PISTON THEORY REVISITED and FURTHER APPLICATIONS

ICAS-94-2.8.4

D.D. Lin*
Arizona State University, Tempe, AZ 85287

Z.X.Yao", D. Sarhaddi” and F. Chavez**
ZONA Technology, Mesa, AZ 85202

ABSTRACT

A new lifting surface method utilizing the concept
of Piston Theory has been developed which could
account for wing thickness/incidence effect in
supersonic flow. From various cases studied it is
concluded that the present method makes a
substantial improvement over the conventional
lifting surface theory (Linear Theory) and Piston
Theory in terms of unsteady pressures, stability
derivatives and flutter speeds. Among other
theories it also predicts the most conservative flutter
boundary in that it confirms the supersonic
thickness effect is to reduce the flutter speed.
Furthermore, when the third order Piston Theory is
replaced by a composite uniformly-valid series, the
applicability of the present method is readily
extended to a unified supersonic/hypersonic
domain.

INTRODUCTION

Hayes-Lighthill's Piston Theory(!.2] has been one of
the most commonly practiced methods in
supersonic aeroelastic applications. Because of its
simplicity and its inclusion of nonlinear
thickness/incidence effect. Its ease of application
and its acceptable accuracy render the theory an
effective tool for many aeroelastic problems®.

However, two inherent undesirable features of
Lighthill's Piston Theory (hereafter Piston Theory)
invalidate its capability in general aeroelastic
applications. First, the theory is a strictly one-
dimensional, quasi-steady theory, whereby no
upstream influence nor flow history could be
accounted for. Second, its domain of application
usually covers a restrictive range of Mach numbers,
depending on the thickness and frequency
parameters given.

Within the last decade, exact three dimensional
linear theory has been sufficiently developed for
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treatments of lifting surfaces in unsteady supersonic
flow!*). Nevertheless, supersonic lifting surface
methods, such as the Harmonic Gradient Method
(HGM or known as the ZONAS51 code)?], are
confined' to planforms of very thin sections,
whereby no thickness effect is accounted for. On
the other hand, it has been known for sometime that
the supersonic thickness effect could render a
forward shift in the aerodynamic center, thereby
reducing the flutter speed.

In view of the recent development of the NASP and
HSCT, a general supersonic flutter method that
could account for the effect of wing sections would
be very desirable. One is therefore led to the
possibility of developing a hybrid method which
could possibly carry the better features of Piston
Theory and the supersonic lifting surface methods.

The objective of this paper is to present our recent
development of such a hybrid supersonic lifting
surface method which can include the nonlinear
effect of wing thickness or incidence.

PISTON THEORY

Subsequent to the original publication of Lighthill?!,
Ashley and Zartarian'®! first proposed the
application of Piston Theory for flutter analysis and
other aeroelastic applications. They found that the
nonlinear thickness effect provided by the theory
indeed results in a more conservative flutter
boundary, which was validated by measured data.
Based on a criterion that if any one of the conditions
holds, namely

M2s>1, kMEs>1 o KMP>>1 ()
Landahl, Ashley and Mello-Christiansen!®! further
established a consistent linearized Piston Theory.
With this theory, they obtained an explicit flutter
solution for a typical two dimensional wing section.
The flutter speed according to their theory
approaches those predicted by the exact linear
theorym as the Mach number increases, whereas
they tend to depart from the latter as the Mach
number decreases toward unity.
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Originally, Lighthill's Piston Theory accounts for the
effect of nonlinear thickness in the high Mach

number range such that M2>> 1.1t imposes the
condition that the magnitude of the piston velocity
never exceeds the speed of sound in the
undisturbed fluid. The aerodynamics of this
analogy is to state that

Mé<1 and Méb< 1 )

where § is the thickness or oscillatory amplitude of
the airfoil, whichever is the larger; and k is the

reduced frequency defined as k = wc/Uco.

