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Abstract

A numerical investigalion of the flowfield in three
proposed geomelries for the nozzle and contraction of
a transonic wind tunnel facilily is performed. The pri-
mary objective was Lo understand delails of the flow in
the tunnel in order to lry to mazimize lest seclion flow
quality. The calculations presented here include pre-
minary 2-D simulations and full 3-D compulalions.
The codes used for the present calculations were previ-
ously validated by the authors and co-workers, and these
validation studies are available in the literalure. The
primary flow solvers used implement an Euler formu-
lation, and use the implicit approzimale faclorizalion
Beam and Warming algorithm for the solulion of the
discretized equations. A boundary layer code was lypi-
cally run at a posi-processing stage in order lo eslimate
boundary layer growth and its impact on flow qualily.
Results obtained for a sonic nozzle and for two Laval
nozzles are presenied, and they were instrumental in
the selection process which led to the transonic facility
which is currently being buill.

Introduction

Transonic wind tunnels usually operate from low sub-
sonic Mach numbers (M = 0.25) to the supersonic
regime (M = 1.6). The tunnel nozzle is a key element, in
achieving the desired test-section Mach number, Mypg.
Mach numbers up to unity are obtained using a sonic
nozzle. There are two possible solutions for Mypg above
this value: (%) the installation of a flexible Laval noz-
zle or (i) a sonic nozzle used in conjunction with test-
section mass extraction. In the case of test-section evac-
uation, about 2.5% of the tunnel total mass flow enters
the plenumn chamber through ventillated walls, While
the first option is mechanically complex and much more
expensive, it yields better test-section flow quality than
the second one. Moreover, the second option is also lim-
ited to Mps < 1.3, since above this test section Msch
number value the mass extraction needed is prohibitive
as it would demand very large auxiliary compressors
and it would also have an adverse impact upon the tun-
nel flow quality.
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Centro Técnico Aeroespacial (CTA) is designing a
large transonic wind tunnel facility with a 2.0 x 2.4 m
test section (TTS Project). To minimize the technical
risks involved in such an enterprise, the project’s first
phase consists of the construction and operation of a Pi-
lot facility (TTP). Among the many important points
to be checked in the TTP emerges the nozzle design.
The design of the nozzle is of utmost importance as
it is directly related to the flow quality at the test sec-
tion. On the other hand, Computational Fluid Dynam-
ics (CFD) methods are enjoying increasing application
assisting in the selection of tunnel airline cormnponent
geomet,ry[l]. These techniques have been used to de-
sign diffusers and flexible nozzles as well as investigate
other aspects of the tunnel flow. Therefore, the major
objective of the present work is to study, using CFD
techniques, three possible nozzles for the TTP. One of
them is a sonic nozzle, and the other two are Laval noz-
zles with a nominal Mach number of 1.3. It was decided
that, in the TTP context, the optimum choice for the
nozzle element would be to have fixed interchangeable
nozzle blocks, instead of the flexible nozzle planned for
the full size facility.

The calculations presented here include preliminary
2-1) simulations and full 3-D computations. The codes
used for the present calculations were previously vali-
dated by the authors and co-workers, and these valida-
tion studies are available in the literature21-8]. Both
for the 2-D and the 3-D case, an Euler formulation is
implemented in the codes, and the Beam and Warm-
ing imphat approximate factorization a]gorithrfi[g]‘[l 1
is used to discretize and solve the governing equa-
tions. The tmplicit Euler method is used for the time
march and central differences are used to discretize the
space derivatives. Artificial dissipation terms are ex-
plicitly added in order to control nonlinear instabili-
Considerable effort was invested in the accurate
nmplementation of entrance and exit boundary condi-
tions through the use of one-dimensional characteristic
relationst® 121 The most stringent requirement for a
tunnel nozzle, besides giving the desired test section
Mach number, is the quality of the flow it provides for
the test section. Therefore, the consideration of bound-
ary layer growth is also an important issue in this case.
Here, for the 3-D simulations, this is taken into account

ties.
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by a viscous-inviscid coupling. A boundary layer formu-
lation, solved in the direct mode, is implemented and
coupled to the 3-D Euler solver previously described.
The boundary layer code was typically run at a post-
processing stage in order to estimate boundary layer
growth and its impact on flow quality.

