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Abstract

The focus of this paper is an overview of the
aircraft’s dynamic modelling from three key
perspectives: the dynamic stability, panel method
approach, and vortex wake dynamics.

The model presented here assumes that the
pressure field around the wing can be predicted by
the potential flow method.

A method is presented for estimating dynamic
stability derivatives in unsteady flow. Ring vortices
are employed as singularity elements. As an
example the sudden acceleration of the wing is
investigated. The stability derivatives of lift, drag
and piching moment coefficients with respect to
angle of attack and to pich rate are computed.

Results are presented for wing of aspect ratio
in the range from 2 up to 50 with sweep angle
equal to 15 deg. Differences in steady and unsteady
stability derivatives are considerable.

Nomenclature
A : aspect ratio
c, : mean aerodynamic chord
G : drag coefficient
C. : lift coefficient
C, : moment coefficient
n : vector normal to wing surface
o] : pressure
S : wing area
t : time
8) : wing forward velocity

u, v, w : velocity components in x,y,z-direction
% ¥, Z :body coordinates

X,Y,Z :inertial coordinates

a : angle of attack

r : circulation

¢ : total velocity potential

0} : perturbation velocity potential
A : angle of sweep

% : uniform flow

BC : boundary condition

LE : leading edge

PM : panel method

RHS : right-hand side

TE : trailing edge

VLM : vortex lattice method
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Introduction

From the Flight Dynamics point of wiev the
maneuverability of an aircraft is an ability to
change its speed, altitude, and direction of flight,
ie., its orientation in space within a given interval
of time. Maneuvers may be steady states in which
the forces and accelerations are constant (e.g., a
steady turn), or they may be transient states (e.g.,
a sudden acceleration). Aircraft maneuvering in
such states is subject to unsteady aerodynamic
loads. In addition, when the aircraft operates in the
high-angle-of attack regime, nonlinear
aerodynamic loads appear as well. Therefore,
accurate and efficient prediction of these airloads
is of great importance in the analysis of the
vehicle’s flight motions and in the design of its
flight control system.

However, mathematical modelling of an aircraft
during maneuvering flight at high angles of attack
including the complete nonlinear fluid dynamic
equations along time-dependent flight path is still
in its initial phases®. An alternative approach
postulates the use of simplified fluid dynamic
models while retaining the complex 3-D nature of
both an aircraft geometry and its flight path.

The focus of this paper is an overview of the
aircraft’s dynamic modelling from three key
perspectives: the dynamic stability, panel method
approach, and vortex wake dynamics.

The objective of this paper is to examine an
ability of a modified Vortex Lattice Method
(VLM) for estimating dynamic stability derivatives
in unsteady flow.

Dynamic stability of aircraft -

Investigations of the transition from equilibrium to
a nonequilibrium steady state, or from one
maneuvering steady state to another, form part of
the subject matter of airplane control @.
Inasmuch as a maneuverability of an aircraft is
related very closely to its controllability, so concept
of "stability derivatives" has to be appeared. The
calculation of the dynamic stability derivatives has
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always been an essential as well as a difficult part
of the dynamic motion analysis and the
aerodynamic design of an aircraft.

Current mathematical models of the unsteady
aerodynamic response to an arbitrary motion of an
aircraft are usually based on the concept of linear
stability derivatives.

It is important to keep in mind that the
linearization of the equations of motion and the
aerodynamic representation by stability derivatives
is only valid provided that the motions of the
aircraft are small and that the angles of attack and
sideslip are in a range in which the aerodynamic
forces and moments are linear.

According to the stability derivatives
definition® we have

acC, acC,
Cro = -55’5 = CL—_éa’-’ = C,-Cp, (1)
oc oc
Cra = 35 ° —CD——a—OTL = -Cp-Cp (2)
oc,
Cma = H Cm :___Q_C_’f.__
oo a(qca) (3)
2U
oc oc
Coq = = - L = -Cry
6{9'5'.5) gc, (4)
22U 2U
e oc,

C, = -C
q a(qca) gc, (5
2U 2U

where derivatives C,, , Cp., C,., Cpq» Ciy» and
Cy are computed numerically.

Evaluation of aerodynamic loads

The evaluation of the aerodynamic lift, drag,
and moment coefficients are all based on the
proper integration of the pressure coefficient on
the lifting surface. In this paper, the pressure is
obtained through an integral representation based
on the potential model.

The ability of this concept to predict the
pressure field of highly swept wings up to high
angles of attack (but no vortex breakdown) under
steady-state conditions was demonstrated by the
large spectrum of such work as . The extension of
these methods into the unsteady aerodynamic
regime was done in .