According to his large-Mach-number expansion
theory, Landahl”} pointed out that Piston Theory
amounts to ignoring a second order term in his
linear amplitude sequence. Hence, the valid range
of Mach number for Piston Theory can be defined
by the criterion

§PeM<s™ and M>>I 3)

In terms of Tsien's Hypersonic Similarity
parameter'®! K, where K = M §, Eq (3) reads

5 <K<l @)

For a wedge of semi-angle o= 10°, K falls in the
range of 0.31 < K < 1.0. Inspection of results
obtained in Figure 1 shows that the valid lower
bound of the Mach numbers is really more
restrictive than the above criterion so indicated,
whereas the upper bound K < 1 is less restrictive.

While the condition K < 1 for Piston Theory may be
somewhat relaxed to include regions near K = 1.0,
the condition k K < 1 of Eq (2) is a rather stringent
one. For unsteady hypersonic flow, if K = O(1) then
the reduced frequency k must be kept very small.
The failure of Piston Theory in the moderate to high
range of k is evidenced by the Panel Flutter results
presented in the work of Chavez and Liu®l.

THE Cp FORMULAS

Following the suggestion of Morgen, Herchel and
Runyan!'®, Rodden and Farkes!'!! have arrived at a
generalized expression for the pressure coefficients,
ie.

Cp= X/I%[C] (%) + 0 (Zzz% +C3 (% ] 5)

where w represents the piston upwash.
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For Piston Theory™?!
y+1 y+1
= = = 6
a=1 o T (6)
For Van Dyke's 2nd order theory!™?!
4 2
M _M (y+1)-4m
1= Q2 yp )

where m2=M?-1, and 7 is the ratio of specific
heats.

A modified Piston Theory is recommended!!? to
replace ¢; and ¢, of Eq Set (6) by that of Eq Set (7)
rendering an extension to the lower Mach number
region.

The ¢; and ¢, of Van Dyke in fact were first

obtained by Busemann!'®), in which he also
included a third-order term based on a consistent
expansion of the simple wave theory, i.e.

3= 1 {a0M8+boM6+C0M4+d0M2+EO}
6m?7

where 8)
ag=y+1, bo=2y%-7y-5, «co=10(y+1)
do=-12, e=8

Following Busemann, Donov!™! further developed a
comprehensive theory in which he obtains series
expansion solution up to the fourth-order term
accounting separately for the isentropic part and the
rotational part due to simple wave and shock wave
respectively. Here, Donov's third-order term
including shock wave, also derived independently

by Carafoli!’®), reads

c3 1 {aM8+bM6+cM4+dM2+e}

=6Mm7

where 9
_ y+l)2 _3pP-1279-7 _9(y+1)
“'3(7"" b 3 )

In passing, it is noted that through a different
approach Kahane and Lees!!®! have obtained a
correction term to c3 of Eq (8) resulting in essentially
the same c3 as that of Eq (9).



Therefore, a consistent choice of Cp would be to
adopt Donov's series and Busemann's series for
flow compression and expansion respectively.

In the analysis that follows, we remain to adopt
Lighthill's Piston Theory, Eq (6), in order to simplify
the present approach.

For unsteady flow applications, Eq (6) is recast into
the form of pressure differential of the upper and

the lower wing surfaces, i.e. ACp=Cp, - CPopprr
and the piston velocity w/U.,, is represented by two
terms, ie. w/U,, = wy + w;, where w, denotes the
thickness distribution of the wing and w; the
downwash. Thus, the total pressure differential

ACp can be expressed as

AEP=ACPO+ACP (10)

and up to the third-order term

3
ACp, = —[;—2 > camn{aw,

n=1 (]Oa)
and
4w < 1)
aCp =L N o M (4w, (10b)
M2 n=1
+(6w12Aw0(‘)+4w13}(:3M
where

(AW() }(n) = Wimer ! = WOiope™

upper

(10¢)
(AW())(") = ._.....___WO'”“’"n +__2w(_)mp-rn

For non lifting airfoil sections, where (wo) = (wo).,
Eq (10b) reduces to the expression

ACp=X44—{[C1+2C2Mw0+3C3M2?A)()2]w]

+[es MY wy3) (1
Substituting Eq (6) into Eq (11) and dropping the

higher order terms in w; yields the linear amplitude
version of Piston Theory, i.e.

