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APPROXIMATE MOMENTUM ANALYSES OF THE FLOW BEHIND AN
UNSHROUDED ACTUATOR-DISK,NORMAL TO THE FREE-STREAM

By David H. Chester *

P.0.Box 381, Petach Tikva, 49103, ISRAEL.

ABSTRACT

These analyses extend the one-dimensional
actuator-disk theory of propellers by Rankine.
Radial velocity components of the axi-symmetric
flow are expressed by using three approximate
momentum theories, enabling the streamlines and
flow properties to be directly obtained. Firstly,
the velocity across each concentric stream-tube
is taken at its mean value (although the overall
velocity distribution across the disc may be
non-uniform). Equations for the continuity of
volume flow within the stream-tubes and for their
velocity components are introduced with a
vectorial representation that has both momentum
and hodographic connotations. The resulting
linear differential eguation is integrated to
give the shape of the streamlines. Relating the
axial acceleration to the static pressure, yields
the angle of flow at the edge of a stationary
actuator-disk, which at 54:74 degrees closely
matches measurements from a stationary rotor. An
alternate assumption gives slightly different
results, which agree with and explain the semi-
empirical expression used by Landgrebe. A hybrid
theory is also provided. Graphical presentation
of the the theories is used to compare them with
experiment. It is concluded that the variation of
the streamline shapes with the velocity profile
is small and that our knowledge of the flow
properties has been usefully extended.

NOTATION
C Constant of integration (see section 2.1).

Cl  Property of the siipstream volume flow rate,
which = Vmb "mh? » See equation {2.5).

C2 Property of a streamline in equation (2.3),
which = Vp rp? (tan Op)/ {1y - rj) , see
equation (2.17).

D Constant of integration (see section 2.2).
£ Constant of integration (see section 2.3).

F Property of a streamline in equation (2.4),
which may = —(rj/rm) tan Om /(1 - rj/rm) R
see equation (2.14a).

f A core modification factor on r , which
= {1+ r.2/{ry rj)) , see equation (3.2a).
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K Property of a streamline, which = tan Qg
log Abbreviation for natural logarithm.

R Radius of curvature of a streamline.

r Radial distance from axi-symmetric axis.
t Time.

) Axial velocity component.

VR  Radial velocity component.

X Axial distance from the actuator-disk.

5 Small incremental quantity (as prefix).

e Angle of the local flow relative to the
axial direction.

Subscripts (which alsc may be taken in certain
combinations).

b on the boundary of the slipstream.

c on the core of unchanged axial velocity.
j in the fully developed jet-stream.

m at the actuator-disk.

] free~-stream value (of axial velocity).

s for stationary conditions (where V, = 0).
sl along a streamiine.

u on the axi-symmetric axis (where r = 0).

1. Introduction

The original one-dimensional Actuator-Disk Theory
by Rankine (1865) and Froude (1835) References
[1] and {2] , proved that the increment of
induced velocity doubles between the disk and the
jet-wake far downstream. The thrust and ideal
propulsive efficiency were related to the jet and
free-stream velocities. Initially this approach
appeared to establish Momentum Theory as the
means for determining fluid dynamics of
propellers. But it was never extended to the
specific details of the streamlines, nor was it
used to explain the local flow properties by
using more than Bernoulli's Equation, (which may



be written in Newtonian terms as :

pressure-

change x area = mass-flow x velocity-increment).

The evasion of this path of enguiry carried the
impetus for the development of propelier fluid-
dynamics away from what initially appeared to be
a most promising direction. The reasons for
adopting the alternative approaches were :

a)

c)

The supremacy of the classical Potential-Flow
Theory, invelving velocity-potentials and
stream-functions, as expressed by Laplace's
Equation (with the later use of conformal
transformations for two-dimensicnal flow
around aerofoils and cascades). This theory
suggested that the actual propeller situation
of rotating blades in a free-stream is a very
complicated problem and it implied that
analysis by merely using momentum methods was
inappropriate. Also since Laplace's Equation
was derived from the momentum and continuity
of a general element in the flow, it was
probably felt that justice had already been
done.

The Blade Element Theory of Propeliers (having
overcome its jnitial difficulties by using a
modification of the Momentum Theory), proved
to be a practical design tool. An essential
assumption here was that the blade elements
behaved independently, which was confirmed by
wind-tunnel measurements on propellers by Lock
[3] in 1924.

For the theoretical distributions on lightly
loaded propellers without contraction of their
slipstreams, the Vortex Theory by Betz [4] in
1919 was developed to provide an exact (and
complex) analysis by Goldstien [5] in 1929.
This concept, which eclipsed the Momentum
Theory approach, was also strongly influenced
by the previous work on fixed-wing vortex
aerodynamics.

The introduction of marine screw-propellers
(after a dramatic contest with paddie-wheel
propulsion) was so successful, that the design
by the Blade Element Theory was accepted for
many years. Ships' propellers were inevitably
made to operate in the region of disturbed
flow at the stern, where ideal efficiencies
could not be expected in any case.
Consequently no motivation was felt for
improving the theory. Only when high-speed
craft (using steam turbines) became feasible,
did a need emerge to design the shape of the
hull to provide the propellier with a smooth
uniform entry flow. At this stage the Blade
Element Theory was dominant and the streamline
hull-lines were obtained by estimation.

The original Actuator-Disk Theory used the
assumption of uniform pressure and velocity
distributions over the disk. Extending the
general theory to two dimensions by making the
distribution non-uniform seemed to be a step
that was just too hard to take. Even when a
potential-flow model was introduced by Koning

e)

[6] in 1929, he took a distribution of
doublets having uniform strength on the disk.
The conditions along the axis of asymmetry
were then applied across all of the slip-
stream. The solution expressed the variation
of flow parameters with axial displacement,
but was found to be unsatisfactory.

Similarly in a recent technical note, Gibson
[7] obtained the flow field of cylindrically
arranged ring vortices without including
contraction effects. The difficulties in
finding the exact solution were avoided by
this simplification and the model provided for
a uniform velocity over the disk. His
expression for the variation of axial velocity
with axial position agreed with that of
Koning.

Eventually contraction effects were taken more
seriously and the subsequent helicopter rotor
theories developed using Vortex Theory and
finite elements for the blades and downstream
flow, see Reference [8] . Shed vortices that
assume "free-wake" flow patterns were found to
provide the most satisfactory results,
although the demand on the digital computer
was heavy, making good solutions difficult to
obtain until recent times. They are still hard
to understand in analytic terms.

