturbed free stream in conical
solutions results in plots where streamlines start at
the outer mesh boundary and run straight into the
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mesh center. Here streamlines are plotted to visua-
lize the calculated vortex shape in the high-angie-of-
attack (o=10°) solution. The vortex is easier to de-
tect than in the iso Mach line plot. An additional vor-
tex developing further inboard on the horizontal body
part is visible. The pictures for lower angle of attack
show fully attached flow.

4.2 The calculated conical flow structure at M_=6

The higher onflow Mach number of 6 is choosen to
investigate changes of the flow structure with Mach
number. They are expected because the leading
edge normal Mach number changes from subsonic
at M_=4 to supersonic at M_=6. The same angles of

attack as before were calculated on all three mes-
hes.

The resulting flow structures are depicted using iso
Mach lines in Fig. 7. The outer bow shock becomes
stronger and moves toward the wing. The expansion
regions is larger for all angles of attack. This is
shown by the increased crossflow shock’s extent
into the fields. For o=5° and 7° attached solutions
exist which have stronger crossflow shocks than in
the lower Mach number solutions of Fig. 5. The in-
creased onflow Mach number also moves the cross-
flow shocks more inboard. The o=10° solution
shows a complicated shock structure of two cross-
flow shocks which seem fo interact. A shock exists
which is strongly curved near the wing surface. Be-
hind this curved shock a separation bubble is gene-
rated. The bubble changes the pressure behind the
shock and therefore the shock is located further to
the wing leading edge than the shock in the 0=7° so-
jution. The second crossflow shock terminates the
expansion region in the field. Caused by the shock
interaction the strength of the second shock is redu-
ced towards the wall. Fig. 8 illustrates the calculated
flow structures using conical streamlines. The two
lower angle of attack solutions show attached flow.
The differences in the streamline plots for attached
flow between Fig. 6 and Fig. 8 are small. At a=10°
both plots differ significantly. The large separation
behind the shock at the wing leading edge in the lo-
wer Mach number solution changes here to a flat
tiny separation bubble. The separation location mo-
ves significantly with the onflow Mach number
change. An additional vortex forming on the upper
body part near the symmetry plane is also visible.

The attached crossflow structures for both hyperso-
nic onflow Mach numbers are similar. This is due to
the fact that in both cases the bow shock is deta-
ched from the blunt leading edge. The detached bow
shock yields flow expansion around the blunt subso-
nic leading edge as well as around the supersonic
leading edge. The attached expansions are termina-
ted by crossflow shocks.

For o=10° the separated flow structure changes with
increasing onflow Mach number. Distinguishable vor-
tex and shock topologies are calculated for the two
Mach numbers despite similar detached bow shocks
enabling for expanded flow around the blunt leading
edge. For M_=4 this expansion is terminated by a
strong crossflow shock close to the wing leading
edge which creates a big separation. For the higher
onflow Mach number the expansion is terminated
further inboard by a shock which generates a sepa-
ration bubble.

Shock-in inviscid
numerical influence
The numerical accuracy of the attached flow solution
at M_=4, o=5° is investigated first. Fig. 9 shows plots

of ¢, over wing span for the three mesh densities.

The solutions show excellent agreement. Crossflow
shock strength and position is identical on all mes-
hes. The corresponding convergence histories are
given in Fig. 10. On all meshes nearly five orders of
magnitude convergence (machine zero on 32 bit
workstations) is reached after ~1600 time steps on
the coarse mesh and 6000 time steps on the fine
mesh. The calculated lift coefficients show almost no
variation with mesh density. Fig. 9 and Fig. 10 con-
firm that grid converged and residual converged so-
lutions were obtained for attached flow at M_=4.

rations an

At M_=6 comparable convergence rates and mesh

converged solutions are obtained for attached flow.
These plots are not repeated here.

The two conical shock-induced separations calcula-
ted for M_=4 and 6 show complete different conver-

gence behaviour. This is highlighted in Fig. 11. The
high-Mach-number solution reaches machine zero
after ~2800 iterations while the solution at M,.=4
does not converge to such low residual levels. It rea-
ches a stable oscillating state after ~3000 iterations
on the medium mesh at relativly high residual levels.
The amplitude and wavelength of this oscillation de-
pends on mesh density and is probably influenced by
numerical errors. The convergence plots of the two
remaining meshes (coarse and fine mesh) are not
shown here because they show similar behaviour.
Their solutions also oscillate between two extreme
states after a residual drop of little more than two or-
ders of magnitude.

