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Abstract

In this paper a review of the CFD methodolo-
gies and numerical tools developped in the Aero-
dynamic Department of Dassault Aviation for the
design of aircraft and space vehicles is presented.

This paper covers the description of three
solvers: full potential, Euler and Navier Stokes
possibly with chemistry or turbulence coupling.
The accuracy of these pieces of software relies on
unstructured finite element meshes and their effi-
ciency on implicit time integration.

The complexity of the shapes and also of
the flow structures requires adapted unstructured
meshes to capture the main features of the solution
using strategies based on physical or mathematical
criteria.

A multizone approach is used in an industrial
environment to compute at reasonable cost the de-
tail of the flow field around an aircraft or a space
vehicle. Inviscid computations with boundary layer
corrections are performed on global meshes sur-
rounding the whole aircraft or space plane to pre-
dict aerodynamic coefficients while estimation of
heat fluxes is achieved via the solution of the Navier
Stokes equations on local meshes.

The role of databases such as the European Hy-
personic Data Base is described as a systematic tool
for analysis and comparisons, which contributes
significantly to the code validation process and the
evaluation of uncertainty margins in Aerospace In-
dustry.

Three dimensional computations of flows
around complete civil and military aircraft such as
the Falcon Jet and Mirage 2000, and also space
vehicles such as the Hermes Space Plane are pre-
sented to illustrate the possibilities of the above
methodologies.

Significant improvements of these finite ele-
ment solvers are expected on massively parallel ar-
chitectures using novel ingredients based on domain
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decomposition or fictitious domain techniques. Re-
cent numerical experiments on store separation
for the simulation of 3-D unsteady potential flows
around rigid moving bodies are also discussed.

1. Introduction

The prediction of compressible flows over com-
plex geometries necessitates mastering efficient
computational codes that incorporate various phys-
ical models (e.g., chemically reacting flows, turbu-
lent flows, etc.) and various related advanced nu-
merical techniques.

At the end of the 70’ the aerospace industry
was experimenting successfully the first 3-D po-
tential transonic solvers for the design of aircraft
vehicles ([1]) and in the early 80’ a considerable
amount of theoritical work was conducted to solve
the Euler ([2]) and Navier-Stokes ([3]) equations.
A decade after, these theoretical studies provided
efficient Euler and Navier stokes solvers for tran-
sonic, supersonic and also hypersonic flow simula-
tions with unstructured finite element meshes. In
this context and in close cooperation with INRIA
([4]) and Stanford University ([5]) Dassault Avia-
tion developed techniques relying on unstructured
meshes and using an implicit upwind formulation
combined with adaptive mesh refinements. One
important aspect in the organization of this type
of calculation is the coordination of global and lo-
cal simulations. Local simulations can account for
rather complex and costly models (Navier Stokes
with turbulence or chemistry models) while global
simulations are limited to the simpler inviscid mod-
els (potential or Euler with chemistry models).

We present in this paper the multi-zone and
multi-code strategies used on a routine basis to
compute at reasonable cost all the needed details
of the flow field (pressures forces and heat transfer)
around aircrafts and space vehicles in an industrial
environment. Methodologies including mathemat-
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ical modeling and numerical methods used in the
solvers are described in Section 2. Mesh adaption
procedures based on the gradients of physical quan-
tities or on a posteriori errors estimates are pre-
sented in Section 3. The role of database as an
interactive validation tool is explained in Section
4. and computational results on complete aircrafts
and space vehicles or local configurations are pre-
sented in Section 5. :

2. Methodologies: mathematical modelling
and finite element solutions

2.1-Potential flow

2.1.1-The flow solver

Let w be a bounded two-dimensional domain
and p, 4, ¢_’the density, velocity and velocity poten-
tial (@ = V¢). For irrotational flows, mass conser-
vation reads :

pt+€7.(p€7¢)=o n (1)

where (.); denotes time derivative. Bernoulli’s law
for unsteady potential flows gives the density p as
a function of the potential ¢ :

e A |7 @

In (2), v is the ratio of specific heats (1.4 for air)
and M, designates the freestrearn Mach number.