The present work will briefly describe the formula-
tion of the codes used and it will concentrate on the
discussion of the results for the nozzle geometries con-
sidered. We are particularly interested in evaluating
whether the nozzles can indeed produced the desired
test section Mach number and on the quality of the
flow provided by the contraction to the test section. On
the latter subject, the existence, or not, of any shocks
produced by the nozzle wall, and the amount of bound-
ary layer growth and flow skewness at the test section
entrance are of primary interest.

Theoretical Formulation

The compressible Euler equations can be written in
strong conservation-law form for genera! three dimen-
sional, body-conforming, curvilinear coordinates!! 11 as

0Q JE JF 9G
L (1)
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where the vector of conserved quantities, @, is defined
as
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The flux vectors E, F and (@ can be written as
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In the above equations, the usual nomenclature is be-
ing used. Therefore, p is the density, u, v and w are
the cartesian components of velocity, and e is the total
energy per unit of volume. The equations have been
nondimensionalized following the work of Azevedol?],

E=J"!

F=J1
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Hence, density is made dimensionless with respect to
the stagnation density at the nozzle entrance condi-
tions, p;, and velocity components are referred to the
critical speed of sound at the nozzle entrance condi-
tions, @.. Pressure and total energy per unit of volume
are referred to p;a? and the specific internal energy is
nondimensionalized with respect to a2.

The pressure, p, can be obtained by the equation of
state for perfect gases

p=(r—1pei=(v-1) [f’ - :;'l’ (u? + 0" + 102)]
(6)

where e; is the specific internal energy of the fluid, and ¥
is the ratio of specific heats. The contravariant velocity
cornponents are defined as

U = &H+&Eut&u+&w
Vo= a4 eu+ v+ nw €8]
W = G+Gutu+Cw

Throughout this work, the Cartesian coordinate sys-
tem is defined such that z is the direction along the axis
of the tunnel, positive from upstream to downstrearn,
and the y- and z-directions form a right-handed system
with z positive upwards. The curvilinear coordinate
system is defined such that £ is the longitudinal direc-
tion, 1 s the nominally wall-normal direction which
spans the tunnel from the centerline to the wall, and ¢
is the circumferential direction. This coordinate system
is obtained from the transformation of variables

= 1

= &(x,y,2,1)
n = nlx,y,2.1) (8)
¢ = ¢(=yz2t)

The Jacobian of the transformation, J, can be ex-
pressed as

o= (@eUnzc + TyYcze + TYe

-1
—ZeYc Ty — Ty¥eZe — LYy 2e) (9)

Expressions for the various metric relations can
be found, among other references, in Pulliam and
Steger[“' 131,

The 2-D formulation is a straightforward simplifica-
tion of the previously given equations in which one of
the coordinate directions is considered infinite. We have
considered the geometry of the tunnel vertical plane
that passes through the tunnel centerline for the present
2-D simulations. More details of the 2-D formulation
can be seen, for instance, in Refs. [3], [5], and [6]. The
effective flow displacement due to viscous effects close
to solid walls was predicted by a boundary layer cade
developed by Rottall 4. This is a direct-type, integral
method, with the following main capabilities: (i) pre-
diction of laminar and/or turbulent houndary layers;
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(#) two laminar-turbulent transition criteria; (i#i) ap-
propriate treatment of shock wave interaction with the
boundary layer. -

Numerical Implementation

The previously given governing equations were im-
plemented through the use of finite difference meth-
ods. The implicit Euler method was used for the time-
march, and the spatial derivatives were approximated
by three-point, second order central differences. The
Beamn and Warming implicit approximate factorization
schemel® 101 was used for the solution of the resulting
finite difference equations in order to obtain a cost ef-
ficient algorithm. The resulting scherne is second order
accurate in space, as mentioned, but it is only first or-
der accurate in time due to the use of the implicit Euler
method.

