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Abstract U, VW  contravariant velocities in £, 5, (~direction
The present paper is concerned with unsteady flows around v velocxt:y vector .
. . . \ s : z,Y,2 cartesian coordinates
airfoils and, in particular, with longitudinal accelerations i1 3 rid node velocities in z.v. z-direction
and decelerations. Solutions are achieved by using the ba- ¥ g 'Y reciio
sic Euler equations in an accelerated coordinate system. Subscripts

After a general classification of unsteady flows the spe-
cific features associated with unsteady longitudinal flows
are addressed. The Euler equations in its standard flux for-
mulation given in an inertial system will be extended to a
body-fixed (accelerated) coordinate system by applying a
Galilei transformation in all three spatial directions. With
regard to these special equations an Euler code is devel-
oped. Results for a horizontally accelerated and oscillating
NACA 0012 airfoil are studied thoroughly. Special empha-
sis is laid here on the formation and the decay of shocks
and the acceleration through the sonic region. It is found
that the inertia of the shock motion has big influence on
the time lag of the aerodynamic forces.

Nomenclature

Symbols

angle of attack

ratio of specific heats

eigenvalue

vector of conservative flow variables
density

reduced time

1, ¢ curvilinear coordinates

&> xR

Mmoo

acceleration

Jacobian matrix in é-direction
speed of sound

wing chord

total energy per unit volume
fluxes in €, 5, (-direction
Froude number

constant of gravity

total enthalpy

Heaviside function

Jacobian of coordinate transformation
reduced frequency
characteristic length

matrix of left eigenvectors
Mach number

static pressure

dynamic pressure

matrix of the right eigenvectors
time

ramp time

velocities in z, y, z~direction
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crit  critical
d drag

k body-fixed coordinate system
l Lift

m moment

m momentary

P static pressure

0 initial value

) undisturbed flow

Introduction

Unsteady flows occuring at an aircraft configuration in-
fluence significantly the dynamics of the aircraft and its
components. Consequently, they play an important role, in
particular, to ensure the safety of the airplane.

In general, unsteady flows may be referred to rotational and
translational motions. The latter one can be further sub-
divided in longitudinally, laterally, vertically accelerated
ones, Fig. 1. Arbitrary accelerated flows are obtained by
superposition of the unidirectional components. Furtheron
all these flow types can be created in an active or passive
manner, namely by an unsteady motion of the considered
body itself or by the unsteady flowfield affecting this body.

Relevant investigations on this subject mainly deal with
vertical accelerated unsteady flows, especially, those in-
duced by pitching and heaving oscillations of an airfoil, cor-
responding to a variation of angle of attack. Although longi-
tudinally accelerated flows, corresponding to Mach number
variations, are in comparison to the latter flow type less
investigated, they may be of great importance, as shown
by experimental results, Fig. 2: The effect of Mach num-
ber and angle of attack variation on shock strength and
position in the transonic velocity regime substantiate that
already small Mach number variations have a considerable
influence.

The complex flow physics going along with longitudinally
accelerated flows is illustrated by the wave propagation of a
source accelerated from subsonic to supersonic region, Fig.
3. 1t is well-known that at uniform velocities any field
point is affected by one disturbance at subsonic conditions
and by two at supersonic ones. For uniformly accelerated
flows up to four disturbances emitted at different times may
reach one field point simultaneously.

2692



L A

Ucp T~ -
Vieo (X,Y,2,1)

Fig. 1 Superposition of unsteady velocity vectors.
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Fig. 2 Sensitivity of upper side wing pressures with respect to Mach number and angle of attack variations.(*)
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Fig. 3 Wave pictures for a source starting from rest and accelerating to Mach number 2.5, with 0 M /0t = ¢/Val = 1.1.M
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Lorngitudinally accelerated flows occur in following practi-
cal cases. An incoming unsteady flowfield can be caused e.g.
by horizontal gusts, shear winds and microbursts, which
occur in thunderstorms. This atmospheric phenomenon is
responsible for several serious flight accidents (*) and, there-
fore, detailed investigations are needed. On the other hand,
longitudinal unsteady motions of the body itself result in
Mach number changes, like discontinuities, ramps, oscil-
lations etc. of an airfoil. Such Mach number changes oc-
cur at specific oscillations of aircraft components, e.g. a
T-tail, yawing motions, in-plane oscillations at variable-
swept—wing configurations and at rotor blades, for the lat-
ter whenever the free flow is not aligned with the rotor
axis.

