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Abstract

A method for the evaluation of blockage interference
for propeller models in a perforated-wall wind tunnel is pre-
sented. The correction procedure, based on a Fourier solu-
tion for the Dirichlet problem inside a cylindrical flow do-
main, uses boundary data obtained from pressure measure-
ments along the wind tunnel walls and a farfield represen-
tation of the propeller. The radial contraction of the slip-
stream is modeled by a sink, whose strength and location
are evaluated from the measured thrust and power using ax-
ial momentum theory. An iterative procedure is developed
for a compressible slipstream, using the Rankine-Froude
theory as the first approximation. The equations describ-
ing the discontinuity of momentum and energy across the
propeller disk are discussed and solved similarly to those
describing a discontinuity across a normal shock.

Symbols
an, bn Fourier components of u
Gn, by boundary values of a,,, b,
A slipstream cross-sectional area (= wD?/4)
Aw wind tunnel cross-sectional area
¢ velocity of sound
Cy pressure coefficient
Cp power coefficient (= P/(poN*D5))
Cr thrust coefficient (= T/(poN?D}))

D slipstream diameter

D, differential operator

fn common notation for a,, and b,

fn common notation for &, and b,

Fog coefficient of Fourier sine series

i enthalpy

I, modified Bessel function of the first kind
of order n

J mass flux density (= pv)

Jnk kth positive zero of J,

Jo advance ratio (= vg/ND,)

JIn Bessel function of the first kind of order n

m integer power of two, number of subdivisions
of interval 2s

M Mach number

n Newton iteration

N propeller rotational speed (RPS)

P power

P, k, Qn i coefficients of Fourier-Bessel series

r radius of control cylinder

r, 9 polar coordinates in the transformed space
slipstream radius or gas constant

reduced test section length or entropy
thrust

axial component of wall interference velocity
axial velocity

cylindrical coordinates

Prandtl-Glauert factor, (= /1 — M?)
ratio of specific heats (= 1.4)

Mach number correction

thrust-power term

propeller efficiency

eigenvalues

transformed axial coordinate

air density

strength of sink representing propeller farfield
modified thrust coefficient, (= 4Cr/(7J¢))
velocity potential

disturbance velocity potential

free air part of ¢

wall interference part of ¢

stream function

relaxation factor

area ratio (= Ag/43)
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Subscripts

5

ideal

index of the Fourier component

propeller

critical

station far upstream

station immediately ahead of propeller plane
station immediately behind propeller plane
station far downstream

N O xTY I3

Introduction

In the past two decades, advanced high-speed pro-
pellers have been found to offer significant fuel savings and
associated operating cost benefits for aircraft cruising in
the Mach 0.7 to 0.8 speed range. The wind tunnel testing
has, understandably, played an important role in the eval-
uation of the propulsive efficiency and optimization of this
new generation of propellers.
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Wall interference has been identified"), together the
model support interference and scale effects, as one of the
factors adversely affecting the reliability of wind tunnel
test data. Unfortunately, Glauert’s correction technique(®),
based on the axial momentum balance, cannot be easily ex-
tended to ventilated-wall wind tunnels where most of the
high speed testing is currently being done.

One can, however, utilize the well established one-
component correction method®~() which does not re-
quire the knowledge of mass and momentum transfer throu-
gh the walls. The boundary values of the streamwise com-
ponent of wall interference velocity are obtained from the
static pressures measurements near the test section walls
and the estimated farfield of the model in free air. For
perforated test section walls, suitable pressure-measuring
devices are cylindrical tubes equipped with static pressure
orifices facing the test section interior, in the direction nor-
mal to the wall. In Fig.1, showing the experimental setup
in the AR 1.5m x 1.5m test section, three out of total six
installed tubes can be seen: two at the bottom (on each
side of the removable floor board) and one on the sidewall.

Using model geometry and the measured lift force, the
farfield effects of a nacelle and a wing in subsonic flow can
be represented in the usual fashion by sources, sinks and
horseshoe vortices. The steady part of the propeller farfield,
which is due to the radial contraction of the propulsive
streamtube, can be represented by a sink, whose strength
and location are evaluated from the measured thrust and
power using the axial momentum theory.

