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Abstract

The method of modelling  wing-body
interference, commonly used in steady and unsteady
subsonic flow, was evaluated as a possible solution to the
problem of modelling wing—body interference in unsteady

images for

supersonic flow. It was implemented in a panel method in
which lifting surfaces are represented by acceleration
potential doublet panels and bodies by axial doublet lines.
The major advantages of axial singularity methods
compared to surface panel methods are fewer unknowns,
simpler integrals and freedom from internally reflected
shock waves. Surface panel methods, on the other hand,
are naturally suited to wing—body interference problems.
The method of images combined with an axial singularity
method allows the modelling of wing-body interference
while retaining the advantages of the axial singularity
method. The method was evaluated by considering how
well the boundary condition is satisfied over the body
surface in cases with strong wing-body interference,
convergence of results with respect to panelling and by
comparison with experimental data. The results indicate
that the method can readily be applied to practical

configurations.
Nomenclature
B Jﬂz*l.
Dy velocity influence coefficient
e semi~span of lifting surface element
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I, f <xp(turs) 4, integral relating acceleration
1 (r2442) /2
and velocity potential
: 2! a ,1 3],
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Ky K, kernel functions r -2 and r 50
M free stream Mach number
q local acceleration potential doublet strength,
normalized by U2/2
Q singularity strength, defined in equation (1)
r dy’uf
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8 (z~MR)/B?

s (s+MR)/ B2

T, T, direction cosine functions
U free stream velocity

Z,Y,2 zo-ff yo-ﬂl lo"(
zo g%, Coordinates of receiving point in a sending panel
coordinate system

reference z-coordinate of sending panel

¢ perturbation velocity potential, normalized by U

w angular frequency

vy wave number iw/ U

&m¢  coordinates of sending point in a sending panel

coordinate system
Introduction

The calculation of unsteady air loads on aircraft is an
essential step in flutter clearance, active control and gust
load alleviation work. The doublet lattice method [1]
provides this capability for lifting surfaces in subsonic flow.
The method has been extended to include bodies and
wing-body combinations by means of slender body theory
[2] to model the flow around isolated bodies and either a
method of interference panels on the body surface [3] or the
method of images [4] to model wing-body interference. The
constant pressure lifting surface method combined with a
body surface panel method for subsonic flow {5] is a higher
order method providing this capability. The lifting surface
problem in supersonic flow has been solved successfully and
several computer codes are available which are capable of
calculating unsteady air loads on interfering lifting surfaces.
The modelling of wing-body interference in unsteady
supersonic flow proves to be more difficult and few fully
developed solutions are available [6].

The present method is distinguished by the following :
e it uses the acceleration potential formulation

o lifting surfaces are modelled by piecewise constant
pressure distributions
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* bodies are modelled by piecewise linear axial doublet
distributions

* the method of images is used to model wing-body
interference

The main advantages of such a scheme are simplicity,
commonality with subsonic methods and versatility. A
previous paper [7] on this method dealt with the basic
theory and the method of images in supersonic flow — this
paper addresses the modelling of lifting surfaces and bodies
as single elements in more detail.

Lifting surfaces

To solve a flow problem in general it is necessary to find a
solution for the velocity and other fluid properties which
satisfies the governing differential equations as well as the
boundary conditions. Analytical solutions to the complete
differential equations exist only for the simplest .of
problems. The panel or finite element method is a powerful
tool for finding approximate solutions to complex problems
for which analytical solutions do not exist. The principle is
to model the flow by means of a finite number of
singularities, each of which satisfies the governing
differential equation. The strengths of the singularities are
determined from a set of linear equations so that the
boundary conditions are satisfied at a number of collocation
points equal to the number of singularities. The major part
of the numerical work is devoted to the calculation of the
matrix of influence coefficients. Element i, of the matrix
can be regarded as the velocity that singularity ; would
induce at collocation point iif it had unit strength.