The factored finite difference equations can be writ-
ten in the delta form asf?l

LyLcLeAQ" = Re + Ry + Ry (10)
The various operators are defined as
Le = (1+08eA" = AL VeAe))
Ly = (I+068,8" - 807'v,4,))
Lo = (140t~ VeAcd)
Re = ~DUE — i~ (VeA) JQ" (11)
Ry = =Ot6,F' — et~ (V,A,) 00"
R( = —At&@?’” b (]«]At,]—] (V(A()z J*Q-n

In the above, é¢, 8, and &; are central difference opera-
tors; Vg, V, and V¢ are backward difference operators;
and Ag, A, and A¢ are forward difference operators in
the &, 7- and (-directions, respectively. As an exam-
ple,

—n | p— —=n
0eQ;jp = 3 Qigr ik~ Qisyjk
—T] —l el .,
VeQije = Qiju—@ici (12)
—T} =i —T
AfQi,j,k = Qi+l,j,k - Qi,j,k

The A, is a forward difference operator in time given
by
—n-+1

AQ =0T -1 (13)

Artificial dissipation terms have been introduced in
the operators described by Eq. 11 in order to maintain
the stability of the numerical solution process. Fourth
order numerical dissipation terms were added to the
right-hand side operators, and second order terms were
used in the left-hand side operators. From an accu-
racy standpoint, one would like to also use fourth order
artificial dissipation in the implicit operators. How-
ever, computational efficiency constraints prevent such

use. The flux Jacobian matrices A", B™ and (™ are
described in detail elsewhere in the literature (see, for

instance, Pulliam and Steger[13]).

Boundary Conditions

The three-dimensional sirulations here presented
take advantage of the double geometric symmetry ex-
isting in the nozzles considered in order to reduce the
computational effort. Hence, only one~quarter of the
complete nozzles are represented, and flow symmetry
boundary conditions are enforced at both the vertical
and horizontal symmetry planes. This is clearly assum-
ing that flow conditions at the entrance of the compu-
tational domain are symmetric or, in other words, that
the flow velocity at the entrance of the contraction is
aligned with the tunnel axis. Such an assurnption does
represent a simplification in the sense that some mis-
alignment can certainly occur, especially for closed cir-
cuit tunnels. In the present case, we have decided to
neglect this effect mainly due computational power lim-
itations and because the TTP is not a closed circuit
facility. The syminetry boundary conditions are com-
putationally enforced by allowing for an extra plane of
grid points on the other side of the symmetry plane and
forcing the appropriate symmetry, or anti-syrnmetry, of
the conserved variables. Hence, boundary conditions in
the (-direction are always symmetry, or reflection, con-
ditions in the present case.

Due to the present code data structure, it is very
difficult to strongly impose the flow tangency condi-
tion at the wall, at least at the boundary condition en-
forcement stage. Hence, the wall boundary condition is
tmplemented by extrapolating all conserved variables
from the computational surface adjacent to the wall,
when explicitly enforcing the boundary conditions, and
by imposing a zero convective flux in the wall normal di-
rection in the residue computation. The reader should
observe that, with such an scherne, the residue calcu-
lation sees the exact wall boundary condition at every
time step, whereas the value of the conserved variables
at the wall is progressively improved, as convergence
is advanced, in order to reflect the correct flow tan-
gency condition. Nozzle axis boundary condition is also
implemented by extrapolating and by imposing a no-
flux condition across the axis. A further complication
arises 1n this case because the axis is a singularity of
the transformation, in the sense that a line in physi-
cal space corresponds to a full plane in computational
space. Hence, properties at a given point along the axis
are obtained by extrapolating from the adjacent point
(in the g-direction) and, then, averaging all values in
the {-direction. The residue calculation is also modi-
fied in the centerline case in order to enforce the no-flux
condition across the centerline,