Flax [9] showed that for a hovering rotor the
flow models by the Vortex and Momentum methods
were identical. However no effort was
subsequently made to substitute the latter
into the analysis of helicopter rotors, due
perhaps to the Shed Vortex Theory holding
precedence.

Only in more general situations does Momentum
Theory find use in aerodynamics. For example,
the down-wash behind a 1ifting body or wing is
related to the rate of change of momentum
experienced by the air that passes over it. This
is equated to the 1ift. But when particular
details of the flow are required at the element
itself, it is left to the more complicated
analytic methods to provide the solutions.

In this paper an attempt will be made to apply
the Momentum Theory to the flow at and beyond an
unducted actuator-disc facing the free-stream,

without the previous restrictive assumptions

being applied. In particular, taking a uniform
velocity over the disk and the neglect of the

component of radial velocity no longer will be
accepted.

2. Theoretical Analysis.

The flow past the actuator-disk (shown in Fig.l),

a)
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occupies the following three regions:

Up-stream, where the free-stream accelerates
as it encounters the progressively reducing
pressures ahead of the disk.
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FIGURE 1. THE FLOW THAT IS INDUCED BY THE

ACTUATOR-DISK PRESSURES

b) In the isolated slipstream after the disk
(where x > 0), the free-stream axial velocity
Vo having already grown to Vp » increases

further, as the flow leaves the rajised
pressure field behind the disk. Eventually it
reaches the value of Vj far downstream. With

the development of this axial velocity, the
the slipstream reduces in diameter. This
contraction affects

c) the flow that remains outside the slipstream
and aft of the disk. With progress in the
axial direction the velocity reduces,
ultimately returning to that of the free-
stream (whilst that within the slipstream
achieves its asymptotic jet-stream value).

These conditions are summarized in Table 1 ,
which introduces some additional properties of
the flows.

TABLE 1. BOUNDARY-CONDITIONS FOR THE FLOW
AROUND AN ACTUATOR-DISK
QUANTITY LOCATION IN FLOW
In the |At In fully
Description free- |[the developed
stream |disk |jet-stream
axial distance «x - ® 0 + ©
axial velocity V Vo Vi V;
radial distance r - Tm T
flow direction © 0 [ 0
(negative quantity) (min.)
tan © = dr/dx 0 min. 0
acceleration dv/dt 0 max. 0

The one-dimensional momentum theory of References
[1] and [2] may be applied to any streamline in
the slipstream and it provides :
V= (V5 + Vo) /2 (1.1).
Although this result was originally derived for a
slipstream having a uniform velocity
distribution, the expression also applies to
stream-tubes in a slipstream having an axial
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velocity that varies with radial position. Even
when the axial velocity is combined with radial
and tangential components, equation (1.1} is
still true. Only the most general properties have
been described above.

2.1 Mean Velocity Theory for Flow Within
Concentric Stream-Tubes

The axi-symmetric flow within the slipstream
consists of numerous streamlines that lay within
concentric stream-tubes. In applying equation
(1.1), the mean value of the axial velocity is
taken over the cross-section of a particular
stream-tube. The variable radial velocity
distribution implies that different mean axial
velocity-ratios may occur along various stream-
tubes, with a corresponding axial displacement.
Then the continuity of the ensuing flow produces
contractions in the stream-tubes' diameters that
are not necessarily in proportion.

2.1.1 Due to the continuity of volume flow, the
stream-tubes contract with passage down-stream
according to :

2Vm=r2V=rj2Vj
for the axi-symmetric flows. This expression is
applicable to any of the concentric stream-tubes
including the one containing the cuter bounding
streamline (where rp, = rp and Ti= Tib ).

m (1.2)

Comparing the two extreme conditions of eguation
(1.2) :

rz=r2V (1.3)
J mom 3

and using equation (1.1) :
ry =t [(1+ Vo/V3)/21% (1.4).

But when the disk is stationary (V, = 0) , the
use of this equation results in :
rj/rm = 1/42 = 0:7071 (1.4a).
In practice, the slipstream behind a stationary
disk does not contract by this amount and some of
the assumptions that lead to this result are
invalid. It is suggested here that the uniform
velocity distribution for a stream-tube taken in
equation (1.3) is inapplicable to the whole of
the slipstream. In this case, since each "active"
stream-tube must contract by the same ratio, it
is deduced that there also exists a central core
of “"passive" streamlines (that cause no thrust,
acceleration nor contraction of the jet). This
model of the flow now approximately corresponds
to the overall situation. To allow for the radius
of the core, equation (1.2) is modified giving:

(rp? = re?) V= (r2 - r.2) V= (rj? - re?) Vy
(1.5).
where rp, 2 r 2 ry > re > 0 .

The velocities used here are the mean values over
the stream-tubes, not including the core area. By




using the radii that occur on the boundary of the
slipstream, from equation (1.5) :

mb? V- rjbz Vj =re? (Vp - Vj)

(rjb/rmb)z Vj/Vm - 11%
or re/Tmp = [ ] (1.5a).
cm Vi/Vp - 1
Thi§ relationship is illustrated in Fig.2.
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FIGURE 2. VARIATION OF THE RELATIVE CORE SIZE
WITH THE CONTRACTION RATIO OF THE
SLIPSTREAM FOR VARIQUS JET-STREAM
VELOCITY RATIOS - equation (1.5a)

Equations (1.3), (1.4) and (1.4a) are also
affected, but they are of little further
interest.

Now differentiate equation (1.5) with respect to

X dv dr
2 -r2)—+2rV—-= .
(re-re?) urer V=0 (1.8)
or 9! = - —z—:—!—— tan O 1.6
dx  r2 - re? an (1.6a)
d
where : . tan © (a.1)
dx

the angle © being that of the local flow
direction, as explained in the appendix. (This
includes the streamlines that occur on the
boundary of the stream-tube.) The radial velocity
component may now be determined from equation
(1.6a) :

v eV tmoa W 1.7

=V — = an @ = - ———0 — 7).

dx 2r dx (1.7)
At the disk, the maximum value of radial velocity
is found from this equation as :

(re/Tp)?) szﬂq (1.8
o/Tm)*) 2 lal (-8

VR = Vp, tan @, = - (1 -
However, this expression is not directly useful
and a different approach for determining the
radial velocity component is adopted below.