In order to analyze flowfields corresponding to longitudi-
nally accelerated flows by a numerical method the basic
equations can be formulated in two different reference sys-
tems:

(2) An inertial aerodynamic coordinate system or
(b) a coordinate system fixed to the considered
longitudinally accelerated body.

The inertial one is characterized by following features: A
mesh, used for the discretization of the evaluation regime,
is to be adapted to the new position of the body at each
time step. Either, this requires a great effort with grid gen-
eration causing much higher CPU-time or it results in a
loss of mesh quality. Furtheron, in order to calculate the
flow around a body longitudinally moved relative to the
coordinate system for a longer time period, a large logitu-
dinal grid extension is required. In addition, the CPU-time
is increased when using boundary conditions at the body
which have to consider the relative motion of the body to
the mesh.

Against the inertial system a coordinate system accelerated
with the body enables the use of a mesh which remains un-
changed during the computing time. This means that a
high mesh quality can be guaranteed over the whole time.
Also long-range body motions in longitudinal direction do
not require a corresponding enlargement of the mesh. Fur-
theron, less effort is needed to formulate the boundary con-
ditions at the body because there is no motion of the body
relative to the mesh.

Comparing the features of the two described reference sys-
tems, one can easily see, for the calculation of flowfields
around longitudinally accelerated bodies a system fixed to
the body is the preferable one.

In this paper the cases of steep Mach number ramps and
Mach number oscillations are selected from the large field of
longitudinally accelerated flows. They are of major interest
in the transonic and supersonic regime because here already
small changes in Mach number lead to significant changes
in aerodynamic loads. E.g. Mach number changes of 1%
cotrespond with accelerations to some 10 ¢.(*) ‘

The performed calculations deal with unsteady, inviscid
flow around a NACA 0012 airfoil using a finite-volume
Euler method. As above revealed a body-fixed reference
system is especially suited for the numerical analysis.

Fundamentals

The analytical basis are the conservative Euler equations
in differential form. These equations are formulated subse-
quently in curvilinear coordinates using a reference system
fixed in space.(*)

a® oE  oF oG

_— puitunit ety — = 1

ar Y36 Yo T3¢ 1)
& is the vector of the conservative flow variables, E, F, G
are the fluxes in the curvilinear coordinates &, 7, ¢.
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Herein H stands for the total enthalpy

H =k

o (0w + (o0 + (pw)?)

and U, V, W denote the contravariant velocities in §, %,
{~direction.

U = p(u—-2)z+p(v—9)& +p(w—2)¢
pu—2)nz+p(v~9)ny+po(w=—=2)n:
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Galilei-transformed Euler Equations

Galilei Transformation

The Galilei transformation is used to transform a function
from a coordinate system fixed in space characterized by
z, y, z, t into a translationally moved system zx, yx, 2k,
te = t.

The transformal function requires the knowledge of the rel-
ative velocity Vo = (Uq, Vo, W) between the two regarded
systems. In particular, arbitrary time-dependent functions
of velocity Vo(t) are possible.