Nozzle entrance and exit conditions are enforced us-
g the concept of one-dimensional characteristic rela-
tions for the Euler equations. The concept is described
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in the 2-D case by MacCormack(!?]. Complete details
for its implementation in two dimensions for both the
planar and the axisymrmetric case are described in Ref.
[6]. The present three-dirnensional computations have
used these ideas in order to define how many quanti-
ties should be specified at each boundary and how many
should be extrapolated from interior information. How-
ever, in order to simplify the implementation, the actual
extrapolation process {of whatever quantities should be
extrapolated) does use the characteristic relations but
simple zero-th order extrapolation. As the authors have
done in previous work[m, the stagnation pressure, the
stagnation temperature and the flow entrance angle are
specified at a subsonic entrance. The exit static pres-
sure is fixed at a subsonic exit and, as determined by
a characteristic relation analysis, no property can be
specified at a supersonic exit. Aside from the fact that
zero-th order extrapolation is being used for the actual
extrapolation process, the treatrnent of entrance and
exit conditions here is an exact extension to 3-I) of the
ideas discussed in Refs. [3] and [6), and the interested
reader is referred to these references for further details.
All boundary conditions in the two-dirnensional sim-
ulations were treated precisely as presented in Refs. {3]
and [6], and they will not be further discussed here.

Results and Discussion

Initial evaluation of the proposed nozzles was per-,
formed using a two-dimensional formulation. It is
clear that the flowfield in the nozzles considered in the
present work iz truly 3-D. However, these initial 2-D
calculations already pointed out some of the difficulties
associated with obtaining high test section flow quality.
A typical grid used for the 2-D simulations is presented
in Fig. 1. This particular configuration corresponds to
one of the proposed Laval nozzles, and the grid shown
has 94 x 59 grid points. The 2-D grids were generated
by algebraic methods and exponential grid stretching
functions were used in order to cluster grid points to-
wards the nozzle wall, in the 9-direction, and towards
the throat, in the &-direction. The wall contours for all
three nozzles treated in the present 2-D simulations are
shown in Figs. 2 and 3.

As an example of the type of results which can be ob-
tained with the 2-D calculations, Figs. 4 and 5 present
wall pressure distributions along the two Laval noz-
zles axis for a nominal test section Mach number of
1.3. It is clear from these figures that the much
gentler expansion associated with geometry a yields
cornpression waves that are weaker than those gener-
ated by geometry b. Compression waves at the nozzle
should be avoided because they introduce undesirable
disturbances at the test section. According to the re-
sults shown in Figs. 4 and 5, geometry a is a better
nozzle candidate than geometry b for the Myps = 1.3
case. Wall pressure distributions for the sonic nozzle

1590

Figure 1: View of a typical 2-D computational grid
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Figure 2: 2-D wall geometry for the sonic nozzle
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Figure 3: 2-D wall geometry for the Laval nozzles.

1.00 p-

P/Po

0.00

o708

050 060 070 0580 050

Y XrXref

Figure 4: Wall pressure distribution in the streamwise
direction for geometry @, nominal Mps = 1.3 (2-D sim-
ulation).
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Figure 5: Wall pressure distribution in the streamwise
direction for geometry b, nominal Mrg = 1.3 (2-D sim-
ulation).

are shown in Fig. 6 for a nominal test section Mach
nuinber of 0.6.

The 3-D calculations were performed using a 100 x
20 x 29 mesh points. Fig. 7 shows an overall view of
a typical computational grid used in this work. The
3-D grids were also generated by algebraic methods,
after the wall surface definition was provided by a CAD
systemn. Particular attention was dedicated to obtain a
detailed definition of the transition from the circular
entrance section to the guadrilateral geometry of the
throat and downstream regions. It should be noted that
we have taken advantage of the nozzle double symmetry
in order to reduce computational costs.

The Mach number contours at planes perpendicu-
lar to the streamwise direction are shown in Figs. 8
and 9, for geometries a and b, respectvely. These four
planes correspond to i = 1 (entrance plane), two inte-
rior planes i = 25 and 75 and ¢ = 100 (exit plane). The
misleading impression of a very non-uniform behaviour
rapidly disappears as one takes a close look at the val-
ues shown by the graphic scales. In fact, both Laval
nozzles have a very smooth Mach number distribution
at planes along their longitudional axis. (Geometry a
has the further advantage of producing at its exit plane
a very uniform fow at the nozzle nominal Mach number
of 1.3.

