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Abstract

A CFD method is described for transonic drag predic-
tion of wing/body configurations that are representative
for new commercial transport aircraft. The objective is
to demonstrate that this CFD method satisfies two
essential requirements:

(i) CFD-problem-turnaround-time (including grid
generation) of the order of a day to a week, or less, and
(ii) high accuracy of aerodynamic forces, such as tran-
sonic drag-creep.

Accuracy requirements currently used are those that
have been formulated for wind tunnel experiments. The
demonstration that realistic accuracy requirements are
met is based on a comparison between computed results
and experimental data for

(i) surface pressure distributions on wing sections,

(ii) transonic drag-creep curves (drag coefficient versus
Mach number at fixed lift coefficient and Reynolds
number), and

(11i) transonic drag rise Mach numbers,

for a series of geometrically and aerodynamically
different wing/body configurations. It is shown that the
CFD results are accurate in terms of drag rise Mach
number, while drag-creep data increments predicted for
different wing/body configurations are consistent with
the experimental drag-creep data increments.

1_Introduction

1.1 Background

The needs of aerospace industry in CFD technology, as
derived from aerodynamic design objectives for new
commercial transport aircraft, can be formulated in
terms of requirements to be satisfied by CFD methods
and supercomputers. For CFD technology to have an
impact on the aerodynamic design of airplanes,
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CFD-problem-turnaround-time (incl. grid generation)
must be of the order of a day to a week, or less.
Aerodynamic analysis is a process of looking at a
significant number of flow conditions (lift coefficients,
Mach numbers, Reynolds numbers) for more than one
geometric variant, such that a large number of runs has
to be made. If CFD methods do not yield results at this
industrial time scale the impact on the aerodynamic
design will be reduced.

A second requirement which needs to be met by CFD
tools for the development of commercial transport
aircraft is high accuracy of aerodynamic forces, such
that the computed drag, pitching moment and lift can be
relied upon to reduce the risks involved in airplane
design. This second requirement translates for example
into better turbulence models and extreme grid
resolution, such that grid convergence is obtained.
Current accuracy requirements are derived from those
formulated for wind tunnel experiments by Steinle and
Stanewsky®. The most stringent requirement is that
drag increments due to minor changes in configurations
should be accurate up to 0.0001 in the drag coefficient
(one count). If the drag rise Mach number is defined as
the Mach number at which the drag rises at a rate of
0.05 (dC/dM=0.05 at fixed lift coefficient and
Reynolds number), it is found that the drag rise Mach
number increment due to minor changes in
configurations should be accurate up to 0.002.

It is clear, however, that the above requirements for
aerodynamic data accuracy as set forth in AGARD
Advisory Report 184® are seldom met in experimental
investigations, as concluded by McCroskey® for NACA
0012 airfoil data and as demonstrated by Boersen and
Elsenaar® for testing with half-span models. For
transonic drag assessment more realistic data accuracy
requirements are plus or minus 3 counts for drag
increments, and therefore plus or minus 0.006 in drag
rise Mach number increments.
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The problem-turnaround-time requirement for analysis
of three-dimensional configurations covering the
complete lift, Mach and Reynolds number range cannot
be met by Reynolds- averaged Navier-Stokes methods at
present. The use of less sophisticated flow models
during the design phase is therefore widely accepted in
order to satisfy the problem-turnaround-time
requirement, although the accuracy of the results still
has to satisfy the second requirement. An example of
the application of comparatively simple flow models to
airfoil and wing design can be found in the work of
Henne and Gregg “. They managed to predict the
effects of an unconventionally shaped trailing edge on
the transonic drag-creep behaviour, using an inviscid
full-potential method in three dimensions, and a coupled
viscous-inviscid method for two-dimensional airfoil
analysis, leading to an improved wing concept. The
computationally found improvement in the transonic
drag-creep was later confirmed by wind tunnel
experiments. Thus, this reference shows the effective-
ness of applying comparatively simple flow models to a
wide variety of configurations during design studies.
The present viscous-inviscid flow solver, to be descri-
bed in the next sections, is similarly intended to be used
as an analysis tool during the design phase for transonic
wing/body configurations, with particular emphasis on
drag prediction.