The acceleration potential doublet is a convenient
singularity to use in unsteady flow because there exists a
simple relationship between the doublet strength and load
on lifting surfaces, and the integration needed to calculate
induced velocities and pressures is limited to the physical
panel, i.e. excluding the wake. The expressions for the
influence coefficients can be simplified by assuming that the
doublet strength varies harmonically with ¢.

w(ém) = Qexp(-w(€-z)) (1)

With this doublet strength distribution, the expression for
the velocity potential induced by an acceleration potential
doublet panel of unit strength (Q = 1) is

_ - +e c+dy
s = 2RCorleonm)) [0 f T 0o g g, (2)

atby r Or

where ¢ = a+by and ¢ = c+dy define the panel leading and
trailing edges, respectively. This expression is applicable if
all of the sending panel lies within the forward Mach cone
of the receiving point. In the case of a lifting surface panel
being cut by the Mach cone, the induced potential is
expressed as an integral from the leading edge to the Mach
cone, minus an integral from the trailing edge to the Mach
cone.

8= T or
Ty A%~ Br 20 9l
- j;:, j::+d11 T o d¢ dy } (3)

The spanwise integration limits can be either an edge of the

- - 12 p% Br
exp! wr( z st zq 81,
¢ = . ﬂ’l ﬂ+b1’ 2 . df df’

panel or the intersection of the forward Mach cone of the
receiving point with the leading or trailing edge of the
sending panel. The expression for the influence coefficient
is found by differentiating the applicable expression for ¢
with respect to the normal of the receiving element.
Cunningham [8] showed that this order of operation was
necessary to avoid a non-integrable singularity on the
Mach cone. The case of a sending panel lying entirely
within the forward Mach cone of a receiving point poses no
special problems. In the case of the sending element being
cut by the Mach cone, the influence coefficient is given by

(only the first term of equation (3) is shown)

(~wr(20-2s)) My ’g
D = SXRPATUr\Zo7 s {j;’ Ty K(z,7) dzdy

rs 8x { r2JBr

+ ./;;1:2 % [ ./;?:B Ky(zr) dz - Br KI(B"')] 4 } @

where 2 = z,~(a+bn). Both K, and K, are singular at the
lower limit of chordwise integration. The singularity of K,
is integrable but not the singularity of K,. The singularity
of Kk, in the integrand of the second spanwise integral
cancels the chordwise integrated singularity of k, at z = Br.
At spanwise integration limits defined by the intersection
of the Mach cone with the leading edge, z; goes to Br and
the integrand of the second spanwise integral goes to
infinity. To resolve this singularity, K, is divided into a
part K,/ which is zero at z= Br and a part k'’ which is
singular at 2= Br. (These expressions correspond to those

given in reference 9.)

2 12exp(~
K/ (zrnMuw) = - f‘ —-(—rlr <xp Wr; ds (8)
1 (r24s2) /2
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P M) = _Mr2 [ exp(-wrsy)  exp(-wra)
Kl ( s 1M r) [(r2+322)1/2+ (r2+312)1/2] (6)

Ky’ (zg7) is added to the integrand of the second spanwise

integral and the spanwise integral of K/’ "(2gi7) subtracted
separately.

- - ! %
(~wr ) T B
D = expl~wr({ 2o~ 25 j;’ 1 Kx(z,r) dz dy

s 8x { 2 JBr
T2 B
2 re
+‘/:'1 - [j;;r Ky(z,r) dz + Br Ky (zB,r)

7’2 T2
- BrK/ '(Br,r)] dg - ‘/:’l TiBr K/’ '(zB,r) dy } (7

The term Br K’ "(2g:7) - Br K|’ '(Br,r) can be expressed as

. *B . 9K’
Br Kl"(zB,r) - Br K’ (Brr) = j;r Br B; dz (8)
This yields an expression for D, in which the chordwise
integrals have, after a change of integration variable to R,
completely regular integrands.

