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Abstract

The problem of aerodynamic loads on finite thickness
oscillating wing in three dimensional potential flow is
revisited. A computer code for calculating the
aerodynamic loads on finite thickness oscillating wing in
three dimensional potential flow is developed using
Boundary Element approach and velocity potential
formulation. This method essentially utilizes distribution
of yet unknown sources and doublet on the surface of
the wing. In the numerical computation, quadrilateral
surface panels on wing and wake surface have been
incorporated. Wake geometry is assumed to be known
and zeroeth order approximation has been carried
out,i.e. every surface panels is assumed to have
constant source and doublet strength. Essentially the
method follows closely that of Geissler, but for the
application of Kutta condition Kutta elements have been
introduced and the evaluation of the wake integral have
been carried out using predeterminded finite wake
length. The source and doublet strengths are determined
by solving the resulting system of linear equations. The
method has been validated by comparison with standard
work in the literature.

Nomenclature

X,Y.Z global Cartesian coordinate
£.9.¢ local (panel) coordinate

s countour coordinate

b wing span

F wing surface function

S wing surface area

W wake surface area

[ root chord (reference) length

t time

u induced velocity vector

v oscillatory movement velocity vector
U, translatory movement velocity vector
Cp pressure cocfficient
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o static angle of attack

o oscillation amplitude

w oscillation frequency

P00 velocity potential

K aerodynamic influence coefficient

Subscripts

steady

unsteady

wing upper

wing lower

trailing edge

Kutta element (panel)
source distribution
doublet distribution
pitching axis
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Introduction

Prediction of unsteady aerodynamic loads on an
oscillating wing has been well treated in the literature by
numerical solution of the integral equation of the
potential flow representing the mathematical model of
the physical state of affairs. Methods have been
developed to solve the problem starting from simplified
ones assuming linear aerodynamics and flat zero
thickness geometries by utilizing the elegance of
analytical approach to completely non-linear ones
treating the problem exactly on the true boundaries of
the wings and bodies taking advantage of the progress
of computers and computational sciences by resort to
numerical approaches. However, solution to separated
flow problems appearing in practice does not seem to be
well treated, particularly by using the convenience of
potential flow model.

Several numerical methods for calculating unsteady
loads on harmonically oscillating wings have been
developed. Analytical two dimensional approach
developed by Theodorsen!!} and three dimensional one
developed by Kuessner?! as solution of the Possio
Integral Equation for the acceleration potential have
been instrumental in understanding the basic physical



Dy zt) = @, + @, + @,a'e™ + . €5

where o' is the oscillating amplitude of first order. It is
assumed that the oscillating amplitude is sufficiently
small so that the second and higher terms in (2) can be
neglected, at least in the first approximation.

ELASTIC AXIS

i
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FIGURE 1. Discription of the problem

The kinematical boundary condition on the wing
surface can be expressed by :

(_Q) F=%.yvr-o0 ®3)
Dtj, ot
where

V : free stream velocity

B : body

F : mathematical representation of the surface

Using equation (2), we can express the kinematical
boundary condition as :

D JoF

—| F=— +W+U)VF =0 4
( thB L s wet) @
where

u = V(d,+,) :induced velocity vector

U =V, : translational ambient velocity

vector

R /,iwt
.= @, o'e - .
® =% : first order unsteady part of

the velocity potential
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Dividing (4) by | VF | and using local coordinate
system, one can obtain :

99, 99 _ (.70 )
g I ot
where
¢ = unit vector normal to the surface = %
%% = normal displacement of a surface point
= 9 1
a |VF|

The left-hand side of (5) is the normal induced velocity
due to the potential flow. The right-hand side is the
prescribed normal velocity. The first term on the right-
hand side represent free stream contribution, and can be
expressed by:

T U, = Uy+Ugale™T ©)

and the second is contributed by the unsteady motion of
the surface, and can be expressed by :

X - V,aletT ©)
ot
Equation (6) represents the normal component of the
translational velocity and equation (7) represents the
normal component of the velocity due to oscillatory
movement. w* is the reduced frequency and defined as
wfy/U,,. T is the non dimensionalized time variable and
defined as tU /{,,.
Substitution of equations (2), (6) and (7) into equation

(5) results in :

d 0, —~ = -
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This equation can be separated into steady and unsteady
parts, i.e. :
Steady Part :

% _ _y ©
aC ts

Unsteady Part :

J9, - -
a‘z = -[U(i+V(] (10)

Assuming small oscillation amplitude, the o'e™T

term can be neglected.