2.1.2 The velocity vector or hodographic present-
ation shown in Fig.3. is now used to express the
variation of the conditions along each stream-
Yine. This important concept for the momentum of
the overall flow of inclined actuator-disks was
proposed by Hafner [15] for 1ifting rotors. The
flow directions were later found by Chester [11].
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FOR A VRa
NOTES: 1. The
vector o--*
represents a point
on the streamline that

TYPICAL PQINT
IN THE FLOW
passes from o through @ to j . m

2. Angles are shown in negative direction.

FIGURE 3 VELOCITY COMPONENTS ON A TYPICAL
STREAMLINE

A similar approach is taken here using the mean
velocities described above. The added momentum
components are taken as laying along straight
Tines. This simplifying assumption enables an
analytic solution to be obtained although it
violates the exact hodographic equations of
Reference [4].

Both from equation (1.7) and the vector diagram,
it is seen that there is a linear relationship
between the radial velocity component VR and
the change in the local axial velocity. Between
its asymptotes at either the fully developed
jet-stream or the free-stream, this radial
velocity can now be written as:
Vi -V
m Vj - Vg
VJ + V0
- V) tan 0, with V > Vg
Vs
J (1.9a)
and similarly ahead of the disk, where x < 0
Vs
(V- V,) tan 6, with V < ¥V
AL ° ™ (1.9b)

{at the disk, where x = 0 , these expressions
become the same).

VR = 2 VR behind the disk, where x > 0

or Vtan 0 = (Vs

- vo J

+ V0
Vitan 0 =

Vj + V0

If K= tan O (1.9¢),
Vj - Vg

then from the vector diagram : K = tan ems ,

which is the slope of the flow at the same
position on a stationary actuator-disk. The size
of this term depends upon the particular stream-
line involved.

Equation {(1.9a) may be rewritten as :
tan 0 = K (Vj/V - 1)

and with equations (1.5) and (a.l), this becomes:

dr

tan © = — = K [(r2 - r;2)/(rj? - rg?) - 1]

dx (1.10).

Although mean velocities of the stream-tubes were
used so far in the analysis, the radii appearing
in equation (1.10) are on the surfaces of the
stream-tubes. They are therefore true properties
of streamlines. For conditions at the disk :

(rj? - rg?) tan @ =K (rm? - r3%)



hence :

K/(r2-r2)=tan® /{r?2-r.2) (1.10a).
J c m m j

On separating the variables in equation (1.10)
with equation (1.10a) :
dr K tan @

m
= ; dx = . 5 dx
Y‘j - Y’C l"m = Tj

rZ - rjz (1-11)

After integration this becomes :
-(1/rj) coth'l(r/rj) =
x (tan O/ (ry? - rjz) +C (1.12)

where C is the constant of integration. (It is
noted that the alternative solution of the
integral on the left-hand side, has logarithms
and is less useful here.) Equation (1.12) may be
written as :

ri/r = tanh[- x r; (tan 0.)/(ry2 - r:2) - C rs]
! J w13y
At the disk, x =0, r = rm and :
rj/rm = tanh(- C rj)
or - C ry = tanh'l(rj/rm)

Substituting back into egquation (1.13) and
re-arranging gives :
—(x/rm)(rj/rm)tan Gm

1~ (rj/rm)2

r
;; = (rj/rm) coth[

tanh‘l(rj/rm)] (1.14).

Hence the family of streamlines is determined by
values of the two parameters : tan 8y and (rj/rm)

applied directly in equation {1.14). The effect
of the core is indirectly retained only by the
distribution of tan Om over the disc.

Due to the assumption of straight hodographic
lines, this result will probably not be very
accurate for actual propellers and rotors.
Equation (1.14) is also affected by the
approximations for the velocity distribution
across the slipstream that has yet to be
determined properly.

2.1.3 The axial acceleration at the disk is now
examined. From equations (a.l) and (1.6a) , after
re-arrangement and differentiation with respect
to x:

dv dr [ 1

2 2 - op 2 2 -2
dx r r.?2 dx dx r re

2 re dr]? 2 r vV  der
T ) e e
and substituting again from equation (1.6a) :
dav. 4 r2y drl? 2V
P T R

2 r2 } ngz 2r vV der
rz - r.2}idx rz - ro? dx?
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and

v _ -2V Hl __4_:1_][%}2”931
dx2  r2 - re? rz - r.2)ld dx?

(1.15).
At the disk x = 0 and the axial acceleration is a
maximum value. This implies that [d2V/dx2], = 0
and using equations (a.l) and (a.2) :
4 r 2
] tan2@, +

r
i o S 3]
rp? - re? cos?Qy Ldxdpy

4o sin2@y 4 Tl
I 1]
[dem ™m [rmz - re?

Because O has its minimum value at the disk one
might suppose that the first differential, namely
equation (1.16) , becomes zero and the angle too.
However this clearly does not occur in practice
and the use of this expression to find the value
of the angle is invalid, due to the singularity
when x = 0. If we now consider the variation of
rp and 8 , the distribution over the actuator-

disk can be found by :

e Rl e e I
dr m— dxipldrly  ldxdy tan G

then from equation (1.16) :

hence :

(1.16).

[d@] } [ 4 Y’zm 1] sin @m cos Qm
dr m- r2p - re? m

and with the separation of the variables, prior
to integration over the disk :

3 r2y +rg? dep
oz 9T 5 e cos s
™ (rp? - 7¢?) sin @y cos €y

After integration this yields :

(rmz - rcz 2

109{——-——————-—] = log[tan g5} + C ,
Tm

C being the constant of integration.

Using conditions at the boundary, where 0 = €y
and rp = ry, » this equation reduces to:

{rm2 - rc2)? rop ) tan O

= (1.17).
(*mp? - re2)2 ryp  tan Qg

When r =r , the value of tan @ on the core
m c m

radius is zero, as anticipated from the comments
made at the end of the previous section. A non-
dimensional form of this expression is shown in
Fig.4a for the parameters (rc/rmb) , (rm/Thp) and

(tan © )/(tan Gmb) . When the core is of
m
negligible size, at the disc it appears that the

local slope of the streamlines increases as the
cube of the radial position.
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Using equation (1.6a) for conditions at the disk
[ﬂ]-‘ZY‘me
dx)
and substituting from equation (1.17) for tan ©
m

an
——— tan O
m m C

[dV} =2y Vg (rg? - 1e?)2
- o= tan @
dxly  Tp? - re? (rpp? - re?)? oy mb
dV] 1 [dVJ 'm? - e
| = === = - 2 rpp Vp tan Oy ———r
mb 'm mb
[dx m Vpldtig (rpp? - Te2)2
{1.18).
This expression is shown on Fig.4b.
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When the core is of negligible size it appears
that the local acceleration increases with the
square of the radial position. Similar results to
these are applicable further downstream, since
the flow is continuous. The last two expressions
do not seem to be very typical of flows through
actual propellers or rotors and consequently in
part 2.2 of this work we will attempt to
introduce less constricting assumptions.