The two extreme states of the oscillating solution on
the fine mesh at M_=4; a=10° are discussed first.
The calculated flow structure at the low and high resi-
dual points of the oscillation are shown by combining
iso Mach lines and conical streamlines. Both, Fig. 12
and Fig. 13 show the same global and detailed views
of the separated flow. The flow structure is characte-
rized by three crossflow shocks. The first shock is lo-
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cated close to the wing leading edge. It has the
same location in both figures. The outer expansion
region is terminated by a crossflow shock which
does not reach the body surface. Under the flat pri-
mary vortex and perpendicular to the wall a third
shock is found. At its foot the secondary counter-ro-
tating separation starts. Comparing both pictures it is
clear that the outer flow field seems stable and is
only slightly influenced by the changing shapes of
the vortices. The primary vortex oscillates between
phases having one center (low residual level), Fig.
12 and twofthree separate centers at higher resi-
duals, Fig. 13. This behaviour is caused by the oscil-
lating position and strength of the embedded third
crossflow shock. The counter-rotating secondary se-
paration is affected by the third shock’s position and
strength variation. The changing shape of the coun-
ter-rotating secondary vortex as well as its move-
ment forces the two extreme states of the primary
vortex. The low numerical dissipation of the fine
mesh allows to calculate a more detailed but oscilla-
ting flow structure than on coarser meshes. It is sup-
posed that lack of natural viscous damping is re-
sponsible for the oscillating crossflow shock and
therefore changing shape of the secondary separa-
tion. This effect seems to prevent convergence to a
steady state solution. It may also be possible that for
this flow type no stable solution exists at all.

The plot of ¢, over wing span, Fig. 14 visualizes the
separation locations of the M_=4 solutions. Only the

part of the outer wing span is drawn. Additionally, the
pressure distributions of the two extreme states of
the oscillating fine-mesh solution are included. The
shape of the blunt wing cross-section is also shown.
Careful examination ieads to the foliowing observati-
ons. The calculated separation location on the
coarse mesh is found at the most far out position.
The flow does not expand as much as on the finer
meshes before shock-induced separation occurs.
The separation of the medium mesh solution is at
y/s~0.99 and differs for one cell from the fine mesh
solution. Therefore the separation location is mesh
converged at that location. The ¢, distributions of the

two fine mesh and the medium mesh soiutions show
at different positions and with changing strength the
embedded third crossflow shock. The 100x20 mesh
is too coarse to resolve this detail. Therefore, all lee-
side pressure plots do not have much in common
with each other except the shock generated primary
separation at the wing leading edge.

Summarizing Fig. 14 shows that coarser mesh solu-
tions result in separation locations closer to the wing
tip. Increasing the mesh density enables to repre-
sent stronger expansions before separation takes
place. Detailed flow structures are resolvable on fi-
ner meshes.

A different impression of the separation behaviour at
M..=6; a=10° is shown in Fig. 15 by c;, distributions
over wing span. The cross-section geometry is
drawn to get a better impression of the separation lo-
cation. The pressure distributions calculated on all
meshes only differ in the separated flow region. In
this case identical expansion pressure levels are rea-
ched on all meshes. The crossflow shock location
moves towards the leading edge with decreasing
mesh density as could be observed in the M,_=4;

o=10° flow solutions for the same mesh densities.
But the coarse mesh solution shows attached flow
with a crossflow shock positioned further inboard
than the other solutions.

Stable converged flow solutions were calculated for
all M_=6 onflow conditions and all mesh densities.

The following explanation seems reasonable and va-
lid for the numerical influence on the observed sepa-
rations for both Mach number cases:

Numerical flow calculations are always affected by
numerical dissipation which depends on the formula-
tion of the spacial discretization scheme and the
mesh density involved. Upwind schemes as the one
used here generate very low numerical dissipation.
For all numerical schemes discretization errors grow
with the cell size of the mesh. That means that coar-
ser meshes generate higher levels of numerical dis-
sipation because flow gradients resolved with less
cells decrease. Flows investigated here generate nu-
merical errors primarily in the expansion region
where high flow gradients exist in wall-normal di-
rection. These errors act in inviscid flow calculations
like boundary layers in viscous flows. Found by [8],[9]
and others it is repeated here that the primary source
for inviscid separation is a sufficiently strong shock.
But the numerical dissipation can influence the
shock-induced separation depending on the dissipa-
tion level.

Influences of numerical dissipation on separated in-
viscid flow structures are found in the present results.
Numerical dissipation may smear solution details de-
pending on the dissipation level. Increased mesh-in-
herent numerical dissipation may prevent the calcu-
lation of flow details. This is true for both a=10°
coarse mesh solutions. While the coarse M_=4 solu-

tion only resolves the primary vortex without details
the higher numerical dissipation in the M_=6 solution
prevents forming the separation bubble. Decreasing
the numerical dissipation at the lower hypersonic on-
flow Mach number increases the solution detail rich-
ness. The finest mesh (lowest numerical dissipation)
is able to resolve a shock-induced secondary sepa-
ration while the next coarser mesh only calculates
that shock without separation. At M,,=6 the shape of

the tiny separation bubble is affected by numerical
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dissipation. As a consequence no fully mesh conver-
ged separation is calculated for this onflow conditi-
ons. Different local mesh densities near the leading
edge (M..=4, mesh converged shock position with
primary separation) and between y/s=0.6 + 0.8 re-
sult in local variations of mesh-inherent dissipation.
It is concluded that higher numerical dissipation in
the crossflow shock region at M_=6 is the source of

the changing shape of the separation bubble influen-
cing the shock position. That prevents the calcula-
tion of a mesh converged shock position although
the solutions are residual converged.