The potential distribution on the surface of the wing
and the wake can be established as the superposition of



phenomena and can be used to verify other new and
more general methods for the particular problems for
which these analytical methods are valid. Further
analytical development known as lifting surface
methods, utilizing acceleration potential, have been
contributed by Watkins, Runyan and Woolston!®! in the
United States, Stark*! in Sweden and Laschkal! in
Germany, and the latter has been regarded to give most
accurate solution close to experimental ones for linear
region. Further improvement has been contributed by
Landah!!®!. These analytical approaches have been based
on the series solution of the integral equation for the
linearized problem with linearized boundary conditions.
A new development that found wide application in the
aircraft industry has later on been developed by Albano
and Rodden!”), Giesing, Kalman and Rodden®], and
known as the doublet lattice method. The method is
based on the solution of the linearized problem on the
non-planar wing configuration, by treating the integral
equation on surface panels on the wing, and in each
panel analytical series representation of the pressure
distribution has been assumed, utilizing development
contributed by Laschka or Landahl. This method has
been utilized in the NASTRAN package program which
has found wide application. In 1969 the author has
carried out another approach belonging to the time
marching solution of the integral equation of unsteady
flow, utilizing velocity potential  formulation.
Formulation and similar approach using velocity
potential has been developed by Jones!®], Morinol!"],
Maskew!!!] and Geissler!'2I1'3], This formulation has the
advantage of treating the problem exactly on the
boundary of the lifting configuration, and resort to
numerical solution by utilising surface panels or
boundary element approach. Since the technique has the
promise of treating the problem exactly on the true
boundary of the surface of the wing and body
configuration, it is considered to be well appealing for
further development in the treatment of more
complicated separated flow case. It is with such
motivation that the authors decided to review and further
develop computational routine based on Geissler’s
approach/3! in this particular work. Furthermore, the
method can be formulated to establish a boundary
element computational routine; in what follows, only
results for incompressible case is presented.

The present method has been developed using the
boundary surface element approach. Boundary Element
Approach was first introduced by Morino!!®. This
approach has also been employed by Prananta &
Djojodihardjo!!4], The method that will be elaborated
here capitalizes on the use of velocity potential. Such
approach has also been developed by W.P Jones!131)
Hess!'%l, Djojodihardjo & Widnalll17], Djojodihardjo &
Bunyamin!'®], and Geissler! 2], and reduces to both the
use of singularities and the application of the kinematical
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boundary conditions on the true surface.

The present method is developed for incompressible
potential flow which is governed by Laplace equation.
It has been shown (ref.[12]) that it is possible to
calculate steady and unsteady pressure distribution
without linearization of the kinematical boundary
condition or the Bernoulli equation. However, there
exists connection between steady and unsteady parts that
prompted us to solve both parts together. Essentially the
method follows closely that of Geissler, but for the
application of Kutta condition Kutta elements have been
introduced and the evaluation of the wake integral have
been carried out using predeterminded finite wake
length.

Formulation of The Problem
and The Integral Equation

Folowing the conventional approach, the flow around
the wing can be assumed to be potential with uniform
velocity U_. Figure 1 depicts the problem we are
dealing with. The wake geometry is assumed to be
known a priori. The inertial frame of reference is fixed
on the wing, and coincides with the global coordinate
system x,y,z. The wing is assumed to experience
pitching oscillating movement about its mean angle of
attack, o. In the numerical integration process, the wing
and the wake surface are represented by a finite number
of boundary elements, which for this work are further
assumed to be flat panels. The related boundary
conditions are specitied at any points on these boundary
elements.

Since the geometry is known, then the problem can
be formulated to be the determination of the correct
potential distribution such that the flow tangency
boundary condition, or the kinematical boundary
condition on the wing surface, is met, i.e. the induced
velocity normal to a control point on the surface will
cancel the normal velocity component of the free stream
at that point. This condition will be elaborated futher.

For incompressible flow, the governing equation for

the velocty potential reduces to Laplace equation,
which is also valid for the disturbance velocity
potential:

Vo - 0 M

Following the approach of Geissler[8], the velocity
potential can be described as a superposition of its
steady and unsteady parts; the steady part consists of the
undisturbed velocity potential ¢~ and the steady part of
the disturbance potential, while the unsteady parts can
further be represented by Fourier series.