2.1.4 For the acceleration along the boundary of
the free-jet (of a stationary disk, where Vo = 0)
it has been shown in the appendix that :

dvy ] d@bs
a;— = - ij sin Opg EET— (a.7).

Now from equation (1.6a), for the conditions

being taken :

dVb -2 rb Vb
dx rp? - re? tan Bps

By combining these two expressions to eliminate
dVp/dx and after re-arrangement one obtains :

d@bs 2 rp Vp 1
dx rp? - rcz[ﬁgg]

But according to equation
terms cancel and :
ZT‘b

de
bs _ (1.19).
dx TR - re?

cos Opg
(a.6) the last two

Reference to this form of equation has been made
in the appendix. After deriving equation (a.5)}
there, this type of equation was found to result
in zero acceleration along the central axis. At
this singuiar line and within the core, the
expression is not workable, but on the boundary
equation (1.19) can be solved by the substitution

and by separating the variables it gives :
tan Oy dOpg = 2 1y dry/(rp2 - re2)
After integration this yields :
-log{cos Bp¢) = log(rp?2 - r2) + C
where C is the constant of integration. Using
the conditions at the disk (where x = 0) this

reduces to :

(rp2 - rc2) cos Opg = (rpp? - T2)cos Gppg

2 - p2

Th Te

or - >l =
mb* ~ V¢

€08 Bpps

1.20).
cos Oyg ( )

The parallel streamlines at the fully contracted
jet define the lower limit in the relationship
between rjb/rmb » Te/Tmp 2and cos Bgpg  for any

of these flows:

r.bZ - rCZ
[-i————] = cos Brps (1.21),
Tmb? - Tt
because the angle 6, =10
jbs
2.1.5 Comparing the two equations for d@/dx ,

at the outer corner of the stationary disk, point
(mb) of Fig.l, equations (1.16) and (1.19) are
set equal, then :
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sinzembs[ 4 rop? 1] . 2 b
Tmb Lrmb? - T¢? Tmp? = T¢?
or sin?Qppe = 2 Tpp?/(3 rgp? + re?) (1.22)
Combining equations (1.21) and (1.22) to
eliminate the angle according to the rule
sin20 + cos?0 = 1 , provides :
[rjbz - rcz]z L B m?®
mb2 = T2 3 rpp? ¢+ re? B
and :
[[ mb® * e 1% %
T I P 2 -y 2 2
rib R rcz] ("mb re?) +ore ] (1.23)
that are

Th 1 f e
e values o bs and rjb/rmb

obtained from these last two expressions are
calculated and presented in Table 2. It is seen
that there is only a very small effect on these
quantities by the core parameter re/Tp-

is derived instead for an element shown in Fig.5.
The streamline properties Cl1 and C2 are used
below, instead of the slipstream flow constants
that appeared in the Mean Velocity Theory. This

Boundary of the
r T slipstream(b)

;z

AVANVAVANVAVANVAVY

= tvely
B S —— developed
~ >V T, Jjet«stream(j)
= » b or
= N
T Bm = vjb!

===
Actuator-Disk -
with thrust

distribution({m)

7//
)
.’1

"

Sr
QJ v,
d>

Typical
stream-~tube

f

"

AVAVAVANVAVAY
[

iv
8
0

ELEMENTARY STREAM-TUBE
SLIPSTREAM

< x» Tun

FIGURE 5. QF THE

approach is applicable to individual streamlines
and it takes a differential equation form, which
is introduced to complement equation (1.5) for
continuity :

= or =V 8 2.1
TJABLE 2. VARIATIONS OF SLIPSTREAM CONTRACTION Vm rm 6rm vVoror h rj rJ (2.1
Lip/ rmbAND_FLOW ANGLE ©.nc WITH CORE SIZE r./r - ] ; Sr = ér (V /V
J FOR A STATTORRY ™ AL TURTOR BToc —cL b Re-arranging gives T " o j)(rm/rj)(z,la)_
re/Tmp | 0°0 0-05§ 010 { 015 | 0-20 | 0-25 | 0-30 | 0:35 | 0-40 | Using equation (1.5) to
include the core, provides:
"ib/mb|0-7598|0-7606|0-763910 7688 (0-7756|0-7840/0-7940/0-8053|0-8179 (r2-r2)yv =
m c m
- Oqps [54-74°|54-70°54-60°54-43°154-20°|53-91°{53-56°|53-16°[52 71° (rjz - rcz) vj

When the core radius is zero, the flow angle is
given, using equation (1.22) , by :

sin2@ = 2/3
mbs
sin"1[-(2/3)%)

- 5474 degrees (1.24),

the positive root being omitted, since it is
physically impossible (unless the device is
acting as a braked windmill). Substitution back
into equation (1.21) yields :

rib/mmp = (1 - 2/3)% = 07598

1

;0
or mbs

(1.25).

Even with the assumptions used in this
approximate theory, these values of Qs and

v wi )
rjb/rmb agree closely with the experimentally

determined results (see part 3 of this work) and
at least the flow near the edge of the slipstream
has been successfully represented.

2.2 Approximate Axial-Flow Theory

Unlike the previous theory, the assumption of the
mean velocity distribution across the concentric
stream-tubes is now dropped. Instead we consider
the flow within an element of the slipstream.
Equations {1.1) and (1.5) still correspond to
the overall or general mean flow in the axial
direction x , but the expression for the local
continuity of the volume-flow of the stream-tubes

which yields : rp? = (ry2 - re2) Vy/Vp + rg?

With equation (2.la) this results in :

bri= oy (Vp/V3) [(1 = (re/ri)2Vi/Vpy + (r/ry)21%

or bry= by (Vp/V3)%IL = (ro/ri)2(1 - Vp/V4)1%

and 6ry= 6ry [(1 + Vo/V35)/20%[1 - (rg/ry)2(l -
Vo/V3)/2)% (2.2).

When the core radius is zero this reduces to:
- kS
6rj— orgl(1 + VO/Vj)/Zj2 (2.2a).

This is similar to equation (1.4) which it
replaces - it is given for comparison purposes.