Boundary conditions, usually mass fluxes, are
prescribed at the boundary dw of the flow domain
w. Typically, 0w includes the outer limit (7, ), solid
bodies surfaces (y; ) and wake cuts for lifting airfoils
(7c). For flows with moving bodies, w must be
time-dependent.

2.1.2-A finite element discretization

Let Vi (w) be the standard finite element space
of piecewise linear functions on a triangulation
Ty(w) of w. We use first-order time discretisation
with time step At > 0 and derive a Galerkin weak
formulation of (1).

Boundary conditions are handled using approx-
imate Riemann solvers restricted to potential flows.

We use an extension an Osher-type mass flux
biaising procedure in a finite element framework to
capture shocks and supersonic pockets. In the pres-
ence of moving bodies, deformations of w should be
taken into account : this is usually done through a
Lagrangian step where deformations of the bound-
ary Sw yield remeshing and subsequent projection
of the solution field onto the new mesh. Another

point is that the boundary flux function should de-
pend on the solid bodies’velocities.

2.1.3-A cartesian grid finite element discreti-
sation

We would like now to propose a way to circum-
vent the remeshing task. The idea is to have a fixed
mesh by taking into account the motion of 45 and «,
through a projection operator. It goes back to the
notion of fictitious-domain methods ([6], [7]) which
has seen lately some interesting developments ([8]).

We define a bounded domain 2 which forms
an embedding of the flow domain w. A regular
cartesian grid is set up in Q with its companion
triangulation T} ().

Simple linear extensions are used for 7 except
for wake cuts where nodes are artificially doubled so
that we can still use approximate Riemann solvers
to compute boundary fluxes.

Newton’s method can still be applied : numer-
ically, the linearized operator is better conditioned
due to an overall better element aspect ratio.

More interestingly, the motion of solid bodies
can be taken into account in the computation of
the characteristic function y, and the boundary
flux function: no remeshing is needed !

2.1.4-Mesh management

In these fictitious-domain methods, we have a
trade-off (as in most Computational Fluid Dynam-
ics techniques !) between solution accuracy and
grid flexibility. In the framework of unstructured
meshes, it seems natural for us to use adaptive
mesh refinement to regain some accuracy : in fact,
we have replaced the notion of body-fitted meshes
by the notion of body-adapted meshes.

Starting with our regular cartesian grid, we use
hierarchical data data structures developed for un-
structured meshes in the PLTMG finite element
package ([9]).

At each time iteration, to compute the charac-
teristic function y,,, intersections between the bod-
ies’shapes, defined by Ferguson splines, and the
mesh should be done very carefully. This mesh
is usually a result of different refinement and de-
refinement steps during the motion of bodies. To
avoid highly skewed elements, smooth variations
are insured between the different mesh levels.

Mesh refinement/unrefinement and smooth
mesh variations are activated in the PLTMG pack-
age via the definition of an error criteria. In our
present work, this criteria is purely geometrical.

2.2-FEuler with chemistry
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2.2.1-Lagrange-Galerkin formulation

The following model convective/diffusive equa-
tion (or system of equations as Navier-Stokes
model) is considered:

RU) = Uy+V-FU)-V-(KVU)=0 (3)

Let T3 be a triangulation of the computational
domain w C R? with boundary dw of unit normal
Usy. We denote by T' a current element, in case
of a triangle by 7} the inward integrated normal
opposite to node N; , K(7) the set of neiboughring
nodes of node N; and supp(i) the support of the
basis function ¢; associated to node N;. Let V2
be a set of piecewise polynomial functions from JR?
with values in IR? that are continuous. Further, the
basis of V)¢ is the set of functions ¢; satisfying the
Lagrange interpolation conditions. Let us consider
the following abstract family of schemes for the spa-
tial approximation of the hyperbolic system:

/Ut¢ dv +/ ¢V-F(U)dv+/KVUV¢dv:0

where F(U) is considered as an element of V4
(group representation) and ¢ is a test function.