dR dR R
dz:—a-R-=—T=-2—:dR (9)
Gz (®

(_ ( - 22 L] R
D = TXP\"Yr\Zo %5 {j;l % 0 B%Kl(z(}l),r) dR dﬂ

5 = 87 )

Ty, rBp g 9Ky’
+ j; . —+h 3 [Kz(z(R),r)-t-Br —a—;——-—(z(}l),r)] dR dy

T2
- ‘/:“ -Z—‘g-Br Kl"(zB,r) dr]} (10)

where Ry = yz,7-B%7. The first two spanwise integrals can
be solved by normal quadrature or curve fitting followed by
analytical integration as is done in the subsonic doublet
lattice method [10].
writien as

The last spanwise integral can be

Ry
n Ty B 3 K/ (z57)
f,“ v dn (11)

where the numerator is a regular function. The problem
with evaluating this integral is that r can become small at
1=y, if z, is small, and RB can become zero at the end
points of the integration interval. In cases of interest these

two conditions do not occur at the same value of 7,
therefore the integration interval can be divided so that

different techniques can be used depending on which one of

r and Ry is smaller. Where » is smaller, a polynomial
approximation is made to r times the integrand and the
resulting integral of a polynomial divided by r is solved
analytically. The analytical integration is simplified by

changing the integration variable to y.

1 17
7 Ty B 73 K (zB,r) Y2 byytebaydebayPebiyehy
./;’ dg ® f; dy

1 r t JiiaE
(12)

where y, = y,-1, and yy=y,-y; Over those parts of the

integration interval where R_ is smaller, the integral is cast

B
in the form

g @

1 By

where f(n)= Ty B Ry K[/ '(zB,r)/r3 is a regular function. The
integration variable is changed to , given by

un) = [ }lz;d'l (14)
dn = —gl = —‘:—1— = RB du (15)
(a—,' ('R;)

The integral (13) can then be written as

ﬂg f u('lz)
A L R S COL (16)

1 T Ju(y

which can be evaluated using normal quadrature. Ry can
readily be expressed as the square root of a quadratic in 7.

RB = Ja2n§+atq+ao (17)

For a panel leading edge defined by ¢ = a+by, the coefficients
are

ay = b2 - B2
6 = -2b(z,~a) + 2B%y,
3y = (3570)% = BYyp%2,7) (18)

The integral in (14) can be solved analytically with the
result

2ya17+a . B
wn) = 2= if ay= 0
wn) = L | 2fayfagntramray + 2a5n+a,] ifay>0

@y
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-1

on) = sin-t (292731 ifay<0
t/'—“; 1/415—442% K
(19)
The inverse relationship s(u) is given by
P
7(w) = a if 6y=0
n(a) = 49200~ (arrexp(y/ay w))2 if a, > 0and
44y exp(va, 1) < u
o) = (sr-exp(yfay u))2-4agaq if « >0and
da, exp(@ u) >

yo17-4azay sin(~y~a3 u) - g

2a2

n(u) = if 4, <0 (20)

where

o = AT 1)
Vo,

With this formulation no improper integrals occur in the

evaluation of the nonplanar influence coefficient. To

achieve high accuracy, however, some aspects of the

numerical evaluation demand special attention.

In near—coplanar cases the chordwise integration in
equation (10) is performed over a wide range of R/r values.
The integrand of the chordwise integral in the second term
has a peculiar behavior at low values of R/r and rw, which
necessitates the subdivision of the integration interval.
Satisfactory results can be achieved with a linear
subdivision in 4z(R/r+1), which is shown in figure 1
together with the integrand at zero frequency. FEach
sub-interval is Gauss
quadrature. High accuracy is important because the error

integrated using five-point
in the evaluation of this integral in near—coplanar cases is
magnified by the factor 1/ in the spanwise integration.