Divide the variable part of equation (2.1) by éx
and take the limiting values as éx , ér -> 0 .
Then along a streamline, using the partial
differentiation notation that is now obligatory:

v rFﬁq = C2 (a streamline property) (2.3).
B 1

Unlike the total differential coefficients, the
partial differential expression (2.3) does not
equal tan © . Should it equal this guantity, then
far downstream the product of vy and rj would

have to be infinite. For conditions in the.jet—
stream, this product has a finite value which may
be anticipated by writing the total differential
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equation :

dr
Vv —— =
r [dx ] 2

instead of equation (2.3) . The quantity F

varies from streamline to streamline, but it is
not a function of x nor of r during passage
along a streamline (because for this to be true
the variable part would be included within the
differential itself). Comparing equations (2.3)
and (2.4) : dr

dx 381
The total differential comprises of two terms
where the second term F adopts a particular value

for each streamline. Taking the average flow
properties, from equation (1.5) :

V (rz - r.2) =(l

(2.4)

(a streamline property)

and V.r = Cl r/(r2 - r.2) (2.5).
Equating the equations (2.4) and (2.5) :
dr C2 C2
— F S e——— D ce— 2 - 2 . .
d R (2.6)

Where the jet-stream has become fully developed,
the slope (dr/dx)j = 0 then :

-F = cz (rs2 - r.2) (2.7)
Cl rj J ¢
and applying this to eguation (2.6) produces :
drc2 [(r? - rg?)  (rj? - rg?)
or X = EI [ " - } (2.8).

re
J

The bracketed expression on the R.H.S. can be
written as :

= (rZry-rg?ory - riZ v+ re2 r)/(r ry)

(r rj {r - rj) + ro?(r - rj))/(r rj)

(r - rid(r ry + re2)/(r ry)
and the variables of equation (2.8) can be
separated giving :

r rj dr ce

{2.8a).

(r -~ rj)(r Tyt re?)

When this is integrated it yields:

=Ty re?
;TE—:T7:—;{- ry log(r - rj) - = 1og(rj r+ rcz)]
J € J c2
= — x+ D
where D is the constant of integration.

At x=0,r=r,,and D may be found by
this substitution and consequently :
rjz []Og r - rj .\ [FC}TO r rj + rcz} c2
- —— = 2y
sz + PCZ m = rj rj grm rj + rc2 Cl
(2.9).

(Far down-stream, where the slipstream has fully
developed: x = o |, ¢ = v and log 0 = -
which agrees when it is substituted into the
above equation, C2 actually being a negative
quantity, see below.)

Re-arranging equation (2.8a) and using equation
(a.1) from the appendix, at the disk (where x = 0
r=ry, and @ = Q) gives :

Tm T3 tan @ c2
(tm - rj)(rm Ty + re?) Tl

(2.10).

Hence after substituting back, equation (2.9)
becomes :

ri? r-ry re12 rory ot
o o P
rj + re Tm = Tj i ™ Tj + e

Tm T tan O

X
(rp - rj)lrgp vy + r.?)
and :
r=-ri re1?2 rorso+or.?
[109 J +{—E]1og-—-—41-—~—2—] =
™m- Ty Lrj Tm Tt re?
(x/rm)(l + (rc/rj)z) tan @
(1= ry/rp) (1 + re2/(rp v5))
= 0 and this may

(2.11).

When the core does not exist r
be simplified to give : c

{1 r:l { tan O xﬂ]
- —|exp|——— =
T 1 - rj/rm r

There is a striking similarity between this
formula and the proposal from the measurements in
Reference [13] . Unlike the Mean Velocity Theory,
the core radius directly affects the shape of the
streamlines in equation (2.11).

The angle © may be found from eguations (2.8a)
(2.10) and (a.l1) :

(2.12).

-y, . 2
r-ryry rrjtorg

tan @ = tan Om (2.13)
m ™ Tyr Ty Tyt o’
which simplifies when r. = 0 to produce :
ro-or;
tan © = tan 8 (2.13a).
Ym - j
Using equations (2.7) and (2.10) :
c2
- F = r:2 - r.2
Cl ry (r c’)

or
r, tan @ (r;2 - r.2)

SFo M noJ ¢ (2.14)
(rp - rj)(rm ry+ re?)

which simplifies when r. = 0 to produce :

LEATS
-r=—2T _tang, (2.14a).
1 - rj/rm
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If we introduce into equation (2.14a) the
theoretical values on the boundary of the slip-
stream - numbers that were derived from the Mean
Velocity Theory, a value of Fpo will be found for
the stationary disk. Then :

e Tib/Tmb tan 6. o 07598
B = 1~ /T mbs © 17 0-7598
= 4-4743 (2.15).

The values of F that are significant for flow
inside the slipstream and/or for when the free-
stream velocity is not zero (non-stationary
disk), will vary between this number and zero.

Now Cl = Vo (rp? - rp2) = Vi (ry2 - rg?) (2.16)
equation (2.10) therefore results in :
e Ts Vg (rp? = re?)
C2 = J il ° —~ tan @y
(rm = rjdlrg ry + re?)
rm Ty Vi (rs2 - rg2)
or 2 = — 231 —tan G,  (2.17).
(rm = rj){rg ry + re?)
This expression can alsoc be written as :
Vi r5? {1 - (rg/ry)2}
€2 = tan O
(rp = 3l + re2/(ry ry)}
(2.17a).

where the curly brackets may be regarded as
containing modifications of the basic expression
due to the effects of the core.

2.3 Hybrid Theory

In this analysis, a solution is is obtained by
combining parts of the two previous theories.
From the Mean Velocity Theory, equation (1.8¢)
when substituted into equation (1.9a) gives :

Vitan © = K (Vi - V)

or V (tan @ + K) =K Vj

(3.1).

From the Approximate Axial Flow Theory, equation
{(2.4) with the substitution of equations (2.17a)
and (a.l) from the appendix, results in :

Vr (tan0 - F) =(2 =
Vj (er - TCZ) tan Om

(rm = 301+ re2/(ry ry)) (3.2).
From equation (1.10a) :
tan O (rj2 - rCZ)/(rm - rj) = K (rm + rj)
and with : f = (1 + re2/(r rj)) (3.2a}),
equation (3.2) then becomes :
Vr{tan @ - F) =K Vj (rm + rj)/f (3.3).