ACp = [—f—/}— +2(y+1)wo + (y+1)M WOZ] wy (12)

In this work, we shall use the above expression to
develop the Hybrid Lifting Surface Method.

HYPERSONIC SIMILITUDE
A classical Hypersonic Similarity™”! can be
expressed as
Cp= X/Ilz— (K, 7) (13)
where
y-1
fn= ly{[l + —2-1<]7—1 - 1} (13a)

is the universal function due to the Prandtl-Meyer
expansion, and

(Z:‘.l)ﬂ 1

4 K2

1
h 7+ 1

-

is the universal function due to oblique shock
waves, where K=M § or M 7.

Clearly, Eq (13a) is the basis of Lighthill's Piston
Theory and hence of Eq (5). Eq (13b) was
established by Tsien'® and Linnell™®. When Eq
(13b) is expanded up to the third-order term, the
coefficient c3 corresponding to Eq (6) reads

_{r+1f 14)

©B="73

This is to say that the departure between Eqs (13a)
and (13b) starts from the third-order term and the
difference of which ‘amounts to

(3r2-27-3)
Ae=""08

in rotationality due to shock wave.

< 0, representing the difference

It is desirable to extend the previous third-order
theories into the hypersonic flow regime where
K > 0O(1). Close examination of them reveals that
the Cp's of these third-order theories diverge
drastically as K increases toward the Newtonian
limit (see Fig 1).

Second-order theories, on the other hand, usually
result in one half the value of Newtonian pressure,
whereas Cp of Linear theory vanishes at the
Newtonian limit.

It is clear that Piston Theory does not yield the
correct limit in the low supersonic end, nor does it
approach the Newtonian limit in the hypersonic
end. Figure 1 shows that Piston Theory has a
limited valid range of In K between roughly say -1
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to at most 0.5 (0.368 < K < 1.05), for a wedge of semi-
angle equal to 10 degrees.

To establish a uniformly-valid solution in the
unified supersonic/hypersonic domain, therefore,

requires a composite -function, which could be
properly recast into a "pseudo-similar” form as

% =fc (K, 7 ;1,2 c3) (15)

provided that the coefficients ¢y, ¢z and c3 could be
suitably chosen from the appropriate third-order
theories.

HYBRID LIFTING SURFACE METHOD
The pressure-downwash expression of Eqgs (10), (11)
and (12) allows the integration of Piston Theory
(and other third order theories) with the classical
lifting surface theory!", Recall the typical Lifting

Surface formulation in which the so-called
"Downwash equation” is solved on the surface, i.e.

(D] {acp} = {w) 16)
where Dy = D;(M, k) is the downwash matrix due to
the Kernel integral and w is the given mode shapes.

Linear forms of Eqs (10) and (11) can be recast into a
downwash equation in the same manner,

(D7} {aCp} = (w) (17)
where Dp= Dp(M, k; wy, 6, 7) is a diagonal matrix
whose elements are strictly self-influenced in their
aerodynamic characteristics.

Superposition of Egs (16) and (17) yields

[D] {aCp} = {w) (18)
where the hybrid downwash matrix reads

D=f*D,+g*Dp 19

and f* and ¢* are two generic operators defined
simply according to Piston Theory as

pr=ll and g*= [1)-{M)[Dp" 20

APPLICATIONS

The Hybrid Lifting Surface Method (the present
method) has been fully developed into a computer

program now known as the ZONAS51T code (T
stands for thickness). In what follows, the present
method, hence ZONAS5I1T, is applied to several
typical cases for aeroelastic applications. These
include rigid wedge in pitching motions, leading-
edge flap oscillation, panel flutter and flutter
analysis for wing planforms. Unsteady pressures,
stability derivatives, generalized forces and flutter
boundaries are presented for these cases.
Comparison with results of Hui's Exact Theory!?),
Van Dyke's 2nd Order Theory!'), Perturbed Euler
Characteristics (PEC) Method!®!, Piston Theorylz' 3
10, 11 Linear Theory (or ZONAS51, Ref 4) and
available measured data are shown whenever
appropriate.