At integration limits determined by the intersection of the
leading edge with the forward Mach cone of the receiving
point, the integrands of the first two spanwise integrals go
to zero with infinite slope. Polynomials cannot
approximate this behavior properly, but square root
functions can. Curve fits using a second degree polynomial,
a fourth degree polynomial and a fourth degree polynomial
plus square root functions are shown in figure 2. It is clear
that the square root terms drastically improve the accuracy
of the curve fit. The effect on the accuracy of the method

can be illustrated using the simple test case of a supersonic

biplane with the upper wing lying within the two
dimensional flow field of the lower wing (figure 3). With
both wings at unit angle of attack, the loading on the upper
wing should be zero, while the pressure differential in the
centre of the lower wing should be equal to 4/B over the
entire chord. Figure 4 shows the error in the pressure over
the inboard strips of thesupper and lower wings calculated
with the different approximations at M= 2 and k= 0. The
fact that the error on the upper wing is an approximate
mirror image of the error on the lower wing indicates that
the main source of error is the coplanar calculation of the
pressure over the lower wing. The use of boxes with an
aspect ratio of two in stead of one leads to a much
increased error. From figure 3 it can be seen that, if an
aspect ratio of one had been used, the portion of the leading
edge which influences point 1 would span three elements.
This would essentially amount to a subdivision of the
integration interval. This is the case with the influence of
the leading edge of the lower wing at a collocation point of
the upper wing, as can be seen in figure 3, and explains why
the error is attributed mainly to the calculation of the
coplanar influence coefficients.

The high frequency behavior of the method is demonstrated
using the popular test case of a rectangular wing with
aspect ratio 2 pitching about mid chord at a reduced
frequency of 1.5 and Mach No. of 2. The pressure
distribution over the inboard strip is shown in figure 5.
Rather than plotting a single point per box, the piecewise
continuous pressure distribution according to equation (1)
is shown. The exponential variation smooths the real part,
but increases the discontinuities in the imaginary part.
Although the assumed variation of the pressure distribution
simplifies the calculation of influence coefficients, it is by
no means necessary and can be changed easily. This case
was also analysed with the sign of the exponent in equation
(1) reversed as well as with a constant distribution (zero
exponent in equation (1)). The results with the positive
exponent is shown in figure 6. The imaginary part is
smoothed, while the discontinuities in the real part are
increased. The results with a constant distribution are
shown in figure 7 and are compared to results obtained by
Hounjet [11]. The agreement is satisfactory. The different
pressure distributions would necessarily influence the
convergence of the integrated results. The convergence
histories for the unsteady lift and pitching moment are
shown in figures 8 and 9, respectively. The results from the
10 by 10 and 20 by 20 grids were extrapolated to obtain an

approximation to the fully converged result. The scaling
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was chosen so that the axes span a 10% variation around
this approximated converged result. Also shown is the
convergence history of the ZONA51C program [12]. Both
the values and the convergence behavior is in agreement.

Bodies
Whereas pressure distributions on lifting surfaces may be

zero—order both directions,
singularities must be zero-order continuous.

axial
This is
achieved by using overlapping hat functions and letting the

discontinuous in

doublet strength go to zero at the body end points. The
points on the surface which are used to define the body
geometry and discretisation are projected to the axis along
Mach lines. A typical element is illustrated in figure 10.
The velocity potential induced by a body axial singularity
is given by

- - €,
4 = Q&@i_”réy)l{jzt 208 4. a

{3
e f) 25 e ae (22)

and the velocity influence coefficient by

s 87

_exp(rur(eoeg)) [ 1 [Ty [, .y [P0
D = r( 2o { = [.;% [("o &) j;o'fz K(zr) dz
Y

o ¢t T 27¢
_ fo'fz z K(z,7) dz] + -;_—% [(zo—fl) fo'€2 Ky(z,r)

4 z _ft ’e

+ Br 3K ) e - fzoifz 2 ( Kyfar) + Br oK1 (o))

3Ky’ 1 [ [ 2%
+ Bro— (z,7) dz] ] + = [—r-? 2ot z K(2z,r) dz
z0_62 T 30‘52

= (25-¢3) ‘/;0_63 K(zr) d*] + ';:% [ ‘/;0-53 z ( Kyfz,7)
l7 1

+ Br gf‘ (z,7) ) + Br -gl:-l (z,7) dz

) [ oo 35 G as] |}

For the numerical evaluation, the integration variable is
changed to R as was done for lifting surface elements. In
the case of an axial singularity being cut by the Mach cone
(cases 2 and 3 in figure 10), no special treatment is
required. The integration interval is simply truncated.