1.2 Inviscid flow drag

Van der Vooren et al. ®® have used an inviscid
full-potential method to compute both near-field and
far-field drag. Near-field drag is obtained from the
integration of surface pressures. Far-field drag consists
of induced drag and wave drag. Induced drag is easily
calculated from classical Trefftz-plane analysis. Wave
drag is determined by integration of artificial viscosity
in supersonic flow regions (an approach originated
earlier by Garabedian™), supplemented by a momentum
deficit insofar as captured shock waves extend into
subsonic flow regions downstream.

Destarac® has also used an inviscid full-potential
method. For the determination of wave drag a
computation of the momentum deficit in supersonic and
subsonic flow regions is used, applied at suitably chosen
grid planes surrounding the shock waves. Applying the
method to a wing with elliptic loading, it is shown that
the far-field approach is more accurate than the
near-field integration of surface pressures. This finding
is also reported by Van der Vooren and Van der
Wees®,

A similar effort to compute inviscid drag by evaluating
induced drag and wave drag, this time using Euler
methods, has been undertaken by Nikfetrat et al.®. The
components are obtained by integrating the trailing edge
vorticity (induced drag) and the entropy rise across the
shocks (wave drag) at suitably chosen planes. Again,
these values are compared to the values obtained from
surface pressure integration. It is shown that the
integration of trailing vorticity leads to more accurate

1929

drag values for subsonic flow conditions than the
surface pressure integration.

1.3 Viscous flow drag

For realistic drag predictions, however, the viscous con-
tribution to the total drag value needs to be taken into
account. For a complete understanding of the origin of
drag, all major physical components (i.e. wave, induced
and viscous drag) have to be made available, assuming
that the interaction between these components is negligi-
bly small.

In the present viscous-inviscid flow solver, both near-
and far-field drag is calculated. Near-field drag
comprises both pressure drag and friction drag as
obtained from surface integration. However, pressure
drag suffers from numerical inaccuracies in a similar
manner as experienced for inviscid flow methods. Far
field drag comprises induced drag, wave drag and vis-
cous drag. Induced drag is calculated from classical
Trefftz-plane analysis. Wave drag is calculated follow-
ing Van der Vooren and Van der Wees®. Viscous drag
is calculated from the boundary layer momentum thick-
ness of the wake behind the wing.

A great advantage of using a viscous-inviscid interaction
method for drag-prediction purposes is the natural
subdivision of the far- field drag into its relevant
physical drag components. So far, Reynolds-averaged
Navier-Stokes methods have only been capable of
producing integrated pressure and friction drag values,
where the former is subject to the errors involved in
near-field drag evaluation. The inherent interaction of
boundary layers with shock waves and with trailing
vorticity makes it more difficult to differentiate between
induced, wave and viscous drag values in Navier-Stokes
methods.

2 Description of methodology

2.1 Scope

The present flow solver is a viscous-inviscid interaction
type method developed at NLR, consisting of a full-
potential solver, a boundary layer solver and a viscous-
inviscid strong interaction algorithm®. The method is
in use for the calculation of the influence of wing boun-
dary layer and wake on the inviscid flow about a given
wing/body configuration at subsonic and transonic
speeds. Apart from the calculation of pressure distri-
butions for viscous wing flow, the method is intended to
provide lift and drag data for complete wing/body confi-
gurations.

The method is capable to do computations for
prescribed angle of attack, but also for prescribed total
lift coefficient. The method is also suitable for off-
design studies. Since the viscous and inviscid methods
are strongly coupled, at least moderate boundary layer
separation can be handled, thus yielding opportunities
for buffet-onset prediction, shock wave/boundary layer
interaction studies or, in the lower Mach number



regime, indication of the onset of boundary layer sepa-
ration at the trailing edge at high angles of attack.

The method provides useful information when analyzing
wind tunnel and/or flight test data. In this respect, the
prediction of Reynolds number effects is important for
new aircraft designs. When only wind tunnel data are
available, the method can be used to obtain an extra-
polation towards full scale Reynolds numbers.

For quick interpretation of results, the method has been
supplemented with powerful automated postprocessing
facilities, capable of providing a set of data sheets and
user-defined figures of relevant flow quantities at
prescribed wing stations.

2.2 Grid generation

The present flow solver makes use of grids, generated
by an algebraic grid generator!'". The grids are boun-
dary-conforming, using a C-O topology; a complete
wing/body configuration is captured in one single block.
The position of the wake cut behind the wing is fixed.
A typical example grid is shown in figure 1. This grid
is not keelline-conforming, where the keelline is the
intersection of the body and the symmetry plane.