The stiffness and damping moments are defined
respectively as

Cme = Re (Cm)
21)
Im (Cm)
Cm y = k"‘ =
where

Cm=f ACp(x-h)dx
0

The generalized aerodynamic forces are defined as

Q,']' =f ACp, zj dx (22)

where Cp, is the unsteady pressure due to the zth
mode and z; is the j'th mode shape.

A rectangular wing model, with wedge profile
containing two-dimensional flow at the inboard
sections is shown in Figure 2. Computed results of
ZONASIT from the root chord strip is used to
verify with those provided by other two-
dimensional theories (Fig 3 through Fig 16).

Oscillating Wedge/Diamond Profiles
- Effect of Pitching Axis Location

In Fig 3 and Fig 4, results of ZONA5S1T in damping-
in-pitch derivative are compared with those of
Linear Theory (ZONA51) and test data'?" 2], for a
wedge profile and a diamond profile respectively.
It is seen that ZONASIT predicts a closer trend to
the test data than do Piston Theory and Linear
Theory.
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- Effect of Reduced Frequency

Fig 5 and 6 present the variations of generalized
aerodynamic forces Q;, and Q,, with reduced
frequency k for an oscillating wedge. Results of
ZONASIT are compared with those of Linear
Theory and PEC method. Good correlation is found
between results of ZONAS5IT and PEC at M = 1.5

and M = 3.0 for a wedge of semi-angle ¢ = 10°,
whereas substantial departures are found between
that of Linear Theory and ZONAS51T. Clearly, these
departures represent the additional nonlinear
thickness effect to the results of Linear Theory.

- Effect of Mach Number

Fig 7 presents the variations of stiffness and
damping-in-pitch moments with freestream Mach

number for a diamond profile of thickness ratio, 1 =
tan 15°. Here, two other versions of ZONASIT are
included for comparisons: ZONA51Td adopts the
third-order theory of Donov, i.e. Eq (9), whereas
ZONA51Tu ("u" stands for unified) adopts the
composite function format of Eq (15), which renders
ZONAS5I1T uniformly valid in the unified supersonic
and hypersonic domain. It is seen that results of the
stiffness moment of ZONA5I1T, Td, Tu follow the
resulting trend of Hui's Exact theory throughout the
Mach range, while those of Piston Theory and
Linear Theory remain independent of Mach
number. Considerable departures between various
results are found for the damping moment beyond
M = 4.0. Most third-order theories such as Piston
Theory, ZONAS51T, Td yield diverged results at the
hypersonic end, whereas the results of ZONA51Tu
is in good agreement with Hui's Exact theory
throughout the Mach number range. In fact, only
the latter two theories will approach the proper
Newtonian limit.

- Effect of Thickness

Figs 8, 9 and 10 present the variations of Stability
derivative for a Diamond profile with profile
thickness at Mach number M = 2.0, 5.0 and 10.0
respectively. Fig 8 shows that both Linear Theory
and Piston Theory underpredict the stiffness and
damping moments, whereas ZONAS5IT
overpredicts them. Good agreement is found
between ZONAS51Td, Tu and Hui's Exact theory up

to ¢ = 15°. When Mach number is increased to M =
5.0 and 10.0, all third-order theories overpredict the
damping moment. ZONAS51Tu, however, yields
results in close agreement with Hui's Exact theory

up to ¢ = 15° for all Mach numbers considered.
Thus, given pitching axis location at half chord, an
increase in thickness results in an increase in
damping moment. The sudden increase in damping

moment of Hui's Exact theory at M = 2.0 depicts the

shock detachment occurring around ¢ = 23.5°. Such
trend is beyond the capability of all versions of
ZONASIT. Similar to Piston Theory, ZONA51T's
nonlinear thickness effect is accounted for only by a
quasi-steady approach, which ignores the flow
history. Hui's Exact theory accounts for mildly
unsteady flow, hence the unsteady shock and Mach
wave interaction which includes the effect due to
shock detachment.