Hence :



the potential of the singularities distribution on the
surface. In general source and doublet singularities can
be used. Sources distribution represents contribution due
to thickness while doublet distribustion represents lift
element of the wing. Thus :

¢ =9, +9, an

where:
®q velocity potential due to source distribution
¢4 - velocity potential due to doublet distribution

The induced velocity potential at a point P(x,y,z) due
to source distribution on the surface of the wing can be
written as :

1 y!
I WA D (12)
O xy2) = - [[ ———==as
where:
g, : source strength at point P'(x",y’,z)
S : wing surface area

r  : distance from P(x,y,z) to P'(x",y’,z")

The induced velocity potential at a point P(x,y,2) due
to doublet distribution on the surface of the wing and
the wake can be written as:

@092 = - — f f o (lyl2h = (—)

'——ffA%w(x ’Z/)‘_(‘) W13

where

o, : doublet strength at point P(x,y,z)

Ad,, : velocity potential jump across the wake

\%% : wake surface area

In equations (12) and (13), the distance between field
(control) point P(x,y,z) and source point P'(x’,y’,z'),
where the singularities are located, on the integration
panel can be expressed by :

1
= 14
=[x 0oyhe @b “
Analogous to equation (2), both the potential induced
by source and doublet distributions can be separated
into steady and unsteady parts, i.e. :

0y = 0 + B 0/e™T (15)
and
9y = 0u + Byale®T (16)

Substitution of equations (15) and (16) into equation
(11), (9) and (10) results in :
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Steady Part :

%y, % _ _yy (17)
a e

Unsteady Part :
N A (18)
a A @e
By the use of Equations (12) and (13), and the
application of the kinematical boundary condition,
equations (17) and (18) can be written into a system of
integral equations. This set of equations should be
solved to obtain the distribution of the sources and
doublets on the surface of the wing and the wake. By
obtaining the solution, the aerodynamic characteristics
of the oscillating wing can readily be obtained.

In order to obtain unique solutions of equations (17)
and (18), another set of boundary conditions have to be
applied. The corresponding boundary conditions are the
Kutta-Joukowsky condition and the wake sheet
dynamical boundary condition. This boundary condition
will be discussed in the following paragraph.

Kutta-Joukowsky Condition and Wake Dynamical
Boundary Condition

Kutta-Joukowsky Condition

The Kutta-Joukowsky condition states that the
velocity vector of the fluid particles must be finite on
the sharp trailing edge or cusped trailing edge.

Following the development in ref.[17][18], the Kutta-
Joukowsky condition will be treated on added panels
near the trailing edge (these panels will be called Kutta-
Panels). These panels are assumed to be impermeable
surfaces. The main problem is the determination of the
direction of these panels. The direction of Kutta-Panels
depends on wing planform and the distribution of
circulation on the wing. It was shown in ref.[17][18]
that the direction of the bisector of the trailing-edge is
sufficiently accurate for the wings examined.

On the Kutta-Panels the kinematical boundary condition
can be written to be:

Steady Part :

0%y , Iy -, | (19)
ac 3 xe (s ke

Unsteady Part :

dp,, I - =
—aél— * -a_cds KE - {U(i-‘-Vc] ‘KE 20



where the subscript KE indicates that the kinematical
boundary condition is applied on the Kutta-Panels.

Wake Dynamical Boundary Condition

Since the wake is assumed to be a stream surface,
there is no pressure jump across the upper and lower
surfasce of the wake. The mathematical formulation will
be discussed in the following paragraph.

First, the Kelvin-Bernoulli equations for our problem

can be written as:

P . Vo -V
ot 2

2
Lo W b, @1)
p P

2

Using equation (21), the pressure coefficient can be
expressed by:

c W 2 90 veve

(22)
’ u? vt o u?
The wake dynamical boundary condition is :
AC,=C,-C, =0 (23)

Substituting equation (22) into equation (23), we obtain:
(P, -®) (V& V), -(VO VD),

(24)
ot 2
We can use equation (2) to obtain :
oo, - U .
( u l) - iw:;A(";ia/eimT (25)
of N
where
Aai = 25,‘“ - ai, (26)

The second term of left-hand side of equation (24)
can be written as :

(V& V@), - (V& VD), =
(U Vi )2 - (U + Vi )] + 2V V(AF) +

I7-V(A(Ps) +V‘9s,,‘vai“‘v‘?s,'v$i,] x a'e T  (@27)

Using equations (25),(26) and (27) we can obtain, for
the steady part :

U_+ V(Ps)z = (U, +Veg, )2 (28)
that is :
| Vos, | = | Ve, |
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or
V(Ag) =0 29)
Therefore

Ag, = constant = (A@ ) (30

The last equation implies that the potential jump across
the wake surface is constant and that its value is equal
to the potential jump on related trailing edge.