The farfield representation becomes unnecessary in the
two-component approach®), where both the static pres-
sure and flow angle distributions are measured around the
test section boundary. The penalty, compared to the one-
variable method, is the added difficulty of making the
mesurement of flow angle in the higly perturbed environ-
ment of the ventilated walls("),

Figure 1. Propeller test rig and static pressure
tubes in the IAR 1.5m x 1.5m wind
tunnel (courtesy of de Havilland, Inc.)
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Figure 2.

Cylindrical flow domain

Correction method

The flow is investigated in the cylindrical domain
2, < T <12, 0< p<r 0<8 < 2nr, inscribed in the
wind tunnel test section. As indicated in Fig.2, r is the ra-
dius and z; and x are the upstream and downstream ends
of the domain. It is assumed that flow near the bound-
ary is subsonic and that the disturbance velocity potential
@(z, p, 0) satisfies there the linearized equation

2
Po 10 0o .

192
-3?-'_;6;3 ”ap p?

— =0. (1)

2 P
B a6

According to small disturbance theory, the pressure coeffi-
cient at p = r is obtained as

Cylar,6) = ~2535(2,1,0), )

Within the linearized flow region we apply the decomposi-
tion

e(z,p,0) = ¢s(z,p,0) + pulz,p,0), (3)

where @ is the disturbance velocity potential due to the
model (propeler) in free air and ¢,, is the wall interference
potential. Using the scaled coordinate

s %(r ~ ), (4)

we introduce the transformed axial component of wall in-
terference velocity

O¢u Opu
u(Ep.0) = 3 (@00 = f5 00 ()



Differentiation of Eq.(1) with respect to £ and substi-
tution from Eqs.(3) and (5) provides the governing equation
&u

o2

18,6 Ou

1 8%y
S (p5-) + =0
pap(”ap)

inthe domain0<é<s, 0<p<r, 0<6< 27, where
1
s = =(z3 —11).

B
The boundary values are obtained from Eqs.(2)-(5) as

)

u(er0) = 8|20y 0) + Eliaro)],  (®

where C}, is obtained by measurement and ¢y is expected
to be known.

Using periodicity, the solution is constructed in terms
of the Fourier series

u(€,p,8) = an(6,p) + 3 [an(£,p) c08 78 + Bu(€, p)sin b

nx=l

(9)
Substitution in Eq.(6) gives
Dan ’ =Oa =O,1,2,...
nan(€, ) n (10)
Dnbn(f,p)z(), n=1,2,...
where 5 5 s ,
1 n
Dp= ==+ ==+ Zme = e,

In order to solve for the Fourier components a, and
b,, we introduce the boundary values

&n(f) = aﬂ(&vr)
Ba(€) = ba(€,7)

and express them, using Eq.(9), in terms of the known val-
ues u(é,r,8). The actual number of Fourier components we
are able to exploit is given by the number of pressure tubes

along which the static pressures are measured (typically
4-6)

(12)

Using Eqs.(10) and (12) and f, as a common notation
for both a, and b,, we can set up the following Dirichlet
boundary value problem

Dnfo(€,p) =0, 0<é<s, 0Lp<r
fa(&,r) = fal8), 0<E<s

fa(0,p) = fn(O)( ) 0<p<r (13)
fon)=h(2) 0spsr

The last two boundary conditions, which were added on the
upstream and downstream surfaces in order to complete the
specification of the Dirichlet problem, were formulated so
as to ensure close form solutions for the coefficients of the
resulting Fourier-Bessel series.
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Applying the method of separation of variables, see
Appendix, the solution is obtained in terms of the Fourier
sine series in £ and the Fourier-Bessel series in p:

fa(€sp) = ZFnk Ln(pep) sin pié

In(pir)
sinh vy, k(s — £) sinh v, k&
Pn - ) y
+ kz:; [ * T Sinh Un k8 +Qn sinh vy i3
X Jn(vn kp).
(14)
The eigenvalues entering Eq.(14) are
k‘7l’ jn,k

Pk = — and

S

(15)

Unk = Ta

where jn i is the kth positive root of the Bessel function
Jn-
The boundary values are contained in the coefficients