Leading-Edge Flap Oscillation

Fig 11 shows an oscillating leading edge flap of thin
wedge profile (o = 2°) with a hinge line located at
quarter chord. Figs 12 and 13 show the magnitude
and phase angle of unsteady pressures at M = 2.0, k
= 2.0 and at M = 5.0, k = 0.5 respectively. The
parameter Mtk is bounded by 0.1 for both cases. In
Fig 12, it is seen that not only Piston Theory
underestimates the pressure magnitude but it
predicts zero pressure downstream of the hinge
line. By contrast, all other solutions show
significant upstream influence due to flap motion.
Small differences are found between pressures of
Linear Theory and ZONASIT at this Mach number.
The difference between results of PEC and
ZONADSIT lies in the inadequacy of the latter in
accounting for the effect of unsteady shock/Mach
wave interaction, thus the effects of rotationality
and flow history.

In Fig 13, significant improvement over the Linear
Theory by ZONASIT is found in the pressure
magnitude on the flap. However, no improvement
is found in the phase angle between them. Notice
that the waviness of Cp in Fig 12 disappear in Fig 13.
Physically, the waviness in Cp is created by the
unsteady Mach wave reflection from the Shock
wave. In the case of M = 5.0, the Mach wave is
reflected farther downstream of the profile trailing
edge.

Panel Flutter

Shown in Fig 14 are two flexible panels
(membranes) mounted on both surfaces of a wedge

(6 = 2°). The panels are performing oscillatory
mode as depicted by

z=gsin (MI:”— x) g ikt (23)

where N = 2, and ¢£is the amplitude of vibration.

Figs 15 and 16 present the effect of reduced
frequency on Generalized Aerodynamic Forces (Qy;)
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for these vibrating panels at M = 1.5 and M = 5.0
respectively. Results in Q;, and Q,; of Linear
Theory, Piston Theory and ZONAS5I1T are compared
with that of PEC. Similar to the earlier observation
in the case of Flap Oscillation, ZONAS51T in Figs 15
and 16 substantially improves the pressure
magnitude over that of Linear Theory but
practically improves little in the phase angle. This is
clear, for the nonlinear thickness term of Eq (19) is
based on a quasi-steady approach, hence no
additional phase change can be expected in the
present method.

Wing Flutter

Two wing planforms are selected for performing
flutter analysis using ZONAS5IT: A 70-Degree Delta
Wing and a 15-Degree Swept Untapered Wing.

- 70-Degree Delta Wing

Figs 17 and 18 present flutter boundaries for a 70
Degree Delta Wing with 6% thick Biconvex Airfoil
and Diamond Airfoil sections respectively.

The flutter experiment was carried out at NASA
Langley/LaRC by Hanson and Levey?l. The wing
model used was essentially a flat-plate. According
to Ref 23, four measured modes are used in the
present flutter analysis. Half of the delta planform
is subdivided into 10 x 10 panels. The flutter
boundary consists of the flutter points obtained for
six Mach numbers (M = 1.19, 1.30, 1.64, 2.0, 2.25 and
3.0) using ZONA51 and ZONAS51T. Flutter results
computed by Piston Theory, ZONAS51 and 51T are
compared with the measured data!®!. Several
observations on the performance of ZONA51T can
be put forth:

- ZONADSIT and the third-order Piston Theory
predict more conservative flutter boundaries
than that of ZONAS51 and the first-order Piston
Theory respectively, indicating that the thickness
effect indeed reduces flutter speed in supersonic
flight.

- ZONASIT predicts the most conservative flutter
boundary of all methods considered.

- Similar flutter trends are found between results
of Figs 17 and 18 showing that the shape of
airfoil section makes relatively insignificant
impact on the flutter boundary.

- 15-Degree Swept Untapered Wing

Table 1 presents two computed flutter points for a
15-Degree Swept Untapered Wing of aspect ratio
AR =535atM=13and M =3.0.

The flutter experiment was carried out at NACA
Langley Field by Tuovila and McCarty!'?*l  The
wing model used is a cantilever wing with a 2%
thick hexagonal airfoil section (see Fig 19).
According to Ref 24, eight modes generated by
MSC/NASTRAN are used in the present flutter
analysis. Half of the wing planform is subdivided
into 10 x 10 panels.