Next we will derive the wake dynamical boundary
condition for unsteady part. From equation (30) we can
write :

Vo, = Ve, E2))

Su

Using small perturbation condition, we can assume that:
(U, +Ve) = sU, (32)

For the unsteady part, from equations (24) and (27)
and the condition as implied by equation (32) :

in*, - aA(T)i:

sVAg) = -2 A, 0% A5, (33)
& ds b

Integration of equation (33) results :

(4%), = (A9)y exp—io)*(s;:”] (3%

Numerical Solution

The solution of the integral equation for the unknown
source and doublet strengths can be obtained by
numerical approach. The surface of the wing and the
wake are divided into boundary surface elements, and as
a first approximation, is approximated by planar surface
elements. More accurate representation can be made by
using spherical surface elements. Alternatively, more
accurate boundary surface elements using shape
functions can also be employed. However, in this
particular work, planar surface elements were
employed. The numerical procedure is well known and
essentially follows those given in refs.[17] and [18].
Following similar procedure, the problem of solving the
integral equation can be reduced to problem of solving
a set of linear system of equations.

To use the method, first the wing and wake surface
are discretizised into large number of small quadrilateral
panels. Fig.2 describes the discretization used in the
calculation. Both the distribution of sources and doublet
are assumed to be constant on each surface panel.
Doublet strengths in the wake are related to their local
trailing edge values as described by equations (30) and
(34).



.
contror \ rntegration

paint panel

FIGURE 2. Discretization of surface of the wing
and wake

Using this discretization, the surface integral for the
velocity potential and the induced velocity of the sources
and doublets are reduced to a sum of integrals over a
single boundary element surface. Each integral is
calculated by assuming sources or doublets of constant
strength.

For control point i, the induced normal velocity due
to a source distribution over the surface element is :

3 MN
(_‘Bg) = Ly o, [[2(L]as (35)
\a¢ ), 4aniA s 90\
where
a . . o
(—:?") : normal induced velocity on control point i
i
due to distribution of sources
T : distance from control point i to integration
panel j
S : wing surface panel area |
Ogi : source strength on panel j
M : chordwise panel number
N : spanwise panel number

and the induced normal velocity due to a doublet
distribution over the surface element is :

(63_?) e “"”ac ac( ]ds

—1-5‘2’”“ % (1) aw (36)
=1 dwkaf,-acj ", 3
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where

(%t—"). : normal induced velocity on control point i
1
due to distribution of doublets
T : distance from control point i and integration
panel j
S : wing surface panel area
W : wake surface panel area

: doublet strength on panel j

Ad aw, potential jump on wake panel k

The surface integral terms on equations (35) and (36)
are known as the aerodynamic influence coefficients.
Refs.[12],{17],[18] show that these aerodynamic
influence coefficients can be treated numerically.

Using equations (35) and (36) and also referring to
ref.[12], the integral equation can be rewritten as :

Steady part :

[E oKy, E o4 Kx, *E Ao Wyl = Uy @7
Unsteady part :
1 MN E E
2 o +y Ao, W, ]
4 L= Oy q( dj dC kT ik
[G,+0]  ©®

The treatment of doublet distribution in the present
method is similar to that of ref.[12]. Using similar
approach, the equations (37) and (38) can further be
written into :

Steady part :

4n i
Sy
-5 Wal = -U, (39)
Unsteady part
MN N N
1 - 1 - _Sm
;E ey * I‘;g; Uk[jg(s 2) ¢y *
Suig |- [T, +T (40)
2 * [ G ‘]
where
s : curvilinear coordinate of control point
sp - curvilinear coordinate of the trailling edge
o, : doublet strength of section-k



o, : doublet strength of section-k (complex)

Wi ¢ influence coefficient of wake strip-k as
related to control point i

W, : influence coefficient of wake strip-k as

related to control point i (complex)
fori = 1 ... MxN.

The numerical approach of Kutta condition, equations
(19) and (20) are carried out in the same manner as
equations (39) and (40).