Fop = % /0 Fal€)sin prtde (16)
2 [t
Pt = et |, #O(8) ensoni
2 N
a Vn,kr']n+l(l’n,kr)fn(0)
Qu = 2 fals). (17)

Vn,kr']n-i»l(Vn,kT')

The coefficients F,, x can be evaluated® by the fast
Fourier transform:

=32f ( 21+1) in 279k
m i m (18)
k=1,2,...,m/2—-1,

where m is an integer power of 2 and the discrete values of
fa are obtained using the odd extension of the boundary
function fn(f ) on the interval 0 < € < 2s. Accordingly, the
Fourier sine series is truncated to the first m/2 — 1 terms.
For the sake of notational convenience, the same number of
terms is also used for the truncated Fourier-Bessel series.

On the wind tunnel axis, p = 0, we obtain from
Eqs.(9),(14),(16), and (17)

mf2-1 Sln/j, 5
k
u(,0,6) = Z A“Io(#kr)
m/2 ~1 . .
n sinh I/o,k(s — {) R sinh VO,kf
* k}; [ag(O) sinh vo,ks +a0(s)sinhu0,ks
y 2
Vo,kT‘Jl(Vo,kr)’ ( )
19

where, according to Eq.(18),

. ( 2j+1> . 2mjk
agl s sin ——.
m m

5

2
Aok =— (20)

i
-3
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Using the described procedure, the wall interference
velocity can of course be evaluated at an arbitrary interior
point of the domain 0 < { <5, 0< p<r, 0<8 <27,

The local Mach number correction is obtained from
the differential relationship between the Mach number and
velocity:

AM(z,r,0) = -;—(1 + ‘YT—IM(?)MO u(é, p,0).  (21)

Propeller far field

The steady, subsonic farfield of the propeller is de-
rived using the axial momentum theory. Figure 3 shows
the four stations of the (propulsive) streamtube represent-
ing the propeller slipstream. Stations 1 and 2, respectively,
are immediately ahead of and immediately behind the pro-
peller. Stations 0 and 3, respectively, are far upstream and
and far downstream. )

The assumptions of the one-dimensional axial-momen-
tum theory are:

(a) the propeller is represented by an ‘actuator’ disk, of
the same diameter as the actual propeller, across which
axial momentum is added to the slipstream,

(b) the slipstream is confined within a streamtube of cir-
cular cross-section, passing through the disk circum-
ference and extending from upstream infinity to down-
stream infinity,

(c) the velocity in this streamtube is uniform and the ro-
tary motion is neglected, ’

(d) the streamtube cross-sectional area is continuous acro-
ss the disk, 4; = 4; = 4,,

(e) flow upstream and downstream of the disk is inviscid,
and

(f) far downstream, the static pressure in the wake returns
to the freestream value, p; = po.

The efficiency of the propeller, defined as the propul-
sive work divided by the power input, can be expressed in
terms of the propeller thrust and power, or the correspond-
ing dimensionless coefficients, as

(22)

Figure 3.

Slipstream boundary modeled by a sink
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The farfield effect of the slipstream contraction will be
represented by a sink placed at the origin of the wind tunnel
coordinate system, Fig.3. The propeller axis is assumed
to coincide with the wind tunnel axis, but the actual z-
coordinate of the propeller disk is not known at this stage.
Using the scaled streamwise coordinate

z
==, (23)

¢35

the potential of the sink will be

o
=-— 24
ity (24)
where

r=1+/£+p? (25)

is the distance from the sink in the transformed space.