In Table 1, computed results of ZONA51, Rodden's
method®! (employing ZONAS51), and ZONAS5IT
are compared with test data of Tuovila and
McCarty!®l. Note that while Rodden's method
adopts Eq (7) plus c3 of Eq (6), ZONAS5IT uses
coefficients strictly from the third-order Piston
Theory, i.e. Eq (6). As expected, Rodden’s method
yields closer agreement with test data than does
ZONAS51T. However, further flutter analysis using
other versions of ZONAS5IT is pending whereby
new sets of coefficients will be adopted by
ZONAS1T from those defined in other third-order
theories. Overall, the listed results confirms once
again the impact of thickness on flutter speed.
Linear Theory, as computed by ZONAS51, yiclds

. non-conservative flutter points at both Mach

numbers.

CONCLUSIONS

A Hybrid Lifting Surface Method has been
developed whereby it combines the classical lifting
surface theory with a nonlinear thickness correction
term based on Piston Theory. Accordingly, a
computer program known as ZONAS5I1T has been
fully developed which represents a generalized
ZONAS51 code and could account for nonlinear
thickness distribution or mean incidence of all
lifting surfaces.

By adopting appropriately other third-order
theories, such as those stated in Egs (7), (8), (9), (14)
and (15), two improved versions of ZONASIT are
further developed. While ZONA51Td could
account for flow rotationality due to supersonic
shock wave, ZONAS51Tu further extends the
former's applicability to a unified
supersonic/hypersonic domain. Close examination
of all third-order theories including Piston Theory
reveals that they all fail to yield the Newtonian limit
in the hypersonic end, whereas Piston Theory is
known to yield a different limit from the Ackeret
limit in the sonic end. By adopting a uniformly-
valid series in the nonlinear correction term,
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ZONAS51Tu could yield the Newtonian limit and
the Ackeret limit as would Hui's Exact theory. In
passing, we remark that Hui's theory offers an exact
solution of a perturbed Euler formulation, it is
nevertheless a low frequency, two-dimensional
theory and is rather restrictive in its aeroelastic
applicability.

The nonlinear correction term introduced in
ZONADSIT is a self-influenced function, which
carries the inherent quasi-steady nature of the
Piston Theory. This means that the thickness effect
is corrected locally and no related flow history can
be accounted for by the present model. Hence,
ZONASIT and all its improved versions could
improve substantially the pressure magnitude over
that of Linear Theory, but only yield minor changes
in the phase angle.

For aeroelastic applications, ZONAS51T is applied to
four typical cases with different configurations.
These include oscillating wedge and diamond
profiles, oscillating leading-edge flap, panel flutter
and wing flutter. Considerable effort has been
directed toward verification of the present result
with that of other existing theories. It is found that
ZONASIT could substantially improve the results
of Linear Theory in terms of pressures, stability
derivatives and flutter speeds. In most cases, results
of ZONAGSITT appear to be in better agreement than
those of other theories with test data and results of

Perturbed Euler solutions®2%,

For flutter analysis of two selected wing planforms,
the results of ZONAS51 and 51T confirm that the
supersonic thickness effect is to reduce the flutter
speed, as expected. Such a reduction increases with
increasing Mach number. For the case of a 70-
Degree Delta Wing, ZONAS51T yields the most
conservative flutter boundary, whereas Linear
Theory represented by ZONAS51 yields the next
conservative one. Piston Theory, by contrast, yields
the least conservative boundary in comparison with
the test data. The shapes of wing section are of less
impact than the wing thickness on the flutter
boundary.
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Rectangular Wing Model with Wedge Profile in
Supersonic Flow Showing a Two Dimensional
Chordwise Strip.
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Table 1. Flutter Speed and Flutter Frequency for a
15-Degree Swept Untapered Wing: M = 1.3

& 3.0
M=13 M=3.0
Vi (ft/s) fi (H2) Vi (ft/s) k (Hz)
Test [24] 1280 102 2030 146
Rodden [25]f 1397 124 1913 149
ZONAS1 1591 125 2415 151
ZONAS5IT 1483 124 1824 143
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