For the Hybrid Theory, the expression K Vj/V is
eliminated from equations (3.1) and (3.3)
which are then combined to produce :

(tan © + K)(rm + rj) = (tan@® ~F) r f (3.4).
This can also be written as :
rf- (rp+r;)
. nJ (3.5).
tan © Frf+K (rm + rj)

The value of K can be found from equation (3.4)

and taking the conditions in the fully developed

slipstream, x = o , r=r_ and O = 0 provides :
J

K (rm + Tj) = - F Tj f (3.46).
Substitute;for K (rp + rj) in equation (3.5) to
give :

1 dx

tan O N EF ) Ff(r- rj)
[ rm + Yj (1 - f) 1
I P : ]

= (3.8).
(r-ry F

Now multiply each side by dr and integrate to
obtain :

x+E=(r-(rn+ri(l-~f))loglr - r;])/F
mod I a7

rf-ry-ry

where E 1is the constant of integration.
At the disk x=0 and r=r , hence :

m
E=(rg - (rp+rj (1 - f)Yloglry, - rj])/F

Substituting this back into equation (3.7)
gives :

r - rj 1
X = [r - m- rm{l + (ry/rp)(1 - f)]]og ]—

Tm - Tj F
From equation (3.4) : (3.8).
F==-K{(rpg+rj)ir;f) )
and substituting from equation (1.10a):
F=-tan Oy (ry? - rg2)/((ry - r3) fry)
- {ri/rp) tan €, (1 - (rg/ry)2)
or F = —2 T L (3.9).

(1 - rj/rm) f

This expression-for F is now substituted into
equation (3.8) to finally produce :

r rj r - Tj
X/T = {—- -1~ [1 + = {1 - f)}log }
m m m ™mT TS
(1 - rm/rj) f
(1 - (rc/rj)z) tan @,

When the effect of the core is negligible this
reduces to :

(3.10).

r r-r:{l -~ r,/r:)
[ J} T3 (3.10a).

— —-1-1o
™ I grm STy tan Gy
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3. Discussion - Comparison Between the Theories.

It is of interest to compare the results of the
three theories for the streamlines, expressed by
previously derived algebraic formulae. The graphs
that derive from numerical analyses, are provided
in this section to illustrate the shapes of the
various functions. A comparison is also given
with data from experiment - using the real flows
behind a rotor having a finite number of blades.
Although the blades actually impart unsteady
motion to the slipstream, fiow data provided by
the helical wake of one blade, will be used for
purposes of comparison to the momentum theories.

Three aspects of the streamlines are examined
here. Firstly, we consider the slopes of the
bounding fiow of the slipstream for a stationary
actuator-disk. This is of particular concern at
the disk where there is a singularity in the
first theory, as noted in the discussion that
followed equation (1.16).

The second subject of interest is the shape or
form of the streamlines themselves. Where
families of such curves exist it is sufficient to
look at the results for one of them. Since the
greatest changes occur at the boundary of the
slipstream, it is here that our attention to
these theories will be directed.

Thirdly the effect of the core, which is an
expression of the non-uniformity of the velocity
distribution across the disk, is to be examined.

3.1 Relationship Between the Flow Angle and the
Contraction Ratio

Before considering variations with distance
downstream, it is useful to examine the
connection between the flow angle at the edge of
the stationary disc and the contraction ratio of
the slipstream. Only the first theory provides an
expression for this relationship. The other two
theories are without any additional constraint of
this kind.

For the Mean Velocity Theory, the angle of flow
at the boundary of the disk is related to the
contraction ratio of the fully developed slip-
stream. Equation (1.21) applies at its boundary,
as previously found. This approximation is not
very far from the actual situation.

Then : [(rjb/rmb)z = (re/rpp)?
1= (re/rpp)?
which is plotted in Fig.6.

] = c0s Oy

Two values of the core radius ratio re/typ  Of
zerc and 0-25 are shown on this graph.

If we use the slipstream conditions occurring at
the stationary disk, that were obtained from
equations (1.24) and {1.25) , then Fig.6 also
shows the ratio of the radii and the flow angle
at the disk to be :

rjb/rmb = 07598 ; Oppg = -54:74 degrees.

i'm
. [~ IL
RATIO =
QF RADIZ N R e/ Tay
0-95 0.25
Sl
0-90 f =
ont | d
EQUATION {1.21) N BEFERENCE 14
0-85 \EXPERIMENT ON-i—
MSTATIONARY
‘Ro\'rog
0-80 X
MEAN VELOCITY THEORY \\\\E N
0.75 EQUATIONS (1.22 & 1.23 )=
FOR STATIONARY ACTUATOR-DISK N
0-70
<
>
—
0 - 10 ~ 20 - 30 - 40 - 50 - 60

ANGLE OF THE SLIPSTREAM AT THE ACTUATOR-DISK - DEGREES Om

RELATIONSHIP BETWEEN THE RADIUS OF
THE FULLY-DEVELOPED SLIPSTREAM AND
FLOW ANGLE AT THE DISK

FIGURE 6.

This point lays very close to the values :
r /r =078 ; © = -554 &+ 0-8 degrees,
jb" mb mbs

which were from measurements of the helical tip

vortex leaving one of the three blades of an

XV-15 rotor for the V-22 multi-mission tilt-

rotor aircraft, see Reference [14]. These data

are included in the figure, for comparison.

The value of the core radius ratio of
re/rmp = 0°25 is suggested after a comparison

of the measurements with the results in Table 2.
(This is why the quarter size core was selected
for use in Fig.6). This value will also be
adopted in the subsequent figures.

3.2 The Slopes of the Streamlines Behind a
Stationary Actuator-Disc 0.

For the Mean Velocity Theory, the slope of the
boundary streamline may now be determined.
Equation (1.10) is used for the relationship
between the flow angle Opg and the slipstream
contraction ratio rb/rmb . The the theoretical
value of the flow angle at the edge of the disk
Opps 1s first introduced. The resulting curves

are plotted in Figs.7a and 7b. These results for
zero core and for one having a quarter of the
diameter of the disk, will be compared with those
from the other two theories.

For the Approximate Axial Flow Theory, a non-
dimensional form of equations (2.13a) or (2.13)
are used (after dividing the radii by ry ).

When the core is zero, the ratio
r./r =0-7588 and @ = - 54-74 degrees
jb" mb mbs

are used. For the quarter sized core the ratio of
radii here is 0:7840 and the angle of flow at
the disk equals - 53-91 degrees, as given in
Table 2. This enables the relationships between
the radius ratio and the streamline slope to be
determined and the resulting curves are plotted
on Figs.7a and 7b.
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For the Hybrid Theory, the angle of the flow is
given by the reciprocal of equation (3.5) using
K = tan Qppg - A non-dimensional form of this

equation is used and the relationship between the
radius ratio and the streamline slope is directly
obtained. For zero core the value of F is found

from equation (3.9) , where f = 1-0 andr =20 .