A combination of the source, Eq.(24), and a uniform
flow normalized by free stream velocity vo is described by
the velocity potential

¢ = :}%—*—rcos@, (26)
where
© = arccos e (27)
The corresponding (Stokes’) stream functions is(9):
1,
P = ;g—r— cos© + -2-7'2 sin® ©. (28)
Using Eq.(28), the slipstream radius is
g g
R=rsin® = ,/2(¢ — Z;COSG)’ P> y >0 (29)
and the slipstream cross-sectional area
A =nR?=2n — ?12-0 cos ©. (30)

Far upstream and downstream

O=nm, A=A0=27rz/)+-;-a (31)

©=0, A=Ay=%¢—%a (32)

Adding and subtracting Eqs.(31) and (32), we obtain the
values of the stream function defining the boundary of the
slipstream

= :E;(Ao + A4sz) (33)

and the sink strength

g = A() et A3. (34)

Substituting Eqs.(33) and (34) in Eq.(30), we obtain for
the propeller disk

Ag + As — 24,

cos O, = 4 A,

(35)



Taking into account Eq.(23), the axial coordinate of
the propeller is then

zp = Ry cot Op. (36)

Incompressible slipstream

The balance of the mass flux, momentum a energy pro-
vides the following set of equations(?) for the incompress-
ible, inviscid flow inside the slipstream

Station 0 — 1

Ao'v() = A,,vl (37)

2
2= (38)

Station1 — 2

v =1 (39)
., T 2
prtpui+ = = P2t Py (40)
P
Station 2 — 3
APUQ = A3’U3 (41)
2 2
Bop_%,ps
2 + p 2 + P (42)
Farfield conditions
P3 =po (43)
T = Appvi(vs — vo) (44)

Here Ap, vo, po, p, T are expected to be known and
Ag, A3, v1,v2,v3, P1,p2,Pp3 unknown.
From Eqs.(38) - (40) and (42) - (43)

1
T=Apps—p1) = §App(v§ - v3) (45)

and comparing it with Eq.(44) gives

1
V] = vy = '2‘(00 +v3), (46)

both of them well-known results from the Rankine-Froude
theory.

Using continuity relationships, Eqgs.(37),(39), and (41),
we obtain for the area ratio

7 (47)

and, from Eq.(45), in terms of thrust

T 8Cr
S A
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The power used in producing thrust is
1 2 2 1
P= EA,,pvl(va —vy) = §(v° + v3)T. (49)

Substituting Eq.(49) in (22) and using Eqgs.(46)-(47), we
obtain the ideal (Froude) efficiency in terms of Q:.

21)0 2
(e ) (%0
From Eqgs.(37),(41),(46), and (47)
Ao _ (%] _ l
A, 2(1 +Q) (51)
A3 _ %] _ 1 1
Z;“va‘z(HQ) (52)
and, substituting in Eqs.(34)-(36),
1 1
Q-1
cos©, = 0T 1 (54)

zp=1<¢_~-L)RP (55)

For a positive thrust, @ > 1, we obtain z, > 0, in-
dicating that the propeller disk is downstream of the sink.
Figure 4 shows that both ¢/A, and z,/R, increase as 74
decreases.

-;—1 0-/AP

=y xp/Rp

0.0

1.0 0.8 0.8 0.7 0.6 0.5

Sink strength and propeller location
for incompressible slipstream

Figure 4.



The obtained sink strength, Eq.(53), can be readily
used to estimate the velocity correction for a propeller in-
side a closed-wall wind tunnel. For an infinitely long, cir-
cular cross-section wind tunnel, the correction to (umnit)
stream velocity at a sink of strength o on the tunnel axis

i1 1 1\ A
o
“= a4, 4( Q)Aw’
where A,, is the cross-sectional area of the wind tunnel.
Using Eq.(48), § can further be expressed in terms of thrust

or its coefficient. In Fig.5, the ratio of uncorrected and
corrected stream velocities is plotted as a function of

T _4CT

= pA 2w JZ

and compared with the successive aproximation result by
Glauert(®), We see that there is a good agreement for small
Ap/Aw, but the discrepancy becomes more apparent as the
size of the propeller with respect to the wind tunnel in-
creases. The source of this discrepancy is due to the fact
that Glauert’s correction technique(?) utilizes conservation
of the axial momentum, whereas a correction method based
on the sink representation is in general nonconservative.
(The contraction of the slipstream in the wind tunnel is
assumed the same as would be in free air.) Unfortunately,
the more rigorous method of Glauert cannot be extended
to ventilated-wall wind tunnels, where transfer of mass and
momentum across the walls is generally unknown. How-
ever, from the comparison of both methods in Fig.5 it ap-
pears that the technique describing the contraction of the
slipstream by a sink will be sufficiently accurate for block-
age ratios A, /A4, below 10-15%.