The considerations in this paper are restricted
to linear, unsteady case.

Panel method approach

Panel methods (PMs) are numerical schemes

for solving the model for linear, inviscid and
irrotational flow about aircraft flying at subsonic
and supersonic speeds.
In the PM approach, the differential equation is
converted to an integral one over the configuration
surface by means of Green’s Theorem. This
integral equation is then solved by a discretization
process. The configuration under consideration is
divided into panels to which a certain distribution
of singularities of unknown strength is assigned.
Thus, PMs should be more precisely called as
surface-singularity methods.

It is assumed that the free vortex sheet remains
flat in the plane of the wing and that the free
vortices can be visualized as straight lines leaving
the wing TEs.

In routine PM codes a combination of source
and doublet distributions on the panels are used.
Some codes use elementary horseshoe vortices
instead of doublets. The strength of the singular
elements are determined by satisfying the proper
boundary conditions (BCs). Once these are known,
the surface velocity components and pressures may
be computed.

Basic mathematical flow model

The starting point for the various potential
formulations is the Euler model. The fundamental
assumptions for a physical model of potential flows
are that the fluid is inviscid, non-conducting, and
isentropic. External forces and heat sources are not
taken into account. The governing equations for
such model are as follows (cf.(5), chap.7):

-the continuity eq.:

dp

/ =0 6
3¢ +div pV (6)
-the momentum eq.:
dv
2 - - 7
T grad p (7)

-the isentropy eq.:

PP = Don’ (8)

where p is the density, V is the velocity vector, p is
the pressure, and ¥ is the ratio of specific heats.

Potential models
Panel methods solutions are governed by the
second-order linear partial differential equation,

called Pranditl-Glauert equation

(1—ﬁﬁ)<pxx+(pyy+®zz =0 (9)
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where M, is the Mach number, and ¢ is the
perturbation velocity potential

¢ = ¢"¢m (10)

Vo = grad ¢ = vV (11)

where ¢ is the total velocity potential.

Starting from the Navier-Stokes model , which
is the most general model to describe the flow, the
following assumptions are necessary to derive Eq.
9):
® 1o viscosity terms
® steady state
® irrotationality of the flow
® small perturbation approximation.

If one assumes that the flow is incompressible
(M., = 0), then from Eq.(9) we have the Laplace
equation

Puxt Pyt 0,y = Vo = 0 (12)

It is worth noting that the similar Laplace
Equation can be obtained at once from Eq.(6).
Namely, taking into account the assumption that
the flow is incompressible (p=const), and the
definition (11) we have by virtue of Eq.(6).

V6 =0 (13)

That why the Laplace Eq.(13) is sometimes called
simply the continuity equation, what may seem
surprising at the first look.

It is also important to note that so-called
Kelvin’s condition

ar

dt
is a form of momentum conservation (and in this
sense it replaces Eq.(7)).

In order to complete the problem we need to
give proper BCs on the body surface, at the TE
(Kutta-Joukowski condition), and at infinity.

The first BC requiring zero normal velocity
across the body’s solid boundaries

Veoon =0 (15)

where n is a unit vector normal to the body’s
surface.

Along the wing’s TEs the velocity has to be
limited in order to fix the rear stagnation line and
therefore

=0 for all t (14)

Vo < (16)

The third BC requires that the flow
disturbance, due to the body’s motion through the
fluid, should diminish far from the aircraft

lim Vo =0 (17)

Modified Vortex Lattice Method (VIL.M)

It is essential to note that recently there are many

versions of the VLM available for solving of Eq.
(12): Quasi-VLM ©, Unsteady Quasi-VLM O,
Subsonic Nonlinear VLM ®, Discrete-Vortex
Method @, and even ... Generalized VLM 9, The
proposed method is an extension of the classical
VLM @ for the calculation of the aerodynamic
forces on lifting surfaces undergoing complex 3-D
unsteady motions.

An essential feature of our proposal is using
vortex rings as singular elements (Fig.l). The
proposal is based on the equivalence between
constant doublet panel and vortex ring (see 2,
p-288). By selecting the vortex ring representation,
Eq. (12) and condition at infinity (17) are already
fulfilled because the vortex is a fundamental
solution of the Laplace equation. It should be
emphasized that such vortex element ensures the
existence of the Eq.(14), and the Kutta-Joukowski
condition (16) as well. Thus, to obtain the solution
effectively, only boundary condition on the body
surface (15) should be fulfill.