Hence, the transformal function can be written as

2 2k~ J! Uo () d¥"

vi_| »- fiVe(t)dt @)
P 2k — fot Wo (t')dt'

t ti
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Fig. 4 Galilei transformation,(®)
U free stream velocity,
(Uk, Vi, W) body velocity relative to coordinate system z,y, z,
(Uo, Vo, Wo) = — (U, Vi, Wi) flow velocity increment to body motion.
In order to apply the Galilei transformation to the analysis
of flows around translationally moved bodies the velocity ( Us
vector of the body Vi (t) is to be used as ~Vo(t), see Fig. 4.
Uy (uk - Uo) + pi €k z
To obtain the velocity 7 in the body-fixed system V5 is v v
added to the velocity 7 in the system fixed in space. E = J k (2k = Vo) + pic iy
U - Wi z
T =7+ V, 3) k (wx — Wo) + px &,
U U
\ -—-’i(ek—eo)+ LN
Written in nondimensional, curvilinear coordinates () the o p
transformation provides the following relationship for the
derivatives between the two systems: ( Vi
7]
i ( 5% ) Vi (uk ~ Us) + pi k2
¢ i
53_ Fo = J Vi (v — Vo) + P Mk y
- Nk
on | _ 8 @ Vi (wk — Wo) + px 7k, -
L 8¢k v v
a¢ 5 P \ —f(ek—-eo)+—;ﬁpk
Up (1) =—— + Vo (1) —+
\ 8 ) O(T)afk o(T)ank
ar — e
\  +Wo(n)3 wtsn ) / W,
W Uk U -+ z
Euler Equations In A Body-fixed Coordinate System k(e o)+ pr s,
Applying Eq. (4) to Eq. (1), the Galilei-transformed Euler G = J Wi (v ~ Vo) + pi Cry
G
equations W (06 — Wo) + pi Cox
361, 3?1; BT); 851:
Ik 3k Ok + Ik 0 (5) \ -—l-)-k- (ex — eo) + ;'k Dk
with
are obtained.
Pk The contravariant velocities Vx and Vo x are defined as
follows
pk (ux — Us)
d = J vk — Vo .
* px (v = Vo) U = prurbrao+ prvréey+ prwi s,z
px (wi — Wo) Vi = prukTrz + ok vk M,y + Pk Wk Mk,
€k — €0 Wi = prukCkz + pr vk Cky + ok Wi G,
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and

Uok = pi(uk —Uo)éx,z + pr (vk — Vo) iy +
Pk (wr — Wo) &k,s

Vox = pi{ur ~Uo) ks + p (V& ~ Vo) nx,y +
pr (we — Wo) nx

Wor = pr(ur—Us)Crs + o (v — Vo) Chy +

or (Wi — Wo) (k2

The speed of sound and the density are invariant towards
the transformation and consequently also the pressure re-
mains unchanged.

Pk
Pk

]

I
= o

Corresponding to Eq. (3) the total energy per unit volume
is given by

4
(x-1)
p(ulotoVo+uWo)+2 U3+ + WS

€k = €+ e = +§ o+ 4

Euler-code

The here applied Euler-code, named GEOFLEX, is an im-
provement of the well-known code EUFLEX, an Euler code
with characteristic flux extrapolation.(*) Compared to EU-
FLEX, GEOFLEX provides an adequate physical treat-
ment of an expansion wave by an entropy-correction based
on the geometry of the expansion wave in a path-time
diagram.{®) In addition, the described Galilei transforma-
tion from an inertial to an accelerated body-fixed system
is implemented.

To solve the basic equations Eq. (5) in the body-fixed sys-
tem, GEOFLEX employs dimension-splitting leading to

otk & o6

e.g. in §x—direction. Introducing a corresponding Jacobian

i) o
A, =

the equation can be written as

0%, 0%s
o2k A, 22k
T T

=0

Analogous formulations are obtained for the nx— and (x~
direction. The evaluation of the flow variables at the cell
border, i.e. the solution of the Riemann problem, needs the
determination of the eigenvalues A x and corresponding left
and right eigenvectors L;x and R;x of the Jacobian. The
eigenvalues are

Ao 2k =1uk, A3x=Ux+6 Ix=ur—C¢

The matrices of the eigenvectors L; and R, are given in the
appendix. Thus, the flow variables ® at the cell border can
be calculated.(”) A flux balance over the cell results in the
flow variables at the new time step.