Glauert

source

0.20

0.15

0.10

0.05

T 1
2.5 3.0

0.0 0.5 1’.0 1'.5 2.".0
T=(4/m)(Cr/30%)

Figure 5. Ratio of uncorrected and corrected

stream velocities in a closed-wall
wind tunnel

Compressible slipstream

Compressible, inviscid flow inside the slipstream is de-
scribed by the set of equations(11):(12)

Station 0 — 1

Agpave = Appivy (56)
v) Y po _ v} 7 m
+—L-R=, T B 57
2 y-1lpp 2 ~y-1p (57)
Po P1
= = = 58
Py P17 (58)
Station 1 — 2
P1V1 = pav2 (59)
2, T 2
P+ prvy + =P + p2v; (60)
P
2 2
1 Y P P vy Y P
b UL =24 1 22 g
2 y=lp Appivi 2 y—1lp (61)
Station 2 — 3
Appzvz = A3p31)3 (62)
2 2
U2 Y D2 v3 Y p3
2 Vi, T2 T, (63)
P2 b3
o= 64
S ()
Farfield conditions
P3 = po (65)
T = Applvl(vg - ‘Uo) (66)

Here Ap, vo, po, po, T, P are expected to be known
and A07A39 v1,V2,V3, P1,P2,P3, P1,02,P3 unknown.
From Eqs.(57),(61) and (63), the power added to the

stream is

v: 0l _
P = Applvl (-2— — '? + AZ>, (67)

_7_(?_3_22) (68)
Y=1\ps po

is the increase of the slipstream enthalpy, which does not
contribute to the production of thrust. If the process is
isentropic,

where

Ai=13—ig =

2! P2
i P2

then from Eqs.(58),(64), and (65)

P3 = Po (70)

and Az = 0. In that case from Eqs.(66) and (67)

P=gm+mw (11)
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and, substituting in Eq.(22),

2’00
= = 72
= o = (72)

as for the incompressible slipstream, compare Eqgs.(49) and
(50).

The change of variables across the disk, which is
treated as a discontinuity, can be established from Egs.(59)-
(61) using a procedure similar to that for a normal shock’?,
modified for the presence of the thrust and power terms.
The difference of the velocities upstream and downstream
of the propeller disk is obtained from Egs.(59) and (60) as

P2 p T

V] — Vg = —— — ——— — .
p2vz P11 ApPlvl

(73)

Because mechanical energy is added to the stream at the
disk, we have to consider two critical velocities: ¢jx up-
stream and co. downstream of the disk. The squares of
these velocities are, with the help of Eqs.(57) and (61),

2y p o 7-1 2y po ,v—1

2 = = v = — vE (74

RS P & i P S
2y pp , v=1 y-1 P

2 2 2

€5, = ——— "+ ——v) = Cyy +2—— . (75

2 7+1p2 7+1 2 1% 7+1Applvl ( )

From Eqs.(74) and (75) the ratios p1/p; and pz/p: can be
evaluated in terms of cg. and substituted in Eq.(73). This

gives
(o o) (= —1) = (76)
v = vr)| =y
or R
v~ (% +v + u)vz +¢i, =0, (77)
1
where 0 P .
v= T = (y -~ 1)
v+1 [7 o )vl] Apprvy (78)
2y [ -1 v_o} P
y+1} v 1] Apprvive’

upon eliminating T from Eq.(22).

IfP=T=0, then v == 0 and also ¢4 = cs4 = c4. In
this case Eq.(76) provides either continuity,

V2 = Uy,

or Prandtl’s shock wave relationship

V1 V2
Cx Cx

=1,

The latter is of course relevant only if vi/cx > 1. For a
subcritical vy, the smaller root of Eq.(77),

1/, 1 [/e2, S
v2—2<v1 +v1+v>—~2\/(—l;+v1+v) —4c,, (79)

is thus the one to be chosen.
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From Eq.(78) it follows that v will be positive if