Although the method uses axial singularities, it is not
equivalent to slender body theory. It is compared in figures
11 and 12 to the HPP method of Garcia~Fogeda and Liu
[13] and slender body theory for the Saturn SA-1 launch

vehicle pitching about its apex at k=1.8. The agreement
with the HPP results is good. In figure 13 the aerodynamic
damping of the same rocket in first bending mode is
compared to the HPP result. The agreement is good over
the Mach number range 1.5 to 2.4. Above Mach 2.4, one of
the segments becomes superinclined, which the present
method does not model properly. Below Mach 1.5, the
HPP method shows a sharp downward trend which is not

reflected by the present method or the measured values.

Wing-body interference

Panel methods are limited in their applicability by the
differential equation they assume. Apart from this inherent
limitation, a panel method can be evaluated by the extent
to which it satisfies the boundary condition, and by its
convergence properties. The former is especially important
for wing-body interference, since a single collocation point
may be used to represent a complete body segment. The
applicability of the method of images in supersonic flow has
been demonstrated in some detail in reference 7, but one
example is repeated here. The test case is that of the F5
wing with the AIM9 tip missile, which is shown in figure
14. A good panel method should satisfy the boundary
condition to a high degree of accuracy using a very fine
panelling scheme, while the integrated results should be
insensitive to the panelling scheme. The fifth panelling
scheme of the tip store shown in figure 14 was used to
calculate residual normal velocities on the missile body for
the whole wing at a steady angle of attack at Mach 1.35.
The 9 sections through the missile body at which the
residual normal velocities are shown are also indicated on
figure 14. The results in figure 15 are scaled so that the
component of the free stream normal to the plane of the
wing would be represented by the radius of the body. It is
clear that the boundary condition is satisfied to a very high
degree, although the method of images does not cancel
shocks properly.

To investigate the convergence properties of the present
method, generalized forces were calculated for a pitching
mode about the mid chord at the root and a plunging
mode, using the five panelling schemes shown in figure 14.
The plunge mode has unit amplitude and the amplitude of
the pitch mode is chosen so that the amplitude of
oscillation of the leading edge of the wing root is unity.
The calculations were done for reduced frequencies of o to
0.75 in increments of 0.05 and Mach 1.35 The generalized
forces are normalized with the wing area. The results are
presented in figures 16 to 19 and show good convergence
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from the second panelling scheme. The convergence results
with only the panelling of the tip store being progressively
refined would not mean much if the contribution of the tip
store was negligible. The magnitude of the contribution of
the tip store can be seen from the figures to be substantial,
therefore the convergence results presented are significant.

Load distributions on the wing with under wing store were
compared to NLR experimental results [14,15]. The
geometry and discretization of the configuration is shown in
figure 20. The calculated and measured load distributions
on the wing at Mach 1.35 and reduced frequency 0.1 are
shown in figures 21 to 24. The quasi-steady measured
values are shown together with the real parts of the
unsteady measured vilues. The experimental error in the
quasi-steady measurements is expected to be less than the
error in the unsteady measurements, while the unsteady
effects should be small at this low reduced frequency. The
real part of both the normal force and pitching moment is
slightly overpredicted while the imaginary parts are
underpredicted. This is in agreement with the results
presented in [6]. The spanwise distributions of lift and
pitching moment and effect of the store is in good
agreement with the experimental results.

The unsteady side force on the store in various stages of
completeness is compared to the measured values in figures
25 and 26. The values are in good agreement although the
trend with Mach number seems to be reversed. This is also
in agreement with [6].