GEOFLEX uses a second order discretization in space and
first order in time. Wiggles at shock fronts are avoided by
a limiter switching from second order back to first order
in space. The time characteristics of unsteady flows lead
to a limitation of the possible time step and, therefore, an
explicit scheme is appropriate.

Characteristic (®) and absorbing () farfield boundary con-
ditions are implemented and, therefore, the distance be-
tween the farfield bound and the body can be significantly
reduced. Correct flow conditions at the body are achieved
by characteristic and kinematic *°) boundary conditions.

The discretization of the calculation regime corresponding
to the considered two dimensional flows is realized by an
elliptic H~type grid with 72 x 48 grid points.(31%

Results And Discussion

Validation

First, to validate the modified Euler code formulated in the
body-fixed coordinate system, for a NACA 0012 airfoil ob-
tained results are compared with the results of GEOFLEX
and two other Euler codes,(**"'?) formulated in an inertial
system. The presented results refer to a relative simple test-
case, namely a steep Mach number ramp given by

M(r)=Mo+AM%

with Mo =0, AM = 0.8, a =2° and r — 0.

Fig. 5a shows the development of the lift coefficient over
the time, the corresponding moment coefficient is presented
in Fig. 5b: The results of the four codes agree very well,
although different meshes were used.

Secondly, the validity of the Euler code in the body-fixed
coordinate system for unsteady flows is to be substantiated
by a testcase, which is evaluated with both, the new body-
fixed method and the corresponding well-known inertial
one. Here a horizontal oscillation described by

0<r<T (6)

M (7) = Mo + M cos (kT) n

with Mo = 0.738, M, = 0.062, k = 0.8 and a = 2° is
chosen. To compare the results of the two methods, the
Lissajous figures of the lift coefficient, Fig. 6a, and of the
drag coefficient, Fig. 6b, over the time-dependent Mach
number of incoming flow are analyzed. A good agreement
between the two methods is evident, the occuring deviation
can be explained by the variable mesh quality using the
inertial code.

The two considered cases show that GEOFLEX, formulated
in the body-fixed coordinate system, is able to calculate
unsteady longitudinally accelerated flows correctly.

Analysis

To analyze the accelerated, unsteady flow the code in the
body-fixed coordinate system is applied to two types of
motions of the NACA 0012 profile
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Fig. 5a Lift coefficient for a steep Mach number ramp,
Mo=0,AM =08, a =2° 1 —0,

o Euler code in inertial formulation,(}?)

A GEOFLEX in body-fixed formulation,

+ GEOFLEX in inertial formulation,

O Euler code in inertial formulation,(!V)

— » — steady.
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Fig. 5b Moment coefficient for a steep Mach number ramp,
Mo=0,AM =08, a=2° 110,
o Euler code in inertial formulation,(!?)
A GEOFLEX in body-fixed formulation,
+ GEOFLEX in inertial formulation,
0 Euler code in inertial formulation,('V)
— « — steady.

o Acceleration from subsonic to transonic Mach number

¢ Horizontal (in-plane) oscillations

Acceleration From Subsonic To Transonic Mach Number
Starting from a low subsonic Mach number M = 0.4 the
airfoil accelerates to a transonic Mach number M = 0.8,
The angle of attack is a = 2°.

The Mach number function is given by

M(r)==M0+AM%

0<r<T (8)
with Mo = 0.4 and AM = 0.4, the acceleration is constant,
it is finished after T = 5.

It was of special interest here to look at the generation of
the shock.