A fixed setting of input parameters is used in order to
obtain grids of sufficient quality for most geometries.
Grid generation and inspection requires about an hour of
man-power, and has become a routine matter.
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Fig. 1a Computational grid on the wing, its wake,
the body and the symmetry plane

2.3 Full-potential solver

The full-potential solver employs a fully-conservative
finite-volume scheme in a curvilinear coordinate system.
The scheme is second-order accurate, except near
shocks, where the accuracy reduces to first order. At
supersonic-subsonic shock waves, the solver offers an
option to choose between a fully-conservative and a
non-conservative shock representaion. This switch
influences the strength of the computed shock wave,
yielding mass-conservation in case of the fully-conserva-
tive option and artificial mass-production in case of the
non-conservative option. The non-conservative option
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Fig. 1b Side view of wing-normal grid plane
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Fig. 1¢ Detailed view of the wing grid and a -
stream-normal grid plane

does not influence the mass-conservation in the flow
field away from shock waves. The set of discretized
equations is solved using a multigrid method and an
ILU/SIP smoothing algorithm?.

2.4 Viscous solver

The basis for the viscous solver is formed by the un-
steady first-order boundary layer equations in integral
form. These equations, reflecting conservation of mass
and momentum, have to be supplemented with an alge-
braic velocity-density relation as a suitable approxima-
tion to the solution of the energy equation along a sur-
face normal, and with closure relations, derived from a
family of theoretical velocity profiles and empirical
turbulent boundary layer data correlations, in order to
reduce the number of unknowns to four. Both laminar
and turbulent closure relations are prescribed, also using
an extended Granville transition criterion® to determine
free-transition. Fixed transition is possible by prescri-
bing a local Reynolds number based on momentum
thickness at a prescribed transition line. In the present
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results, a value of 320 has been taken. At present,
turbulent closure relations are not obtained from velo-
city profiles, but adapted closure relations taken from
two-dimensional methods¥% have been used instead.
Laminar closure relations, derived from the self-similar
Falkner-Skan velocity profiles, have been given by
Cousteix"®, The viscous flow is solved on the wing and
its wake only; the boundary layer on the fuselage is not
computed.

The boundary layer solver uses a prescribed velocity
distribution obtained from the inviscid solver, and is as
such a direct solution method. In order to avoid
break-down of the boundary layer equations at flow
separation, induced by unrealistic velocity gradients, an
extra equation is needed to adapt the velocity
distribution during the iteration process. This so-called
interaction law is a rough approximation to the inviscid
flow equation, which is reshaped to fit into the set of
boundary layer equations. By implementing the inter-
action law as a correction equation, no influence is
exerted on the final converged viscous-inviscid solution.
First-order accurate discretization in space of the
boundary layer equations is done with respect to the
direction of the characteristics using a matrix-split
procedure!'®. An implicit backward-Euler time-integra-
tion scheme is used to obtain a steady-state solution of
the discretized equations.

The surface grid of the full-potential solver is used in
the boundary layer computation.

For a detailed description of the boundary layer solver,
see Van der Wees and Van Muijden‘?,

2.5 Viscous-inviscid interaction algorithm

The above described inviscid full-potential solver and
viscous boundary layer solver are strongly coupled
using a quasi-simultaneous interaction algorithm‘”. The
organisation of the coupling is shown in figure 2.
Regarding a fully simultaneous coupling method as the
most natural option available, the quasi-simultaneous
coupling method is judged to be second-best based on
the ability to compute converged solutions with modest
effort. The quasi-simultaneous method is reasonably
easy to implement since it does not affect the individual
solution methods of the inviscid and viscous solvers.
The quasi-simultaneous coupling method results in a
convergence speed penalty for difficult flow conditions
with extensive boundary layer separation, as has been
shown earlier(?,