2.2.2-Finite Volume Galerkin

Lagrange-Galerkin methods may be inter-
preted as finite-volume schemes in some extended
sense; indeed the divergence operator can be writ-
ten as (boundary terms excluded):

/ GV F(U)= 3 @<L U i) (5)

JEK()

where . .
i = supp(i)HSupp(j)(¢iv¢j — ¢;Véi)dv.

Upwinding can then be introduced by replacing
the centered flux in considering a Riemann prob-
lem with U; and Uj as left and right states and 7;;
defining the interface normal. Extensions of pre-
vious schemes to second-order accuracy are per-
formed through MUSCL Finite Element interpo-
-lations. An improved formulation with a modified
definition of control cells has been proposed in [10].

2.2.3-Generalized Flux Vector Splitting

We have shown that a Lagrange-Galerkin ap-
proximation of a general hyperbolic system can
be interpreted consistently in other formulations

which lead to different integration schemes. Com-
bination of above formulations applied to an ad-
equate splitting of the Euler equations of gas dy-
namics are investigated.

In that direction, an attractive approach is to
investigate schemes based on a separation of con-
vective and pressure fluxes as mentionned in the in-
troduction. The convective part can be discretized
by either distributive or SUPG schemes which have
truely multidimensional property whereas the pres-
sure part can be treated by Finite Volume Galerkin
techniques. An early study proves to be promising.

2.3-Navier-Stokes with chemistry
turbulence model

2.3.1-Governing equations

Let p, @, and E be respectively the density, the
velocity, and the total energy per unit mass of fluid.
The Navier-Stokes equations read:
e conservation of mass

8p o
V(i) =0, (6)
e Newton’s second law
Opt .
T+ V- (pied) =V -0, (7)
e conservation of energy

Qgg-‘-V-(;:Eﬁ):V-@ﬁ)—V-i, (8)
where o is the Cauchy stress tensor and ¢ is the
heat-flux vector. This set of partial differential
equations is subsidized with appropriate constitu-
tive relations and state equations which we will
describe in the following sections. We can notice
that up to this point no particular alteration to the
usual Navier-Stokes equations is made to accom-
modate for turbulence and/or high-temperature ef-
fects. Thus the strategy developed for the solution
of laminar flows of a perfect gas can be formally
applied. The numerical method used is discussed
in the next section.

2.3.2-The Galerkin/least-squares formula-
tion

This formulation has developed into a general
approach for a wide class of problems. The basic
idea can be understood by considering the steady
scalar advection-diffusion model problem:

Lu=a -Vu—-V KVu=o.

where @ and K are constant parameters. For sim-
plicity we assume that u vanishes on the boundary.
The Galerkin method is defined as:
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Find «* € V" such that for all w* € V*,
B(wh, u*) = 0 where

B(w",u") = / (whd - Vb + Tl - KFut)do

The Galerkin/least-squares method can be de-
fined by the following variational equation:

B(w",u*) + Z/ LutrLubdw® =0

The additional term is the sum of integrals over
element interior (a finite element discretization of
the domain is assumed). It adds stability to the
Galerkin formulation without upsetting the consis-
tency of the method.

For the multidimensional case, the numerical
diffusion is characterized by the diffusivity matrix
K™m = g7 g7 where T = %L%Q and f(Pe) =
coth(Pe)—1/Pe is a doubly asymptotic function of
the element Peclet number (Pe = |d@|h/2|K ) going
to zero when diffusion dominates and to one when
advection dominates.

The doubly asymptotic behavior is present in
each mode in the numerical diffusion. This ingre-
dient of the method is critical in establishing the
convergence results presented in Hughes, Franca
and Mallet ([11]) for linear systems of advection-
diffusion equations. The formulation can be ap-
plied to the compressible Navier-Stokes equations
which can be written in the form of a symmetric
advective-diffusive system in terms of entropy vari-
ables, as we will see shortly.

2.3.3-Entropy variables

We define the generalized entropy function %
by H = H(U) = —ps, where s is the physical en-
tropy per unit mass. H is a strictly convex function
of the vector of conservative variables,

S 1. .
U'=~(1, @, e +|i*/2)

where v = 1/p is the specific volume. Conse-
quently, the relation VT = OH/BU constitutes a
legitimate change of variables. V is referred to as
the vector of (physical) entropy variables. They
were originally derived with the perfect gas case in
mind, but were recently extended to take chemistry
and high-temperature effects into account ([12]).