The treatment reduced to :

Steady part :

1 [aey MN N
@ E Oquq(fE °ded<,.,.+E Ao Wy
i1 k=1 =

KE
= U le @
Unsteady part :
1 [y MN N _
I.;{Z OqJchfZ "ded(,.j*E Ao, W,
j=1 j=1 k=1 xE

= '[6@”—’(} IKE (42)

Equations (39), (40), (41) and (42) form the system
of linear equations. The unknowns of this system of
linear equations are the strengths of the sources and
doublets at each boundary surface element.

The system of linear equations can be arranged
further into the following symbolic  matrix
representations :

Steady part :
/ / /
4] BiC; { } D, @
Aij{ B,2+C,k O D,
Unsteady part :

A; By+Cy {aq,}

-
Ay By+Cy

Y

(44)

dk

-~

where
,] = 1,2,3, ..., MxN
k1l =1,2,3,...,N

/ . - . AP ~
Aij : matrix of source influence coefficients of

singularity distribution at panel j on the

wing on control pointi = — ”
y

454

B.

; : matrix of doublet influence coefficients of

singularity distribution at panel k on the

wing on control pointi = ;%Kd(u

Cii : matrix of doublet influence coefficient of

singularity distribution at wake strip k on

C . 1
control pointi = ;;Wik

/ . . . .
A : matrix of source influence coefficient of

singularity distribution at panel j on Kutta

L x

oint { = —
control p Ky,

By : matrix of doublet influence coefficient of

singularity distribution at wing panel k on

LY ¢

Kutta control point £ = K,

Ci  : matrix of doublet influence coefficient of

singularity distribution at wake strip k on
Kutta control point £ = 2!; W

D, : matrix of prescribed normal velocity on
control point i

D, : matrix of prescribed normal velocity on

Kutta control point ¢

o, @ vector of source strength on panel j

: vector of doublet strength on panel k

Discussion of Results

A numerical investigation has been made for
rectangular wing with a NACA 0012 airfoil. The wing
has an aspect ratio of four. Numerical results are
evaluated for the case of pitching oscillation about the
wing quarter chord-axis. The experimental data was
taken from ref.[12]. Comparison of the results with
experimental data and computational results of Geissler
has been made.

Figure 3 shows the steady pressure distribution for
static angle of attack of three degrees. Similar to
Geissler result, the calculation is valid for up to 80% of
wing half-span when compared with Geissler experiment
and results. This behavior is similar for unsteady cases.

Figure 4 shows the unsteady pressure distribution for
zero static angle of attack. The real part does not make
significant differences the with experimental data and
Geissler results. The imaginary part displays some



discrepancies compared to Geissler results. But for 55 %
of the wing half-span, the imaginary part of our
approach displays more accurate results compared to
Geissler’s experimental data. This behaviour are similar
for other cases.

Figure 5 shows the unsteady pressure distribution for
static angle of attack of three degrees.

Figure 6 shows the effect of trailing edge panel’s
chordwise length to Kutta control point coordinate. The
coordinate is specific for every case. The equation for
determining the coordinate of the Kutta control point has
been obtained, for symetrical airfoil, by numerical
investigation.

Figure 7 shows the error of calculated pressure
distri-bution due to unsuitable coordinates of Kutta
control points. We can see that for symetrical airfoil,
there is a matching coordinate point for Kutta control
point.

Figure 8 gives the mean error of pressure
distribution due to the use of finite discretizised wake.
The mean errors are compared with infinite discretizised
wake, which is simulated by a wake of 25 chord-length.

Conclusions

A boundary element computational method based on
panel method has been developed for the calculation of
unsteady pressure distribution over three dimensional
oscillating finite wing. The method presented here,
although based on Geissler’s approach, has utilized
different approach in the treatment of the wake, in that
it employs the use of finite discretizised wake and in the
method of solving the integral equation. In solving the
system of integral equation, use has been made of the
method suggested by Sloof[19]. Using Sloof method,
qualitatively, computer time can be shorter than Geissler
method.

1t apprears that this methods is very sensitive to the
application of Kutta-Jowkowsky condition. This aspect
will be the subject of further work. Work is also in
progress in the application of this method to other wing
planforms and airfoil sections.
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FIGURE 4. Unsteady pressure distribution, a=0° , w*=0.14
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FIGURE 7. Error of calculated pressure distribution
due to unsuitable coordinate of Kutta control point
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FIGURE 5. Unsteady pressure distribution, o=3° , w*=0.14
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FIGURE 6. Effect of trailing edge panel’s chordwise \
length to Kutta control point coordinate S~—_|
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: .. g FIGURE 8. Mean error of pressure distribution due
: ¥ g to the use of finite discretizised wake
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