Conclusions

A method for modelling wing-body combinations in
unsteady supersonic flow has been developed which makes
use of acceleration potential doublet panels for wings, axial
doublet lines for bodies and the method of images for
The method satisfies
the boundary conditions to an acceptable degree over the
entire surface of a body, even in the immediate vicinity of a
lifting surface adjacent to the body. The convergence of
calculated results with respect to panelling has been shown
to be satisfactory,
experimental results

modelling wing-body interference.

and a limited comparison with
showed good agreement. The
modelling similarity with the method of images for
unsteady subsonic flow should improve continuity between
subsonic and supersonic results where the method of images
is used in the subsonic analysis.

The present study considered the use of the method of

images with an axial doublet line representation of bodies.
This representation limits the type of body that can be
modelled to circular cross sections, but there is no reason
why it could not be used to good effect with other axial
singularity methods for bodies of non—circular cross section.
It may also improve the convergence of surface panel
methods.
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from reference 11.
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Figure 8 Convergence of lift of rectangular wing
with different distribution functions, compared to ZONAS51.
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Figure 9 Convergence of pitching moment of

rectangular wing with different distribution functions,
compared to ZONAS5L.
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surface of Saturn SA-1 launch vehicle pitching about apex

at k=18 and M= 2.

with tip missile.

2721

Case 3 Case 2 Case 1 0.6
0.5
Doublel sirength distridution
&,
o ]
Body arxis | £ 0.4
N g § %
. Ny 1y [
R Projection to axls l\lonl Mach nnu\‘ DO P
‘\\ 5 \\‘ g 0.34w
Body surlace N . ® |3 o
%’ H | .
Poinls on surface which define body shape < 02 - -
Cotlacation poiat for singularily sbowan
Figure 10 Construction of axial singularity from 0.1 -
given points on body surface. - -
2 c 1 LI T T 1 ¥ ¥ L} T
2 1 . 8 22 24 256 28 3
—— Present - Linear HPP  ~—— Slender body 12 4 18 1Mach rz\umber
151 F —— Present = Linear HPP ® Measured
Figure 13 Aerodynamic damping coefficient of Saturn
&g SA-1 launch vehicle first bending mode.
&
5
N = 4
"0 o1 02 03 04 05 06 07 08 09 f
p H
Figure 11 Real part of unsteady pressure on surface 1 ¢
of Saturn SA-1 launch vehicle pitching about apex at & = 1.8 :f
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Figure 15 Residual normal velocity on missile body

surface for the wing at a steady angle of attack at M= 1.35.
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Figure 16 Generalized force Q,, for the F5 wing with

tip missile at M = 1.35.
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Figure 17 Generalized force Q,, for the F5 wing with

tip missile at M = 1.35.
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Figure 18 Generalized force Q, for the F5 wing with
tip missile at M = 1.35.
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Figure 19 Generalized force Q,, for the F5 wing with

{ip missile at M = 1.35.
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Figure 20 F5 wing with under wing store.
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Comparison of calculated and measured
real part of spanwise lift distribution on F5 wing with and
without under wing store at M= 1.35 and k= 0.1.
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Figure 22 Comparison of calculated and measured

imaginary part of spanwise lift distribution on F5 wing
with and without under wing store at M= 1.35 and & = 0.1.
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Figure 23 Comparison of calculated and measured
real part of spanwise pitching moment distribution on F5
wing with and without under wing store at M=1.35 and

k=0.1.
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Figure 24 Comparison of calculated and measured

imaginary part of spanwise pitching moment distribution
on F5 wing with and without under wing store at M= 1.35
and k= 0.1.
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Figure 25 Comparison of calculated and measured
real part of unsteady side force on under wing store in

various stages of completeness at &= 0.1.
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Figure 26 Comparison of calculated and measured

imaginary part of unsteady side force on under wing store
in various stages of completeness at & = 0.1.
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