Fig.l. Nomenclature for unsteady
motion of a thin 1lifting surface
along a predetermined path.

Time-stepping technique

When we want to treat time-dependent
motions of an airplane, we have to keep in mind
that the selection of frame systems becomes very
essential. Therefore, consider an inertial (X,Y,Z)
and body (x,y,z) frame of reference. It is usually
useful to describe the unsteady motion of the body
on which the "zero normal flow" BC (15) is applied
in the body frame of reference. The motion of this
frame is then prescribed in the inertial frame and
is assumed to be known. However, the BC (15) in
this frame becomes

Vé¢n-Vyn =0 (18)

where V. is the kinematic velocity, as viewed from
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the inertial frame. Note that ¢ is the total velocity
potential, but as a result of its definition in a frame
that is attached to the undisturbed flow, its
magnitude is small, like to the perturbation
potential.

Then, the solution of the problem, which is
time-dependent because of the BC (18), is easier in
the body frame. Consequently, the following
transformation has to be established

X
Y = £(X, ¥, 2,,2,0,%) ¥ (19)
4 Z

where @, ®, ¥ are Eulerian angles.
Similarly, the transormation of the velocities is
given by

V=V + Qe+ v, . (20)

where v, =(X%,,Y,,2,) is the velocity of the (x,y,z)
frame’s origin, r=(xy,z) is the position vector,
O=(®,0,¢ ) is the rate of rotation of the body’s
frame of reference, and v,,=(x,y,2).

The results presented by Katz & Plotkin
(sec.13.1- 13.4 in *?) indicate that steady-state flow
methods can be extended to treat the time
dependent problem with only a few modifications.
The modification includes the treatment of the
condition (14) and the use of the unsteady
Bernoulli equation. Therefore, the solution can be
reduced to solving an equivalent steady-state flow
problem, at each time step. So, this method is
called the time-stepping technique.

The pressure can be determined from unsteady
Bernoulli equation, written either in the body
frame of reference or in the inertial one (see
sec.13.1 in *?), In the inertial frame this equation
is

b,-p v?
5 = - _2_ +¢t (21)
where by virtue of (11)
Vi =95+9,0; (22)

Concluding, the staedy-state solution technique
can be updated to treat unsteady flows. The typical
flow chart is shown in Fig.2.

Definition of
geometry

Begin time loop

Selection of flight
path porameters

Calculation of Influence
Coefficients

|

Calculation of Momentary
RHS Vector

Solution of Moatrix Equoation

Calculations of pressures
and loads

Similar to steady-state approach

Colcutations of stakility
derivatives

END

Fig.2. Schematic flow chart for 1_:he
computation of the unsteady stability
derivatives.

Computation of stability derivatives

Once the computations of the influence
coefficients {ag } and the righ-hand side velocities
{RHS} are completed (see Fig. 2), the Neumann
BC at an arbitrary control point K will result in the
following set of linear equations

M
Y a,Tl; = RHS, (23)
L=1

When the circulation distribution I'; after the
solution of Eq.(23) is obtained, the pressure across
each panel is determined by using the Bernoulli
Eq. (21) for the upper and lower surface
streamlines. The pressure difference is defined as

APE plupu =
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According to"? tangential velocities due to the
wing vortices can be approximated as (see Fig. 1)

o _
ot;

Ty Tia,
2Acl]

_Z
2 ’

(25)

where Ac; and Ab; are the panel lengths in the x-th
and y-th directions, respectively (see Fig.1).
Similarily, 7; and 7; are the panel tangential vectors
in the proper directions.

The velocity-potential time derivative is
obtained by using the relation

a¢1j _ 0 Ty (26)
ot El 2

Thus, substituting the terms (25) and (26) into
the Eq. (24) results in

Ap;j=p[Utu,, Viv,, W+w,). -

ij
g Tis Ty o TisTim (27)
. Aclj 7 Ablj
.0
-

where {u,, v,, W, } are velocity components induced
by the wake vortices and undisturbed flow velocity
sV, = {U, V, W}

We assume now that the wake is directed along
the wing chord and undisturbed velocity V,, has
only one non-zero component U. In that case

Eq.(27) leads to

o pFii i,y @

For the simplicity of the calculation of the induced
drag, we limit the motion of the lifting surface in
such the way that it moves forward along a straight
line without sideslip. Then, the induced drag is the
force component parallel to the flight direction and

each panel contribution is

AD;j= 0 Wyng*Wy) 1 {T 15Ty, ;) Ay s+
(29)

aatr” AS;; 51na
where a; is the panel’s angle of attack, w,, is
downwash induced by the wing’s streamwise
vortices, and w,, is downwash induced by the wake’s
streamwise vortices.