0} and r_ /r are taken as above. ¢
mbs jb" mb

For the quarter sized core, equation (3.5) is
used as before but with the revised values of
radius ratio, flow angle and with f = 1-0797 .
The curves are plotted on Figs.7a and 7b.

3.3 The Shape of the Slipstream Boundary

For the Mean Velocity Theory the shape is given
by equation (1.14). When the value of Tib/Tmb
is introduced, this equation becomes :

h/Tmp = 0°7598 coth[1-4142 (x/rpp) 0-7598/(1 -
0-75982) + tanh~1(0-7598)]

rp/Tmp = 0-7598 coth[2-5425 (x/rpp) + 0-9958]
(4.1).

This expression is plotted on Fig.8a. Here the
core effect is expressed by modifications to the
angle of flow at the disc Oy, and to the
contraction ratio rjb/rmb . Taking the values of
these quantities for the quarter sized core (from
Table 2), the above expression is slightly
gpanged, the results being plotted in Fig.8b.
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For the Approximate Axial Flow Theory the shape
is given by equations (2.11) and (2.12), the
latter applying when the core is neglected. Using
this expression, when the values of Oppg and
Tib/Tmb are introduced the equation becomes :

To/Tmb = (Tip/Tmp) +

~1-414
(1 - rjb/rmb) exp{-~—-—_____
1 - ij/rmb

-1-414
= 0-7598 + (1 - 0:7598) exp[

(X/rmb):}

1 - 0.7598 (x/rmb)]
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or rp/rpp = 0:7588 + 0-2402 exp[-5-887?4(§§rmb)]

This expression is also plotted on Fig.8a.

For the case when the core re/tpp = 025,

equation (2.11) is applicable with suitable
values of © and r_/r introduced from
mbs jb mb

Table 2 , as before. The resulting curve is also
plotted in Fig.8b.

For the Hybrid Theory, the shape is given by
equations (3.10) and (3.10a). After taking the
non-dimensional forms for the radii and when the
values of @, and rjb/rmb are introduced

for no core effect, equation (3.10a) becomes :

X r/ry - 075981 1 _ 1/0-7598
— = Ir/rp =1~ log
" 1 - 07598 —
r/rym - 0:7598
or x/ry = 0'2235[!‘/1""‘ -1- ]Og"‘m?—}
(4.3).

In this approach we assume successive values of
the radius ratio r/ry, and calculate the non-

dimensional displacement x/r . These results
are plotted on Fig.8a.

For the case when the core is a quarter of the
disk size, equation (3.10) applies and the
various factors due to the core must be included
and this produces :

v/t - 0-7840}

0-218
(4.3a).

Using the same technique as for equation (4.3)
this result is plotted in Fig.8b.

X/ = D~2414[r/rm -1 - 09375 log

3.4 Discussion

It is suggested that the relationship between
the angle of flow at the disk @, and the
contraction ratio of the slipstream r_ /r
jb" mb
that was derived in the Mean Velocity Theory
(illustrated in Fig.6), is applicable across the
whole slipstream and not only on its boundary.
This proposal is based not only on equation
(1.19) for the flow at the boundary of the
slipstream, but also on equation (a.5) with
(dV/dx), set equal to zero. For the case of no

core both these equations have the same form and
they apply at the central and outside radial
positions of the flow respectively.

From this theory, it is seen that the streamlines
have a similar shape. However their radial
positions are not uniformly proportional to the
properties on the disk. The contraction ratio of
the concentric stream-tubes varies non-linearly
with radius. When the core is neglected, the
streamlines leave the disk at flow angles which
vary according to the cube of the relative radial
position and at velocities that vary with the
square of this ratio, see equations (1.17) and

(1.18). With the core included these
relationships are modified, as may be seen in
Figs. 4a and 4b.

For a non-stationary disk (V, is not zero),the

flow angle at the disk should be corrected for
the velocity ratio Vj/V0 , see equation (1.9c) -

the same procedure as described above being
applicable. Although for both the Approximate
Axial Flow and the Hybrid Theories no such
contraction-ratio rule has been found, it is
reasonable to suppose that their families of
streamlines behave similarly. In the Approximate
Axial Theory the nature of the exponential
function actually permits linear proportionality
(because mathematically all the exponential
stream]ines here have the same form), but as
mentioned above this is not necessarily true.

Figs. 7a & 7b and 8a & 8b show the close
similarity between the resulting theoretical
curves for the slope of the boundary streamline
and its shape as a function of non-dimensional
distance downstream x/rp, . The insensitivity of

the physics to the range of assumptions used in
the three theories, suggests that an exact
streamline theory is of little additional value.
Even when the slopes are compared in Figs.7a and
7b (where greater differences would be expected,
due to the magnification of errors arising from
differentiation), there is good agreement.

4. CONCLUSIONS

4.1 Sufficient information is contained by the
momentum and continuity relationships of steady
perfect-fluid flow, to enable the shapes of the
streamlines to be determined by analysis. This
has been achieved to good accuracy in the case
of an axi-symmetric slipstream behind an
unshrouded actuator-disk, by using algebra. The
results were obtained directly without the need
for iterative computation.

4.2 Three parameters are required to define the
shape of a streamline. These non-dimensional
quantities are :

a) the flow angle at a specific axial position,
which in this case is the actuator-disk,

b) the contraction ratio of the flow contained in
the associated volume of revolution about the
the asymmetric axis, called the stream-tube,
that lays between the disk and a point far
-downstream and

¢) the radius of the core, that consists of a
central unaccelerated region of fluid. The
associated stream-tube (acting as a boundary)
is parallel to the axial or free-stream
direction. The core may be of zero size.

4.3 At the outer boundary of the stream-tube,
the flow angle (item a) above) has been found
from theoretical and experimental methods. The
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values for a stationary actuator-disk and for an
actual rotor agreed very closely. The second
parameter also was found to correlate well for a
core having a 1/4 of the diameter of the disk.

4.4 When the disk has velocity relative to the
free-stream, the angles of the flow may be
related to those for the stationary disk by
taking the velocity components. This vectorial
approach also has hodographic connotations.

4.5 For a stationary actuator-disk, items a)
and b) above are related by a condition for no
acceleration along the outer boundary of the
slipstream. This condition also appears to be
applicable on the boundary of the central region
or the axis, where however a singularity occurs.