2.3.4- Discontinuity capturing operator
Although the Galerkin/least-squares method

is a stable method, oscillations may occur in

the vicinity of strong gradients. A nonlinear

discontinuity-capturing operator based on the gra-
dient in the element local coordinate system is
added to the formulation

2.3.5- Implicit iterative time-marching algo-
rithm

Convergence to steady-state of the compress-
ible Navier-Stokes equations is achieved through
an implicit iterative time-marching algorithm. At
each discrete time t,,, the finite element discretiza-
tion leads to a system of nonlinear equations.
This system is solved by performing a linearization
through a truncated Taylor series expansion. R is
the residual of the nonlinear problem and J is the
consistent Jacobian associated with R. The consis-
tent Jacobian is often replaced by a Jacobian-like
matrix J leading to a more stable time-marching
algorithm. The system of equations Jp = —R is
preconditioned by a nodal block-diagonal precon-
ditioner and solved using the Generalized Minimal
RESidual (GMRES) algorithm

2.3.6 Application to turbulent flows

The partial differential equations used to de-
scribe the mean flow field are the mass-averaged
Navier-Stokes equations of a compressible fluid.
The closure of the Reynolds stress tensor and heat
flux is obtained using a classical Boussinesq hy-
pothesis and the concept of eddy viscosity. The
eddy viscosity is computed through a two-equation
turbulence model, thus the Navier-Stokes equations
are augmented by two additional partial differential
equations for the turbulence quantities.

The turbulence models used belong to the k—e
family. The extra equations needed are convection-
diffusion equations mainly coupled through their
source terms. The turbulence quantities are pos-
itive, the enforcement of this constraint can be
achieved through the use of a monotone discrete
advective operator and a special time discretization
for the source term ([13]).

The discretized mean flow equations and the
turbulence equations are integrated using a split-
ting method . At a current time step, we solve
the Navier-Stokes equations using turbulence data
evaluated at the previous time while the turbulence
equations are solved using the flow variables com-
puted at the previous time.

In the near wall regions, the effects due to the
molecular viscosity have to be accounted for. We
use a two-layer model to do so. This model has
been introduced by Chen and Patel and modifies
the k& equation in the near wall region while the ¢
equation is replaced by an algebraic definition of
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the dissipation ¢, away from the wall the standard
k — € equations are conserved. Since the Navier-
Stokes equations are integrated down to the wall,
separation can be accurately computed.

3. Mesh adaptation with physical
and mathematical criteria

3.1- Anisotropic mesh adaptation

The mesh adaptation process discussed below
is guided by a control space. This contains informa-
tion about the size and the shape of the expected
elements depending on their location.

3.1.2-General background
Let Q be the bounded domain of IR? or IR3 we
want to triangulate. According to P.L. George and

F.Hecht [INRIA Rocq.], we define a control space

as follows:
Definition: (O, H) is a control space for the
domain Q under consideration if:

e ) is an open subset of IR? or IR® containing

0,

e H is a real valued function defined at each
point P of O and in each direction d, H(P,d)
represents the desirable step size of the mesh
at P in d direction and must always be posi-
tive.

If H(P,d) is independent of d, the control is
said to be ¢sotropic. In this case, a good triangu-
lation of  will be constituted of nearly equilat-
eral triangles of a given size. On the contrary if
H(P,d) is d-dependent, the control is anisotropic
and stretched elements are desirable.

3.1.3-A particular class of control spaces
Here, a particular class of control spaces is con-
sidered, including some anisotropic properties. We
assume that O is partitioned by a mesh whose ver-
tices are (S;, ¢ = 1,..,,N). A n x n-matrix M;
symmetric and positive definite is associated with
each vertex S; (n = 2 or 3 is the dimension of the
space). A new metric is defined by the following

norm
1% Ils, =

Then, for each direction d, the function H is
given at point S; by

XM X (9)

Il Xa |l
Il Xalls,

where X is a vector in the d direction. The control
space (O, H) is now fully defined by interpolating

H(S;,d) = (10)

the matrices on each element of the partition. Only
continuous interpolations are considered to avoid
jumps of the control function over (0. The simplest
one is linear on each element.