7—1’00
g DT D s e
Nd 271 v o1

In this case the discriminant of Eq.(79) will satisfy

c? 2 c? 2
(——2—3‘-+v1+u) _4d > (J:-WLV) >0. (80)
151 m

The direction of variation of quantities across the disk, as
obtained from Eqgs.(79), (80), (59) and (73), will be

T
p2>p1+

v < ¥y, a1
P

p2 > p1,

Calculations confirm that the entropy increment,

7
e 2]

=1 |pi\p2
is also positivel4,

Numerical solutions of the slipstream equations (56)-
(66) are provided by an iterative procedure, consisting of
the successive sweeps through Stations 0,1,2,3. Since 4,
and A; appear only in Eqgs.(56) and (62), they need not be

directly involved in the solution process. In the first sweep,
the incompressible-flow values

1
vy = 5(1 + Q)Uo, vz = Quy, (81)

see Eqs.(46)-(48), are used as the initial guesses.

Station 0 — 1
First, the mass flux density is evaluated from Eq.(66):

T

i = prog = . 82
R W Coprn (82)

Combining Eqs.(57), (58) and (82), vy can be obtained as

a root of
2 2[<j)7-1 1—~ ]
R v - 1] =0, (83
__100 Py 1 (83)

2 =~2 (84)
Po

Concerning the solubility of Eq.(83), we note that

f(v1)=vf—-v§+’y

where

y—-1
f'(v1) = 2v1 — 2c3 <5—) v 7, (85)
0

from which we deduce that f has a local minimum at

j (y—1)}/(v+1)
(1) -
Po
Accordingly, Eq.(83) has a solution only when
flvim) 0. (87)



A numerical solution for v; can be obtained by New-
ton’s method

) _ oy F0V)
o = W
(v )
where w is a relaxation factor, such as w = 1 — M.

Having obtained vy, the corresponding density and
pressure are evaluated from Egs.(82) and (58) as

= _]_ P = Do (&)7'
oL vl, ! Po
Station 1 — 2

The velocity behind the propeller plane, vz, is eval-
uated from Eq.(79), where ¢z« and v are calculated from
Eqs.(75) and (78) respectively. The corresponding values
of density and pressure are obtained from Eqs.(59) and (75)
as

(88)

(89)

J T+1, -1 2)
. = Lol el ). (90)
P2 v’ P2 Pz( Ty 2 2y 2

Station 2 — 8
From Eqgs.(63)-(65)

1/
= = pg (p3 )
b3 Po, P3 P2

2y (P2 _p3
vy = v2+—-——(————).
? \/2 v-1\pz ps

The compressible-flow values p;, vy, and v3 are now
used to check if Eq.(66) is satisfied, subject to some accu-
racy criterion (for example < T'/10°%). If not, j is slightly
decreased and & new sweep, starting with Eq.(83), initiated.
The subsequent updates of j are obtained by interpolation
or extrapolation, targeting on the prescribed thrust while
restricting the overshoots of j by condition (87).

A typical example of calculated slipstream velocities
is given in Fig.6. We see that vy < vy, in contrast to the
incompressible slipstream, where the values v, = v;, see
Eq.(46), are represented by a single broken line. The cal-
culated exit velocities v3 for the incompressible and com-
pressible slipstream were very nearly the same, which helps
to explain why compressibility of the slipstream plays a
relatively minor role in wall interference.

Once a converged result has been obtained, the cross-
sectional areas far upstream and downstream are evaluated

from Eqgs.(56) and (62) as

(91)

(92)

Ay = Ap‘]—

93
Povo ’ ( )

Ap = A,,—l—
P3vs
and substituted in Eqs.(34)-(36), to obtain o and z,.
An example of evaluated sink strengths is given in
Fig.7. The values of 0/A, for an incompressible slipstream
(broken lines) collapse to a single curve of Fig.4, when plot-
ted as a function of ;4. It is seen that the compressible-flow
values of o are a little less than the incompressible ones.
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Similar computations for different values of 7 have
shown that the discrepancy increases as 5 decreases. How-
ever, for high-efficiency propellers tested at M, < 0.8 the
incompressible stream approximation of o is adequate.