4.6 It was found that the radius of the stream-
tubes varies with axial position according to
exponential functions that use the base of
natural logarithms e . One result obtained from
theory was actually the exponential decay
function and the other theories provide
expressions that resemble this but have more
complex forms.

4.7 Three momentum theories that were based on
different assumptions, yielded almost the same
streamline shapes. The shapes were insensitive to
the distribution of velocity across the slip-
stream. These properties imply that it would be
possible to find with fair accuracy the stream-
lines of other situations too, without having to
solve precisely the classical equations of
potential-flow.

Appendix A - General "Two-Dimensional"
Streamline Properties

Using cylindrical-polar coordinates, a typical
streamline lays on a single ray-plane of the
coordinate system. For the axi-symmetric flow
that is of interest here, the rays are parallel
to the general flow direction (along the axis).
At a point (x,r} in this plane, the arc of a
streamline has a local slope tan © , an axial
velocity V and a radius of curvature R . By
avoiding expressions that are associated with
volume flow changes, a "two-dimensional™ approach
may be used on the plane described above. The
following general formulae are applicable to the
fluid particle dynamics along any streamline in
this axi-symmetric flow.

(i) Streamline Slope, dr/dx
dr/dx = tan © (a.1).
Differentiating with respect to x gives :
d2r/dx? = (1/cos2@) (d0/dx) (a.2).

(i1) Streamline Radius, R

- {91}1”7&
dx dx?

The radius R is a positive quantity because the
acceleration towards the center of the arc is in
the directions of increasing x and r .

From equations (a.l) and (a.2) :

R = (1 + tan20)3/2 Fﬁ? ! ]
dx cos20
11
" cos O do/dx

and 1/R = cos O dB/dx (a.3).

(ii1) Acceleration Component in x
Direction, dV/dt

Due to the curvature of the flow, a point on a
streamline experiences centripetal acceleration.
The component of this acceleration in the axial
direction is determined below. For flows of the
kind being considered here, this acceleration
component is positive. It reduces in size as the
flow angle - 8 approaches zero. The difference
in the axial acceleration due to curvature is
therefore given (after introducing a negative
sign) by :

dv [dV] V2 .
c— o j—| = = — (] + tan20o 0
dt dtly, R ( an@) sin

where the suffix u refers to the uniform
velocity distribution condition that applies
close to and along the axis of the flow.

Then using equation (a.3) :

do
9! - Fﬂq = - V2 (1 + tan20) sin @ cos 6 — .
u

dt dt dx
o o QY QY dv 1
MU ax T dtdx  dt v
dv [dv do
Hence: — =[——] -V tan O — (a.d).
dx idxl, dx

Taking equation (1.6a) :

g! _2ry

tan ©
dx  r2z - r.?

we may substitute in equation (a.4) to obtain :

v -
d u_ an rz - r.2 d

is not 0 , this

(a.5).

Provided that the core radius rc

limit as r and © -> 0 , will be zero. When r. =0
it might be claimed that (dV/dx)u does not

necessarily = 0. This is examined in section 2.1.

(iv) Free-Jet Streamline, Axial Acceleration,
dVp/dt

The "free-jet" exists when there are stationary
external flow conditions ocutside the slipstream,
(i.e. Vo = 0 ). The static pressure on the

boundary being constant, means that the speed of
the particies that move along this streamline
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(Vip) is also constant - zero acceleration being

produced in the local flow direction. However,
due to the curvature of the streamline, the
axial velocity component varies according to :

Vb = ij cos Gbs (a.6)
where the double suffix "bs" applies at the
boundary when the disc is stationary. This
equation is differentiated with respect to x to
find the axial "acceleration” on the boundary :

dVp dOps

a;— = -ij sin Opg a;"- (a.7).
This is another way of expressing part of
equation (a.4) using equation (a.6) with

V/cos © = ij taken as a constant.

LIST OF REFERENCES

1. Rankine W.Jd.M. "On the Mechanical Principles
of the Action of Propellers",
Institute of Navai Architects, Vol.6, 1865.

2. Froude R.E. "On the Part Played in Propulsion
by Differences in Fluid Pressure",
Institute of Navail Architects, Vol.30, 1889.

3. Lock C.H.N. "Experiments to Verify
Independence of the Elements of an Airscrew
Blade™, Aeronautical Research Council,

R and M 953, 1924.

4. Betz A. "Screw Propelier with Least Loss of
Energy", Nachr. Gottingen, 1919.

5. Goldstein S. "On the Vortex Theory of Screw
Propeliers", Proceedings of the Royal Society
Vol.123, 1829.

8. Koning C. "Influence of the Propellier on
Other Parts of the Airplane Structure",
Division M of Aerodynamic Theory, Vol IV,
edited by W.F.Durand, Durand Reprinting
Committee, California, 1943.

7. Gibson I1.S. "On the Velocity Induced by a
Semi~-Infinite Vortex Cylinder: With Extension
to the Short Solenoid",

The Aercnautical Journal, Vol.78, June 1874.

8. Favier D., Ettaouil A. and Maresca C.
"Numerical and Experimental Investigation of
Isolated Propeller Wakes in Axial Flight",
Journal of Aircraft Vol.26, No.9, 1989.

9. Flax A.H. "Vortex and Momentum for Hovering
Rotors"”, A.I1.A.A.Journal (Technical Notes),
Vol.21, No.1l1, 1883.

10. Glauert H. "Theory of Propellers”,
Division M of Aerodynamic Theory, Vol IV,
edited by W.F.Durand, Durand Reprinting
Committee, California, 1943.

447

11. Chester D.H. "Inclined Actuator-Disc Theory"
Israel Journal of Technology, Vol.13, 1975.

12. Guderley K.G. "The Theory of Transonic Flow"
(Translated by Moszynki J.R.) International
Series of Monographs in Aeronautics and
Astronautics, Pergamon Press Ltd., Oxford,
1962.

13. Landgrebe A.J. "The Wake of a Hovering Rotor
and its Influence on Rotor Performance",
Journal of the American Helicopter Society,
Vol.17, October 1972.

14. McVeigh M.A. "The V-22 Tilt-Rotor Large-
Scale Rotor Performance/Wing Download Test
and Comparison With Theory",

Vertica, Vol.10, No.3/4, 1986.

15. Halfner R. "The Case for the Convertibile
Rotor", Appendix Il , The Aeronautical
Journal, Vol.75, September 1971.