3.1.4-Riemannian metric

The open set O can be considered as a C-
manifold and matrices M(P), P € O as bilinear
forms. For a control space of the considered class,
these forms define a Riemannian metricon O. The
length of a parametric curve ¥(7), v € [0,1] in such
a metric is the value of

1
]0 VA M) 7(7) d7)

Consequently, the change from Euclidean met-
ric to Riemannian metric reduces mesh control to
an isotropic and constant step size control. From
the point of view of this metric, a mesh satisfying
the function H all over the domain Q2 C O is con-
stituted of equilateral elements of diameter equal
to 1.

3.1.5- Adaptation

The mesh generator needs a fully defined con-
trol space. For this, a function H can be given over
O from a priori knowledge of the physical solution.
With a view to generating adaptive meshes, H is
determined from a computed solution obtained on
a previous (coarse) mesh Tg. This mesh becomes
a natural partition of & to support the definition
of the control function H. Following J. Peraire et
al. [?], we base the mesh adaption on an error
estimation for a selected key variable o. More pre-
cisely H is determined in order to equi-distribute
the interpolation error. The linear interpolation er-
ror depends on second derivatives of o. This leads
to computing the desirable directional step size H
at each vertex S; according to

A7 155 (5) 1= ()

where ¢g is the acceptable error chosen by the user.

The previous algorithm can be applied with one
of these metrics instead of the Euclidian one. The
obtained mesh is adapted to variable o in the sens
that the interpolation error becomes equally dis-
tributed all over the domain and in each direction.

3.2- A posteriori error estimate for mesh
adaptation

For the Navier-Stokes equations, we calculate
the a posteriori error estimate based on the solu-
tion of a local generalized Stokes problem. The
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degrees of freedom for the error estimate of both
velocity and pressure are chosen at the midpoint of
each side of triangle with the quadratic functions.
Particularly, the whole frame of the right hand side
in the generalized Stokes problem, which is used
as one step in f-scheme, an iterative algorithm for
Navier-Stokes equations, has to be placed as one
part of the named right hand side of the equations
about estimation so that the nonlinear convection
term is considered. With the solutions of the error
estimates at the three midpoints, we can evaluate
an integrated energy norm as the value of error es-
timate for the element. f

The threshold is defined in the sense of geo-
metric average over the error estimate of all the
elements in the triangulation on every level. With-
out any artificial intervention, we can refine all the
triangles with the error estimate greater than the
threshold, and the whole progressive refining pro-
cess goes on automatically. But sometimes, espe-
cially at the beginning af our adaptation procedure,
there are fewer elements exceeding the calculated
threshold, and we might ”push” it towards the min-
imum value of error estimate distribution so as to
speed up the refinement.

As for the refinement schemes, the main way is
to divide an element into four similar ones by pair-
wise connecting the midpoints of the three edges
and these regular products are to be kept. In or-
der to form an admissible mesh, we are obliged to
divide some elements into two by bisecting a sin-
gle edge in the middle of which a new node has
been generated in the previous regular refinement.
This irregular scheme is to be replaced with being
refined regularly if necessary.

In the course of refinement, two guidelines
should be respected as the complement of the de-
fined threshold. One is called ”2-neighbors rule”.
As the name suggests, it means a regular refine-
ment for the existing element with two neighbors
that have been regularly refined. If there is a trian-
gle which has not been regularly refined but already
one of whose sides has contained more then one
irregular vertex, the other guideline, ”1-irregular
rule” makes this kind of triangle refined regularly.

4.- Scientific code validation
with data bases

A European Hypersonic Data Base (EHDB) in-
stalled at INRIA Sophia Antipolis and containing
critical problems originating from a series of work-
shops on hypersonic flows for reentry problems op-
erates since early 1993 ([14]). The available data

offer an attractive tool to the scientific and Indus-
trial communities involved in Aerospace activities
to evaluate accuracy and efficiency of hypersonic
codes.