2.6 Drag prediction

Drag is predicted by calculating on a sequence of three
nested grids, with (nominal) mesh sizes in the ratios 1,
2/3 and 1/2, where the ratios are defined with respect to
the coarse grid. Here the coarse grid (mesh size ratio 1)
has about 200,000 grid points, and produces representa-
tive pressure distributions. Consequently, the medium
grid (mesh size ratio 2/3) has about 675,000 grid points,
and the finest grid (mesh size ratio 1/2) about 1,600,000

grid points. Experience has shown that numerically
accurate values for the drag, either at fixed incidence or
at fixed lift, are obtained in the limit of zero mesh size,
i.e. for zero discretization error. With the present
method this grid convergence is achieved by a linear
extrapolation procedure. However, drag values on each
grid are subject to scatter caused by grid properties,
implementation details and non-perfect convergence.
This introduces scatter in the extrapolated values. See
figure 3a.
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As observed from computations for various research
wing/body configurations, the average scatter up to the
drag-divergence Mach number does not exceed about
plus or minus 3 counts for extrapolated total drag and
total drag-creep, while incidental peak values do not
exceed 5 counts. See figures 3b,c.
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Fig. 3c Scatter in extrapolated drag data

On the finest grid, the scatter is lowest and is in fact
four times lower than for the extrapolated values, under
the assumption that the scatter on a particular grid is of
the order of the mesh size. The grid extrapolation pro-
cedure is applied to each far-field component, induced
drag, viscous drag and wave drag, and also to the total
drag as the sum of these components.

A point of attention, apart from the numerical accuracy
of the computed drag data, is the dependency of
computational drag on the turbulence modelling. In
figure 4, computational drag results are shown for the
CAST-7 airfoil"®, using the ISES flow solver“?.
Several drag curves are obtained for the same
configuration at the same flow conditions, using
modified relations in the turbulent viscous model. The
computed drag values differ up to 10 counts at transonic
flow conditions. This example gives an idea about the
range of answers that can be produced within the
uncertainty of turbulence modelling. The present
method, employing an integral boundary layer
description which is similar to ISES, is therefore likely
to yield drag predictions sensitive to changes in the
turbulent viscous model. Thus, differences between
measured and computed drag data are, at least partly,
due to uncertainties in turbulence modelling.
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2.7 Computational performance

The method has been tested extensively for many confi-
gurations and many flow conditions. Experience has
shown that the robustness of the quasi-simultaneous
viscous-inviscid strong interaction method is favourable.
Using, in each viscous-inviscid iteration step, one multi-
grid cycle in the inviscid solver and five time steps in
the viscous solver, the final converged solution is obtai-
ned in 30 viscous-inviscid iteration steps for attached
boundary layer flow. For separated flow conditions, the
effort needed to obtain convergence can amount to 2-3
times as many viscous-inviscid iteration steps, depen-
ding on the extent of separated flow.

On a grid with 200,000 grid points the computation time
is 5 minutes on a single processor of the NLR
NEC-8X3/22 super-computer, at an equivalent
computational speed of 200 MFLOPS. Compared to
Reynolds-averaged Navier- Stokes methods, the
turnaround-time of the present method is at least one
order smaller. Regarding the grid generation process,
the turnaround-time for the generation of a full-potential
grid is also at least one order smaller than for the
generation of a Navier-Stokes grid. Thus, the required
problem-turnaround-time for analysis of
three-dimensional configurations covering the complete
lift, Mach and Reynolds number range (requiring of the
order of 60 to 90 flow conditions) cannot at present be
met by Euler/Navier-Stokes technology. As a result,
methods based on full-potential and boundary layer
technology continue to be of importance, in particular if
they combine short turnaround-times with reliable drag
prediction capabilities.

The CFD-problem-turnaround-time for viscous drag
prediction with the present method is currently in the
order of less than a week



3 Applications

3.1 Pressure distributions

The results shown here are obtained on the coarse grid
(mesh size ratio 1) of 160 by 40 by 32 grid points in
streamwise, spanwise and wing-normal direction respec-
tively. The coarse grid was chosen to demonstrate that
representative pressure distributions do not require such
high-resolution as does drag prediction (compare section
2.6). The conservative shock operator is used.

DLR-F4 wing/body

The DLR-F4 wing/body configuration has been desig-
ned as a simple but realistic transport aircraft type
configuration with a high aspect-ratio transonic wing. A
wind tunnel model of the DI.LR-F4 wing/body has been
tested in three European wind tunnels, yielding pressure
distributions and force measurements®. The DLR-F4
wing/body appears to be a difficult test case for CFD
methods due to the severe rear-loading and the finite
trailing edge thickness. In the present method, a finite
trailing edge thickness is extended into a finite wake cut
gap in the grid, extending from the trailing edge to the
downstream boundary. In figure 5 computed pressure
distributions are compared with experimental data at
selected spanwise stations. The flow condition for this
case is a lift coefficient of 0.6, a Mach number of 0.75
and a Reynolds number of 3 million. Transition was
fixed at positions varying between § and 25 percent
chord. On the inboard part of the wing, a double shock
is present in the experimental data. This double shock is
difficult to capture computationally due to its
orientation, which does not coincide with the grid lines.
The occurrence and strength of the forward shock in the
experiments seem to be influenced by the forced
transition closely ahead of the forward shock.