The lift, drag and piching moment coefficients
can be computed from Eq. (28) (taking into
account Eq.(29) for C,,) as follows

s S it L ) (30)

el

2 Wind+Ww
Cor=—"— 8- .
UZSJZJ 7 Acij (31)
°)
(T Tia, 70+ atr Sina,;)
X5 2

Coos=Cr—— :
w5 "k o, USc,

E ](1]r11,1+i__a_1-|)
&5 Ac Uot
where S; is the panel area, x; and x, are
coordinates of the panel quarter-chord and the
wing quarter-mean-aerodynamic-chord,
respectively. The difference I'y-T;,; represents the
strength of panel bound vortex, which is placed
along the local panel quarter-chords. If the panel
is at the LE (i=1) then l",l'J = (.

The center of pressure in percent of MAC with
respect to the LE can be computed according to
the following formula

(32)

-25 +100- (

Z ij -1]

rijr11,]+1 O )
Acy; vot c,

(33)

One of the simplest but very instructive
example of unsteady aerodynamic is the motion
after sudden acceleration of the wing. This
example was studied in ™', and @ but without
estimating dynamic stability derivatives.

So then, let us consider constant-speed,
horizontal flight after the sudden acceleration of an
ancambered, tapered, swept wing. Two cases are
analyzed. The first one is the flight with constant
angle of attack and pitch rate equal to zero. In this
case Eq. (23) is solved for the RHS vector as
follows

RHS, = -((U+u,) sina+w,cosa), (34)

After finding the ring vortex circulations Iy, the
derivatives C,,, , Cp, , C,, Were computed.

The second case was the flight with pitch rate
equal to 1 rad/s around the wing quarter-
mean-aerodynamic-chord that results in local angle
of attack equal to q(x - X,5 )/U. Consequently, the
k-th component of RHS vector becomes

RES, - ‘( (X Xp5) +Ww) (35)
4 X

After that I'y and derivatives Cpqs Crg» Cpyy were

computed according Egs. (3)-(5).

Computing process was performed with the
relation U At/c = 0.4. The wing was divided into
M=4 chordwise and N=6 spanwise equally spaced
panels. The wing taper ratio ¢/cg=0.4.

Fig.3 shows the nondimensional, transient lift
variation with time for swept, tapered wings with
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various aspect ratios from 2 up to 50. These results

are typical® in this sense that the initial lift loss
and length transient decrease with the reduction in
wing aspect ratio. It is also obvious that for wings
of small aspect ratios the influence of the wake on
the lift coefficient is limited up to about 4 or §
wing chords behind the TE. Of course, we have to
remember that in our model the wake surface is
flat,

Fig.4. presents the variation of the position of
pressure centre with time. It can be shown that
again the steady-state position is reach faster for
wings of small aspect ratios.

Fig.5-6 show the stability derivatives C_, and
Cup computed according to Egs. (3-4), and (34-
35). From Fig. 5 it is clear that stability derivative
C for small aspect ratios is positive what means
that these wings have neutral points ahead of the
quarter-mean-chord. The steady-state position is
again reached faster for small aspect ratios.

Conclusions

In the course of modelling of maneuvers of an
aircraft we are facing the simulation of unsteady
aerodynamic and the resulting wake dynamics. The
modified vortex lattice method with ring elements
is shown to be a useful tool for predicting the
dynamic stability derivatives. For the numeric
examples only the simplest model is presented.

Differences in steady and unsteady stability
derivatives are considerable, what may have some
meaning during in initial phases of the transition
from a steady state of flight to another one.

We want to emphasize that for wings of small
aspect ratios and in the case when the wake surface
is assumed to be flat, the influence of the wake on
the lift coefficient is limited up to a few wing
chords behind the trailing edge.
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Fig.3. Effect of aspect ratio on the nondimensional transient 1lift of swept
tapered wings that were suddenly set into a constant speed forward flight.
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Fig.4. Effect of aspect ratio on the transient centre of pressure position on
wings that were suddenly set into motion.
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Fig.5. Nondimensional stability derivatives of pitching moment with respect

to angle of attack for wings of different aspect ratio that were suddenly set
into motion.
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Fig.6. Nondimensional stability derivatives of 1lifting coefficient with
respect to pitch rate for wings of different aspect ratio that were suddenly
set into motion.
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