The EHDB contains general information and
information related to the Hypersonic workshop
test cases.The general information provides specifi-
cations of test cases, output formats, practical def-
inition of physical models for computations ( e.g.
chemically reacting flows), grids made available to
contributors ,analysis software and a chart defining
the access and usage rules of the base.This infor-
mation is accessible by network via a mailserver, or
anonymous ftp, or wais ([15]):

to: hdb-quest@sophia.inria.fr

subject: guide.ps

request: hdb

topic:guide.ps

request: end.

Additionally the EHDB contains computerized
data associated with experimental or computa-
tional solutions to the workshop test cases.The
main important test cases used for Euler and
Navier-Stokes code validation include the flow over
a ramp (Problem 3), the flow over a double el-
lipse/Ellipsoid (Problem 6) and the flow over a
delta wing (Problem 7).

The ramp flow ( Re= 148000/m; § =
15°; Mach= 10) was proposed to study the
shock/Boundary layer interaction in a separated
flow and has been tested by Delery, ONERA,
France. The solution computed with the above
Navier Stokes solver compares quite well with avail-
able experiments; however from the collection of
results compared with experiments, this test case
revealed rather controversial in the separated re-
gion with respect to Stanton number predictions.

Test case 6.3 ( Mach=25; a = 30°; Z=75 km)
was employed to test different possible models for
the diffusion terms applicable in the case of the
mixture of reacting gases. A certain scatter in the
stagnation-point heating has been observed due to
the different models of diffusion terms.At present
the EHDB contains 3-D viscous equilibrium flows
solutions including the on computed with the solver
described in section 11.3.1. but only 3-D non equi-
librium boundary layer calculations.

The laminar vortex flow around a Delta Wing
(test case 7.4: Mach= 87; a = 30° Re=
2.25*10**6/m) which has been tested experimen-
tally at the DLR K6ln Wind Tunnel H2K by Henck-
els has shown computed Stanton numbers notice-
ably higher than the experimental value.

The EHDB will now be enriched with a new set
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of more complicated test casesin both supersonic
and hypersonic regimesfor which experimental data
are or will be available. The precise description of
related test cases will appear in the announcement
of a forthcoming workshop ([16]).

Such workshop and database activity plays a
major role in the evaluation of uncertainty margins
and is essential to improve confidence in reliable
thermodynamics data in flight conditions.

5.- Applications: Flowfields of interest

The following examples of 3-D flow computa-
tions around complete aircrafts and space vehicles
show the possibilities of the codes with the above
methodologies:

5.1- Euler calculations

This code can be used iteratively in order to
design and optimize air intakes or/and after bodies
shapes. Figure 1 shows the surface mesh on MI-
RAGE 2000 and Figure 2 the surface pressure dis-
tribution from an Euler computation at Mo, = .9,
o =2°

The computation shows in Figures 3 and 4 was
performed on a Falcon 900 spatial mesh composed
of 43,000 nodes and 258,000 elements. The objec-
tive of this calculationwas two-fold: first, to eval-
uate the pressure distribution over the whole air-
craft; then to investigate with great care the tran-
sonic interaction phenomenon between the wing
trailing edge and the propulsion ensemble (side na-
celle and its fuselage linking pylon).

The design of a space plane like Hermes re-
quires the prediction of the aerodynamics forces in
flight conditions, to be accessible in the form of a
data base covering all possible Mach numbers, an-
gles of attack, yaw angle, altitudes and control sur-
face deflections. Figure shows the pressure distri-
bution at high Magh number and high altitude. To
generate this data base, the Euler equations, with
chemical effects when needed, have to be solved a
large number of times; consequently the unit cost
of the simulation has to be low.

Figure 8 and 10 present a 2-D horizontal cut
through a scramjet air intake. The diffusion in
the inlet is insured by 6 degree angle side walls.
Fuel injection struts with vertex 6 degree half angle
also contribute to the fluid compression. Extensive
mesh adaptation was used in order to capture the
complex shock wave interaction.