On the outer part of the wing, a single shock occurs.
The computed position is quite accurate, except at the
most outboard section. An explanation of this difference
can possibly be found in the lack of three-dimensional
viscous modelling. A good approximation of the
converging cross flow in the boundary layer behind the
shock on the outboard wing will move the shock at the
wing tip to a position which is in better agreement with
the experiment. However, considering the comparatively
simple turbulence modelling, the overall agreement is
acceptable for this severe test case.

Fokker 100 wing/body

The flow about the Fokker 100 wing/body configuration
has been computed at transonic free stream conditions,
serving as a real industrial test case. Two different
Reynolds numbers have been taken, one for wind tunnel
conditions, the other for flight test conditions. The
geometry, defined for the wind tunnel model, has been
taken unchanged as input for the grid generator. For the
flight test computation, the wind tunnel geometry has

been taken as the basic geometry, but the wing deforma-
tion in flight has been estimated and accounted for by
adding an extra wing twist distribution along the span.
Thus, a second grid, different from the first, was
generated in order to avoid possible discrepancies in the
comparisons of pressure distributions with experimental
data due to geometrical differences.

For the wind tunnel test, the free stream Mach number
is 0.779, the angle of attack is 1.03 degrees and the
Reynolds number is 2.9 million. Transition was fixed at
5 to 7 percent chord. For the flight test, the free stream
Mach number equals 0.775, at an angle of attack of 1.0
degrees and a Reynolds number of 35 million.
Transition is assumed to occur at approximately 5
percent chord. Both flow cases are beyond the design
cruise condition resulting in strong shock
wave/boundary layer interaction. In figure 6 two
pressure distributions at selected spanwise stations are
compared with experimental data for both test cases.
Looking at the free flight test case, the comparison with
experimentally obtained data is quite good. The' position
of the shock wave is acceptably predicted, while also
the general shape of the pressure distributions is accu-
rately captured. On the upper side of the wing, the level
of the pressure coefficient upstream of the shock is
slightly mispredicted. Note that the experimental pres-
sure distributions are less smooth than those from the
wind tunnel experiment. This may be a result of the dis-
turbance of the flow due to the pressure belts wrapped
around the wing.

The wind tunnel test case has been computed using the
Mach number and the angle of attack of the experiment
without any corrections. The comparison of pressure
distributions with experimental data is quite acceptable,
giving a good pressure level at the upper side of the
wing, although now the position of the shock wave is
not predicted as accurately.

3.2 Drag-creep consistency

The drag-creep at a given Mach number is defined by
the increase in total drag coefficient relative to the total
drag value at a reference Mach number, at fixed lift
coefficient and Reynolds number. Drag-creep consisten-
cy is investigated on the fine grid (mesh size ratio 1/2)
of 320 by 80 by 64 grid points in streamwise, spanwise
and wing-normal direction respectively. The fine grid
was chosen because then the scatter is lowest, while the
results are also closest to the extrapolated results. The
conservative option was once more chosen in order to
avoid numerical uncertainties in wave drag due to artifi-
cial mass-production that might reduce the consistency
of the results.

DLR-F4 wing/body

An example of computed drag-creep is shown in figure
7 for the DLR-F4 wing/body. Here, computed drag-
creep results are compared with experimental data fromn
three wind tunnels, at a lift coefficient of 0.5 and a
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Reynolds number of 3 million. The computed data
appear to be consistently lower than the experimental
data.

Understanding of the various sources of drag is obtained
by analyzing the spanwise distributions of wave drag
and viscous drag, and the chordwise spatial distributions
of wave drag. An example is given in figures 8a, 8b for
the present DLR-F4 wing/body computations at a
freestream Mach number of 0.75. For this case, a
correlation is evident between the local strength of the
shock wave and the local thickening of the boundary
layer (figs. 8a,b). In figure 8c, the spatial distribution of
wave drag is plotted at a chordwise section on the outer
part of the wing, showing the height of the local shock.
Such diagnostic plots are helpful to understand drag
differences between configurations.