— Mo = 0.700, J0= 3.0, = 0.80 Tid

----- M0= 0.000, J0= 3.0, 77’: 77id
x
<,
vi/Yo
v3/Vo
©w
QS |
L
21 vy/V
=BV
=} o
-"'———/ N
8\~ va/Vo
&
e T 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5
Cr
Figure 6. Axial velocities in compressible
and incompressible slipstreams
Mg= 0700, M= 0.80 7)iq
"""""" MO = (.000, = T4
g
a

0.06 0.08

o/Ap
0.04

0.02

0.00

Figure 7.

Sink strength for compressible
and incompressible slipstreams



Propeller test example

The example given here is merely illustrative rather
than representative of the variety of situations that were
encountered in the wind tunnel study(!® of the de Havil-
land 4- and 6-bladed propellers and 8-bladed propfans.

The test stand, Fig.1, mounted on the half-model bal-
ance in the sidewall, was designed so that the measured
data would largely represent “isolated” propeller data, free
from wing interference. The nacelle, which contained a
torque sensor in its forebody and an electric motor drive
in its aft cowling, would of course still interact with the
slipstream.

Porosity of the perforated walls of the 1.5mx1.5m test
section of the IAR Blowdown Wind Tunnel was set at 4%,
which turned out to be an appropriate choice for the test.
Wall pressure measurements were made using 6 static pres-
sure tubes, but only 4 of them, 2 on the outboard sidewall
(opposite to the mounting strut) and one on the top and
bottom wall each were used to evaluate wall interference.

Figures 8 and 9 show the measured wall pressures at
M, = 0.601 and the axial Mach number corrections eval-
uated by the described correction method, for a nacelle
without and with a (running) propeller. The propeller was
tested at Reynolds number of 5 million per meter.
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The maximum radius of the nacelle cowling was
0.076m, and the radius of the 4-bladed propeller was
0.305m, yielding wind tunnel blockage ratios of 0.8% and
12.6% respectively.

Without a propeller, Fig.8, the observed Mach number
correction is mainly due to flow nonuniformity in the empty
test section and the blockage effect of the nacelle. The
farfield of the nacelle was represented by a sink-source body
of the same length and volume. The effect of the strut,
attaching the propeller rig to the sidewall, has not been
accounted for.

For a propeller operating at 5,000 RPM, Fig.9, there
is an additional wall interference effect induced by the sink
term representing the corresponding contraction of the slip-
stream. The strength of the sink was obtained from the
measured Cr and Jy using the incompressible-flow approx-
imation.

Although the differences of the wall pressures in the
two cases are barely discernible, there is some difference
in the calculated AM curves. At the propeller location
(vertical broken line), AM = 0.0000 with power off and
AM = 0.0005 with power on. From the repeat runs it
appeared that the accuracy of AM was about +£0.0002.
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Concluding remarks

A one-component correction method has been pro-
posed for propellers (and propfans) tested at subsonic
speeds in perforated-wall wind tunnels. The streamwise
component of the wall interference velocity at the wind tun-
nel boundaries is derived from the static pressure tube mea-
surements and the farfield of the propeller in free air. The
radial contraction of the propulsive streamtube is modeled
in the farfield by a sink term, whose strength and location
are evaluated from the measured thrust and power using
axial momentum theory. The axial values of the wall inter-
ference velocity are then obtained from the Fourier solution
of a Dirichlet problem inside a cylindrical low domain.

A comparison with the Glauert correction(® for in-
compressible flow in a closed-wall wind tunnel shows a
good agreement for blockage ratios (propeller disk area to
wind tunnel cross-section) up to about 10%. For higher
blockage ratios the method described here provides a sink
strength which underestimates the closed-wall corrections
according to Glauert. Based on the conservation laws,
Glauert’s approach is the more rigorous one, but unfor-
tunately cannot be applied to ventilated-wall wind tun-
nels, where fluxes of mass and momentum across the walls
are generally unknown. Evidently, a sink strength which
provides a perfect agreement with Glauert’s theory in the
closed-wall case could also be used to correct propeller tests
in the perforated-wall case, but justifiably only at small wall
porosities. This combination of the two methods, which
could provide a viable alternative to correcting low speed
wind tunnel tests of propellers at high blockage ratios, has
not been further explored.