5.2- Navier-Stokes calculations with chemistry

It is also necessary to obtain estimations of heat
fluxes in regions where boundary layer treatment is

not possible, In such regions the full Navier-Stokes
equations have to be solved. A typical example is
the flow over the canopy of Hermés, which contains
complicated three dimensional separation and reat-
tachments, causing local peaks on the skin temper-
ature.

In order to obtain such Navier Stokes solu-
tions at a reasonnable cost, we use ”local meshes”,
imbedded in the global ones, which will represent
the full details of the space plane in a few critical
regions.

Because of the complexity of the shapes in-
volved, we use unstructured meshes, made either of
tetrahedras, prisms or hexahedras. First a mesh of
the skin of the aircraft is generated, then the three
dimensional volume is filled by a front marching
technique ([17]).

Euler calculations are usually initiated by a
uniform flow, taken at the free stream conditions
which also define the boundary conditions. Im-
plicit solutions are obtained in less than 200 time
steps, and CPU consumption ranges from a few
minutes to a few hours, for the largest meshes (200
000 nodes), on an IBM ES 9000/820.

Navier-Stokes calculations are performed on
very dense meshes, which represent only a small
part of the aircraft, and are embedded in a coarser
grid covering all the domain of dependency of the
local calculation. They are initiated by a flow
field obtained by merging the Euler solution and
the boundary layer solution; this initial flow
also defines the boundary conditions for the Navier-
Stokes simulation.

Figure 6 shows the flow over the canopy: we
present here the friction lines. This calculation
shows the window temperature to be over the de-
sign limit for the particular shape calculated. We
can see that the flow is separated, with a very com-
plex reattachment in the upper window region. The
mesh includes 180 000 nodes. Radiative boundary
conditions were used (including non convex reradi-
ation).

5.3- Navier-Stokes calculations
with turbulence model

The case presented is a 3D computation on a
generic cylindrical air intake at Re;, = 1,100,000.
and Mach = 0.25 at 15° of angle of attack. The
mesh has more then 60,000. nodes. In Figure 7 we
present the streamwise velocity with a visualization
of the separated region in the air intake. One can
see the complete 3D structure of the separation.

5.4- Unsteady potential calculations
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with fictitious domain method

The 3-D mesh around the wing and the store
has 48,619 nodes and 275,041 tetrahedra. For the
potential flow computation the parameters were
My = 82, a = 0°. Figure 9 shows the pressure
distribution on the initial configuration for body-
fitted mesh and fictitious domain (below).

6. Conclusion

We have shown how several robust and efficient
flow solvers which have been developped and val-
idated in an industrial environment are used for
the design of aircrafts and hypersonic vehicles. An
important feature of these solvers including real
gas effects and turbulence models is their ability
to be interfaced with each other using a multi-
zone/multicode strategy.

From recent calculations we strongly believe
that in the case of transonic and supersonic flows
cost effective solution can be obtained through
multi level preconditioning on structured meshes
simultaneously associated to unstructured meshes
for accuracy. An important part of the efficiency
can be achieved via domain decomposition meth-
ods combined with fictitious domain techniques on
MIMD parallel architectures.

Future applications in Aerospace Engineering
will deal with the computation of active flow con-
trol using smart structures via intelligent algo-
rithms.
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Figure 1: Surface mesh of the Mirage 2000.

Figure 2: Mach number distribution. M=.7, o =
00
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Figure 3: Enlargement of the Mach number distri- Figure 5: Pressure distribution on Hermes.
bution in vertical cross section. M=.85, o = 3°

Figure 4: Mach number distribution on the Falcon
900. M=.85, a = 3°

Figure 6: Temperature distribution on the canopy
of Hermes. M=20., « =0°, # =3°
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Figure 7: 3D Cylindrical air intake. M=0.25, o =

20°, Re=1.110° N\
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Figure 9: Comparison of flow solution on conformal
mesh and fictitious domain

Figure 8: Mesh adaptation of shock-shock interac-
tion.

Figure 10: 2D scramjet inlet, Mach distribution.
M=6., a = 0°
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