Fig. 7 shows the time history for the pressure distributions.
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Fig. 6a Lift coefficient for horizontal oscillations,
Mo = 0.738, M, = 0.062, o = 2°, k = 0.8,

00 GEOFLEX in body-fixed formulation,

x GEOFLEX in inertial formulation.
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Fig. 6b Drag coefficient for horizontal oscillations,
Mo =0.738, M, = 0.062, a = 2°, k = 0.8,

0 GEOFLEX in body-fixed formulation,

x GEOFLEX in inertial formulation.

After r = 0.1 the local disturbance has propagated from
the trailing edge to z/c = 0.9 shown by the two kinks.
At t = 10 two shocks are visible, a strong shock on the
upper side and a weak shock on the lower side of the airfoil.
Whereas with increasing time the shock on the upper side
gains in strength the shock on the lower side decays and
vanishes.

The lift coeflicient, see Fig. 8, reaches the steady state value
asymptotically. As is also known from the initial lift be-
haviour of sudden incidence changes after the beginning a
drop in the lift coefficient is observed before the lift recov-
ers.

Horizontal Oscillations At Small Amplitudes
Horizontal oscillations are of major interest at flitter cal-
culations where in—plane motions of the airfoil - occuring




e.g. at airplanes with variable sweep - play an important
role. If the flow is transonic, periodic shock motions go
along with the oscillations. Aerodynamic coefficients are
largely affected. The Mach number function taken is

M(r)=Mo+ H(r)AM cos (k) 9)

The airfoil is investigated at an incidence of o = 2°. The
Mach number Mo = 0.8 and the amplitude AM = 0.01 are
such that complex transonic flow conditions occur. A low
and a high reduced frequency (k = 0.1 and k = 0.5) are
chosen.

Fig. 9 compares the lift coefficient ¢; as function of the Mach
number for the steady and the unsteady case at k = 0.5.
The unsteady lift has a phase shift compared to the steady
case as expected in unsteady motions. This is mainly caused
by the difference between the position of the shock at steady
and unsteady conditions, as is recognized from the pressure
distribution, see Fig. 10.

The time lag for the lift coefficient increases with increasing
reduced frequency k, see Fig. 9 and Fig. 11.

Horizontal Oscillations Leading To Shock Formation
And Decay

Steady calculations for the NACA 0012 airfoil reveal that
at a Mach number of M = 0.738 and at a zero angle of
attack the flow is highly subsonic but still shockfree, When
the Mach number increases strong shocks develop around
the airfoil. Hence, a motion of the airfoil which starts at
M = 0.738 and accelerates sinusoidally up to M = 0.8 and
finally decelerates down to M = 0.676 is investigated.

This case was initially studied by Griinspahn, who used an
Euler code based on a bicharacteristic method.(*®) The data
presented in his work are documented in a way that does
not permit more than a qualitative comparison. Also, the
shock resolution there is of minor quality due to wiggles.

The Mach number function is given graphically by
Griinspahn and is approximated by

_ ) Moy +AM; cos(w(t—1t)), t<to
M(t)= { Moo+ OM; cos(w(t —t)), t>t (10)

with w = 196.4[1/s) and t, = 0.016[s], Mo, = 0.769,
Mo,z = 0.738, AM1 = 0.031 and AM2 = 0.062. Here,
unusually the Mach number is a function of real time.

The pressure distributions for GEOFLEX compared to the
results given in Ref. 13, see Fig. 12, show that GEOFLEX
produces wiggle-free pressure distributions, which is not
the case for the Griinspahn code. This is due to the fact
that GEOFLEX, as a finite volume code, uses a limiter
to overcome numerical oscillations at shocks. It is assumed
that the code of Griinspahn does not possess encugh nu-
merical dissipation to produce the same quality of shock-
representation.

As depicted in Fig. 13b,c the two codes show generally si-
milar behaviour of the drag coefficient versus time, corre-
sponding to the regarded Mach number function, Fig. 13a.