Other relevant results are plotted in Figs. [0 and 1.
They show Mach number contours at the nozzle symime-
try planes for geornetry a and geometry b, respectively.
The upper portion of both figures represent the plane
f = 90 deg, while at the lower part the Mach number
contours for the plane theta = 0 deg appear. Contrary
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Figure 6: Wall pressure distribution in the streamwise
direction for the sonic nozzle, nominal Mpg = 0.6 (2-D
simulation).
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Figure 8: Mach number countours at planes perpen-
dicular to the nozzle axis for geometry a, nominal
Myrs = 1.3 .

Figure 7: View of a typical 3-D computational grid.
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Figure 10: Mach number contours at the symmetry
planes for geometry a.
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Figure 9: Mach number countours at planes perpen-
dicular to the nozzle axis for geometry b, nominal
MTS =1 [ |

Figure 11: Mach number contours at the symmetry
planes for geometry b.
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Figure 12: Pressure distribution in the streamwise di-
rection for geometry a (upper one) and for geometry b
(lower one) (3-D simulation).

to the 2-D results (see figures 4 and 5 in which shock
waves appeared in both geometries, the 3-D solution
points to a gentle expansion. The Mach lines in both
cases are now fairly straight and extend themselves in
the radial direction. It appears that the presence of
the side walls, not accounted for in the 2-D case, helps
guiding the flow more smoothly throught the nozzle.
Moreover, the 90 deg-plane pressure distributions along
both nozzles, shown in Fig. 12, present a monotonic be-
havior, unlike the 2-D results. This is highly desirable
as shock waves have a tendency to “bump around” in-
troducing flow disturbances at the test section.

The sonic nozzle is responsible for feeding the test
section with flow with Mach numbers up to 1.2. As
usual in wind tunnel operation, low supersonic speeds
are obtained with sonic nozzles plus test section rpass
161 As an example of the flow quality that
might be expected from the sonic nozzle simulated here,
Figs. 13 and 14 are presented. These results demon-
strate that a very uniform flow is produced along the

extraction

entire nozzle length. If one observes the lower plot in
Fig. 14, which represents the nozzle exit plane, it is
clear that the test section is being supplied with a very
high quality flow.

The pressure distributions for the Laval nozzles ob-
tained through the solution of the 3-D Euler equations
were used as input for the boundary-layer solver(14].
The results appearing in Table 1 are for the symmetry
planes (8 = 0 and 90 deg) and for the plane f = 45 deg.
Geometry a shows a smaller value of the houndary-
layer thickness, 8, at the the nozzle exit than geometry

003
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002
0.02

MACH
044
044
0.43
1043
H 043

MACH
0.62
0.62
0.62
0.61
0.61

Figure 13: Mach number countours at planes perpen-
dicular to the nozzle axis for the sonic nozzle, nominal
Mps =0.6.

Table 1: Boundary-layer thickness at the exit plane for
both Laval nozzles .

f plane d(mm)
Geomn a | Geom b
0 4.66 H.84
45 4.65 5.67
90 4.52 5.43
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Figure 14: Mach number contours at the nozzle sym-
metry planes, nominal M7ps = 0.6 .

b. Further, its azimutal variation of § is smaller. These
two aspects are important when one remembers that
the test-section walls must be diverged by a small angle
to compensate for boundary-layer growth. The results
indicate that geometry a demands less and more uni-
form wall divergence and, therefore, proves once more
to be superior than geometry b as a nozzle candidate.

Concluding Remarks

In summary, the present work has used CFD tech-
niques to performed 2-I) and 3-D simulations of tran-
sonic wind tunnel nozzles. The flow was modeled with
the aid of the Euler equations. In order to study the
main viscous effects, in particular boundary-layer thick-
ness at the test section entrance, the 3-D results were,
then, used as input to a boundary-layer solver(14], The
full 3-D calculations seem to corroborate the earlier 2-
D results in the sense that they point to geometry a
as being a better nozzle candidate. The sonic nozzle
studied proved to be able to give high-quality test sec-
tion flow. These simulations are being used in an actual
design environment in order to aid in the selection of
appropriate nozzle geometries to equip the TTP facility
which is currently being constructed.
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