In the derivation of the subsonic sink strength a com-
plete overview of the compressible-flow theory for the pro-
peller disk has been given. Of main concern was a possible
existence of two different solutions for the compressible slip-
stream equations, as described by Delano and Crigler(1?),
However, post-processing of the published results(!?) has
shown that the solution in which flow accelerates across
the propeller disk into supersonic speeds is, in analogy
to an expansion shock, accompanied by a decrease in en-
tropy. A physically meaningful solution(!¥), providing a
non-negative entropy increment, decelerates flow across the
disk and exists for a range of efficiencies below the ideal
(Froude) efficiency. The corresponding slipstream veloci-
ties, obtained numerically by Newton’s method, were found
to provide a sink strength which is somewhat less than that
obtained by an incompressible-flow approximation.

In the JAR Blowdown Wind Tunnel test section, whose
perforated walls with 60° slanted holes were set at 4% open-
ness ratio, the blockage correction evaluated for the de Hav-
illand propeller tests was found to be rather small, not sig-
nificantly influencing the measured propeller performance
characteristics(!®). The source strength, used to model the
propeller farfield in this low-correction case, was the one
obtained from the incompressible slipstream theory. The
obtained result indicates that perforated walls are indeed
suitable for high-speed propeller testing, now that the cor-
responding wall interference effect can also be quantified.
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Appendix

The solution of the boundary value problem described
by Egs.(13) can be obtained as

fn(ﬁ,P) = fn1(§,P) +fn2(£»P)»

where fn1 and fp2 are the solutions of the separate problems

Dy fa1(€,p) =0, O0<é<s, 0<p<r
fnl({,r) = fn(&)a 0< { <s
fr1(0,p) =0, 0<p<r
fn1(37p)=oa OSP<T
and
annZ(&,p)=0, 0<£<3, OSP<T
fa2(§,7) =0, 0<é<s
f"2(0’p)=fn(0)(£') , 0<p<r
falon) = (2) . 0<psr

1st problem: separating the variables as

fn1(€,0) = X1(€)R1(p),

we obtain, using the differential operator (11),

X{__R_R v,
X1 R1 pR1 p2 ’

where —p? is a constant (selected to be negative). The
eigenvalue problem

X!+ uXy =0,
X1(0) = X](.S) =0

0<é<s

obtained from the first differential equation and the homo-
geneous boundary conditions, is satisfied for the eigenfunc-
tions sin px € where uy is given by the first of Egs.(15). Since
a nonsingular solution of the second differential equation

p’RY + pR}| — (12> +n*)Ry =0, 0<Lp<r
is
In(pp)
L(ur)’

where F is an arbitrary constant, we can construct fn) as

Ry=F
x>

The substitution in the nonhomogeneous boundary condi-
tion leads to the Fourier sine series

D Fupsinpel = fa(€), 0<E<s,

k=1

so that F},, k has to be chosen as described by Eq.(16).



2nd problem: using

faa(€, p) = Xa(E)Ra(p)

we obtain

where v/ is a constant (selected to be positive). The eigen-
value problem
P*Ry + pRy + (v*p” = n®)Ry =0,
Rz('l‘) =0

0<p<r

is satisfied for the nonsingular functions Jn(vy kp), where
Un,k is given by the second of Egs.(15). Since the general
solution of

Xy -v*X; =0, 0<&<s
is b ¢ inhvt
XZ=Psm'v(s )+QST l/,
sinhvs sinhvs

where P and @ are arbitrary constants, we can construct
fno as

fn2(€,p) = }:[Pn,k

k=1
X Jn(Vn,kp).

sinhwv, k(s — €)
sinh vy, 8

sinh v, 1§

4 Qn,k

sinh vy 18

The substitution in the nonhomogeneous boundary condi-
tions leads to the Fourier-Bessel series

Y Papda(vanp) = fn(0)<£) ,  0<p<r
k=1

5 Qi n(vmid) = Fals)( 2
; QnkIn(Vn,kp) f"(s)(r> 0<p<r

From the orthogonality properties of the Bessel functions
it follows that the coefficients Py, x and Qn » have to satisfy
Eqgs.(17).
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