Griinspahn(*® chooses as reference value of the drag coeffi-
cient cq = 0 for the initial Mach number M, = 0.738. This
is not taken for the present case. Instead, here a slightly
positive drag value resulting from GEOFLEX is chosen as
reference drag value. Differences may be referred to a smal-
ler immanent numerical dissipation of the Griinspahn code
in comparison to GEOFLEX. Furtheron, Griinspahn uses
much more grid points to discretize the evaluation regime,
this leads also to a decrease in drag.

For both methods the maximum values of the drag coeffi-
cient occur approximately at the same time. Negative va-
lues are revealed always in connection with a shock mo-
vement towards the leading edge, as can be seen from the
isobares at ¢ = 0.063 [s], see Fig. 14.

The comparison of the unsteady pressure coefficient distri-
bution at the airfoil with the steady values shows the large
time lag of the shock position, see Fig. 15. The difference
between the two is larger than for oscillations at small am-
plitudes.

In order to better understand the influence of the shock
strength, the same Mach number function was taken for
an angle of attack of @ = 2°. The corresponding pressure
distribution is presented in Fig. 16, the lift coefficient in
Fig. 17. Regarding the pressure distribution at the airfoil it
is obvious that the time lag effect is dominated by the upper
side and this results in a time lag for the lift coefficient also.

Horizontal Oscillations Around The Speed Of Sound

The transition through the sonic region has always attrac-
ted the interest. But no investigation known has taken the
effect of acceleration into consideration. Due to this cal-
culations are made where the airfoil is decelerated from a
supersonic Mach number to a subsonic and, in return acce-
lerated to the initial Mach number. The Mach number func-
tion here is similar to that for the oscillations with small
amplitudes, see Eq. (9), with Mo = 1.0 and AM = 0.05.
The reduced frequency is & = 0.5 and the angle of attack
a =2°

The frequency chosen is not of practical importance but
the main purpose of this example is to demonstrate the
capability of GEOFLEX. A lower frequency would have
resulted in much higher computing time.

If we compare the steady with the unsteady pressure coef-
ficient distribution around the airfoil, see Fig, 18, it is quite
obvious that unsteadiness has a smaller influence than in
the velocity regime around M = 0.738 to 0.8 which has
been discussed before. This is because in the sonic region
the shock remains in the trailing edge. There its influence
on the flow at the profile is small. This can also be noti-
ced in the unsteady lift coefficient, see Fig. 19. Compared
to the quasisteady lift the unsteadiness results in a higher
amplitude but only in a small phase shift.

Conclusions

A numerical method especially suited to the solution of
flows around unsteady longitudinally accelerated airfoils
has been presented. The starting point is the formulation of
the conservative Euler equations in differential form using
curvilinear coordinates. In particular, for the longitudinal
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motions of bodies the FEuler equations are Galilei-
transformed into a body-fixed form. Consequently the used
Euler code named GEOFLEX and the farfield boundary
conditions have been modified.

Results of Euler codes in inertial formulation addressing a
steep Mach number ramp and Mach number oscillations
validate GEOFLEX in body-fixed formulation.

Results are shown for two unsteady motions of a NACA
0012 airfoil in transonic and supersonic flow, namely a hor-
izontal acceleration and horizontal oscillations. The accel-
eration is characterized by an initial, short—time decrease of
the lift—coefficient and its following increase to the steady-
state value. The corresponding pressure distributions de-
pict the development of the shock clearly. For the case of
the horizontal oscillations the inertia of the shock motion
results in a time lag of the lift~coeflicient and even in nega-
tive values of the drag—coefficient caused by shocks moving
towards the leading edge. For the supersonic case the in-
fluence of the shock is smaller than in the transonic case,
because of its position relative to the profile.
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Fig. 18 Pressure distribution for horizontal oscillations in
the sonic region,

Mo = 1.0, AM =0.05, a =2°, k = 0.5,

O unsteady, A steady.
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Fig. 19 Lift coefficient for horizontal oscillations in the
sonic region,

My =1.0, AM =0.05, « =2°, k = 0.5,

O unsteady, A steady.
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