4.4 Comparison of flow structures caiculated with a
conical Euler- and a Navier-Stokes method

Separated conical flow structures are compared to
flow solutions obtained with a 3D Navier-Stokes sol-
ver [4]. The cross sectional mesh (144x64 cells)
used for the viscous calculations is compared to the
(200x40 cells) mesh used in the conical calculations
in Fig. 16. For the Navier-Stokes calculations the
pressure side is discretized with fewer cells. Mesh
clustering near the wall is visible on the right side of
the figure.

Fig. 17 compares viscous and inviscid flow structu-
res using iso Mach lines as well as streamlines. The
laminar onflow conditions are set to M_=4; o=10°;
Re=5000000 and a wall temperature of 888 Kelvin is
used. The calculated aerodynamic coefficients are
given in the figure’s right side for the viscous calcula-
tion. Note that only the contributions of surface pres-
sure are used here. The conical solution and the
coefficients are shown on the left side. Both flow
structures are very similar on both fine meshes. Vis-
cous and inviscid calculations predict wing leading
edge separation resulting in big primary and se-
condary vortices. The viscous solution shows a pri-
mary vortex having two centers and a stable se-
condary vortex. The conical fine solution (compare
Fig. 12 and Fig. 13) is oscillating. It shows phases of
the primary vortex core beeing split. The secondary
vortex also oscillates. On the flattened body part
both solutions predict another flat vortex. This vortex
is generated by the adverse pressure gradient on
the body. The gradient acts in addition to the total
pressure losses yielded by the crossflow shock on
top of the primary vortex at its inboard side. Although
the underlaying separation mechanisms are different
on both sides of the figure the resuiting flow structu-
res are in very good agreement. No vortex genera-
ting crossflow shocks near the surface (necessary in
the conical Euler calculation) exist in the viscous
flow solution. There is only one crossflow shock visi-
ble which terminates the outer expansion region. Be-
cause both flow structures are very similar it is not
surprising that the calculated lift and drag coef-

ficients differ less than 1%.
The viscous and inviscid flow structures at M_=6 are

given in Fig. 18. The calculated flow structures are
visualized using iso Mach lines and streamlines. The
laminar Navier-Stokes solution predicts on the
coarse mesh a leading edge separation with a single
vortex while the conical solution (coarser mesh than
in Fig. 17) gives the complicated shock structure with
a flat separation bubble far inboard, compare Fig. 7
and Fig. 8. But despite differences concerning the
separation the outer global flow structure is quite
comparable and aerodynamic coefficients are in
excellent agreement. The increased onflow Mach
number changes the separated inviscid flow
structure from leading edge separation to the type
with separation bubble. In the viscous calculations
the separation type seems not to change. Comparing
the viscous flow structures of Fig. 17 and Fig. 18
shows that the coarser mesh at the higher onflow
Mach number does not predict a secondary separa-
tion. Therefore the primary vortex has a closed
shape with a single center. It is believed that a vis-
cous flow solution on the fine mesh at M_=6; o=10°

will show identical features of the lower Mach num-
ber case. On the other hand may the reduced mesh-
inherent numerical dissipation drive the solution to
become more similar to the flow structure of the coni-
cal solution on the left hand side of Fig. 18.

4.5 Conclusion

The conical Euler method is a fast and accurate
design tool. It is best applicable to calculate aerody-
namic coefficients and flow variable distributions of
naturally attached flows especially on windward si-
des of forebodies. The use of this tool to calculate
separated inviscid leeside flows is possible. The
aerodynamic coefficients are shown to be accurate
enough to be used in a spaceplane design cycle. Ho-
wever, the necessary effort to establish confidence in
the separated inviscid flow structure is high. Mesh
convergence checks have to be performed. They
also serve to estimate the level of numerical error
that influences the separated leeside flow structure.
Accurate measurements are necessary to validate
the proposed numerical tool for the calculation of
shock-induced separated flows.

5.Summary

The present paper investigates the inviscid flow
structure of a generic spaceplane forebody at two hy-
personic Mach numbers. A conical upwind Euler Me-
thod is used to calculate aerodynamic coefficients
and flow structures of a delta wing with blunt leading
edges. The influence of discretization errors on the
calculated conical leeside flow structures is addres-
sed. Two types of inviscid separated vortical flow are
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found and compared to viscous calculations. This
enables to judge about the applicability of conical
Euler methods as fast design tools for pointed
spaceplane forebodies.
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Fig. 9 C, over delta wing span y/s at M_=4, a:=5°. Fig. 10 Convergence for M_=4, a=5°.
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Fig. 11 Convergenz history for M_=4 and 6.
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Fig. 13 Flow structure at M.=4; a=10° on the 400x80
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Fig. 14 C, over delta wing span y/s, solutions with
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Fig. 18 Iso Mach and streamlines of viscous and
inviscid solution; M_=6; 0=10°.
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viscous calculations.
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