Fokker 100 wing/body

For transonic drag-creep, qualitatively consistent
behaviour is found with variation of Reynolds number
and Mach number for the Fokker 100 wing/body as
shown in figure 9. In figure 9a, the computed drag-
creep is plotted. As expected, the drag-creep is lowest
for the higher Reynolds number. Also shown, in figure
9b, are the experimentally obtained drag-creep data,
derived from wind tunnel tests and flight experiments.
Qualitatively, the computed Reynolds and Mach number
influence is consistent with experiments.

Statistical correlation

Recently, computations have been performed with the
present method for a number of geometrically and
acrodynamically different research wing/body configu-
rations, including the DLR-F4 wing/body.
Drag-divergence Mach numbers, obtained from experi-
ments, have been compared with the drag-divergence
Mach numbers extracted from the computed drag-creep
curves. The drag-divergence Mach number is defined as
the Mach number where the drag coefficient rises at a
rate of 0.05. Usually, a somewhat higher value for the
rate is taken, rendering the present estimate of the
drag-divergence Mach number conservative. In figure
10a the computed and experimental drag-divergence
Mach numbers are plotted showing fair statistical
correlation between experiment and computation. The
computed drag-creep values at the drag-divergence
Mach number have been correlated with their experi-
mental counterparts for full-span wind tunnel models in
figure 10b and for half-span wind tunnel models in
figure 10c. Here, the correlation is again fair, but it is
found that the computed drag-creep is systematically
lower than the experimental values. The above correla-
tions lead to the conclusion that different wing designs
can be compared, using the present method, by doing
computations on the fine 320 by 80 by 64 grid (mesh
size ratio 1/2). Once a design is selected, the grid
extrapolation procedure must be applied to calculate
accurate final drag values (compare section 2.6).

4 Concluding remarks

A CFD method has been described for transonic drag
prediction of wing/body configurations that are repre-
sentative for new commercial transport aircraft. The
method is based on an algebraic grid generator, an
inviscid flow solver for the full-potential equation, a
viscous flow solver for the boundary layer equations,
and a viscous-inviscid interaction algorithm.

The method has been tested extensively for a significant
number of geometrically and aerodynamically different
wing/body configurations. It is found that the method
satisfies two essential requirements:

(i) CFD-problem-turnaround-time of the order of a day
to a week for a significant number of flow solutions; the
grid generation process is standardized and automated to
a large extent, while the NLR NEC-8X3/22 supercom-
puter is exploited to obtain high computational speed.
(ii) realistic accuracy of aerodynamic forces, such as
transonic drag creep.

The demonstration that realistic accuracy requirements
are met is based on a comparison between experimental
data and computed results for pressure distributions on
wing sections, transonic drag-creep curves at fixed lift
coefficient and fixed Reynolds number, and transonic
drag-rise Mach numbers. The computational results
indicate that representative pressure distributions on
wing sections can be obtained on grids with 200,000
grid points, Transonic drag computation is, however, an
exacting task due to the sensitivity of drag values to
numerical approximations, convergence levels and tur-
bulence modelling (including transition strip modelling).
Computational experiments on grid sequences have lead
to the observation that up to approximately 1,600,000
grid points are required to predict transonic drag-creep
increments (between geometrically different wing/body
configurations) with an accuracy of plus or minus 3
counts of the extrapolated total drag-creep value at the
drag-divergence Mach number.

The development of this transonic drag prediction
capability is claimed to be a significant step forward.
The ability of the present method to distinguish between
the three basic drag components (viscous, induced and
wave drag) and to determine their spanwise distributions
allows the aerodynamic designer to make minor
modifications to improve the overall three-dimensional
design.

Future improvements to the method, with the objective
of meeting further industrial requirements, are foreseen
in the viscous modelling, but also in the attainable
convergence level. This will improve the accuracy of
drag data without increasing the computational effort.
Improved convergence levels for a given number of
interaction steps are in fact mandatory for off-design
studies at flow conditions including boundary layer
separation (buffet-onset). The resolution of the boundary
layer on the body will not be incorporated in the present
method. For this purpose, Navier-Stokes methods are
available. In the future, a far-field drag decomposition
methodology will also be defined for Navier-Stokes
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methods, using the experience obtained with the present
interaction type method.
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