ICAS-94-2.5.1

AN ADVANCING FRONT GRID GENERATION
SYSTEM FOR 3D UNSTRUCTURED GRIDS

Lars G. Tysell
The Aeronautical Research Institute of Sweden (FFA)
Box 11021 S-161 11 Bromma, Sweden

Abstract

A program package for the generation of three-
dimensional unstructured grids around complex ge-
ometries has been developed. The grid generator is
based on the Advancing Front algorithm. Tetrahe-
dra of variable size, as well as directionally stretched
tetrahedra can be generated by specification of a
proper background grid. The ADT (Alternating Digi-
tal Tree) data tree structure has been implemented in
order to reduce execution times. The CPU time fol-
lows the asymptotic Nlog(N) behaviour of the ADT
algorithm (N is the number of tetrahedra). A restart
possibility has been implemented, as well as modules
for smoothing and ”colouring”. The geometry is de-
fined by a set of surface patches. Each patch is rep-
resented by a quadrilateral network of points. The
surface patch connectivity is computed by the pro-
gram. The input files to the program are these surface
patches and a background grid. From this information
the surface triangle grid and volume tetrahedra grid
are automatically generated. The program can also
be used for the generation of two-dimensional grids.

1. Introduction

This paper gives a description of all programs in-
cluded in the TRITET program package. The pack-
age is used for the generation of unstructured grids
around arbitrary 2/3-dimensional geometries by use
of the Advancing Front method.

During the last decade, considerable amount of re-
sources have been spent on flow simulations around
complex configurations. Different types of computa-
tional grids have been used. Today, the two major
approaches are patched multiblock grids and unstruc-
tured grids.

The last generation of structured multiblock grid
generation programs are general purpose codes(!=9%),
They rely heavily upon advanced graphics on inter-
active workstations. The user can build the grid step
by step, inspect it and gradually improve it. But even
with the most advanced programi, the amount of man-
ual input may be considerable. Thus, to generate a
multiblock grid around a complex configuration will
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always require a person with a lot of experience on
grid generation and about a month of work.

Grid generation programs for unstructured grids
are normally based on Delaunay triangulation(®), or
the Advancing Front method(7:8), The major advan-
tage of using unstructured grids is that the grid gen-
eration process can be automated to a much higher
extent than for a multiblock grid. The grid generation
time can be reduced from months to days. Another
important advantage of using unstructured grids is
the possibility to efficiently implement adaptive grid
refinement. In this manner it is possible to improve
the resolution of flow gradients during the flow compu-
tation. The disadvantage of using unstructured grids
is that the computational time will be longer than
for computations using a multiblock grid. The disad-
vantage of a slower grid generator and flow solver is,
in our opinion, of much less importance than the ad-
vantage of a much more simple and userfriendly grid
generation procedure. Unstructured grids will facili-
tate the flow computation around complex geomtries.
It will be much easier and faster to generate grids for
complex geometries and flowfields than with struc-
tured grids.

2. General Description

The TRITET program package is written in ANSI
Fortran 77. The program package, which is almost
complete, consists of 11 modules. The program is
based on the Advancing Front algorithm. It can
be used for generation of triangles for 2-dimensional
grids and tetrahedra for 3-dimensional grids. The
ADT®) (Alternating Digital Tree) data tree struc-
ture has been implemented in order to reduce exe-
cution times. The CPU time follows the asymptotic
Nlog(N) behaviour of the ADT algorithm (N is the
number of tetrahedra). The geometry is defined by
a set of surface patches. Each patch is represented
by a quadrilateral network of points. The input files
to the program are these surface patches and a back-
ground grid. From this information the grid is auto-
matically generated. The Advancing Front technique
is well known and we have used much the same meth-
ods as described in("~11). Hence, some formulae and
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algorithms are not described in detail in this paper.
Instead we will concentrate on our software implemen-
tation of the method.

The main features of the final 3-dimensional grid
generator will be:
o The geometry is defined by a set of surface patches.
Each patch should be of such a quality that it is pos-
sible to fit a spline surface to it.
e The background grid nodes are specified in an in-
teractive session on a graphics workstation using the
mouse. The size and directional stretching of the grid
tetrahedra are specified at each node.
¢ The background grid is automatically generated by
a Delaunay algorithm. This will reduce the time spent
by the user giving the input.
o The edges of each surface patch are automatically
subdivided into one-dimensional straight elements.
Spacing is interpolated from the background grid.
This will be the initial fronts for the surface grid gen-
eration.
e The surface triangulation is generated by the Ad-
vancing Front algorithm in a parametric space of each
surface patch. Spacing and stretching are interplotad
from the background grid.
e The volume grid is generated by a 3-dimensional
Advancing Front algorithm.

2.1 Geometry definition

The geometry is defined by a set of surface patches.
Each patch is represented by a quadrilateral (mxn)
network of points. The points may be irregularly dis-
tributed. The only restriction is that the networks
should be of such a quality that it is possible to fit a
bicubic spline surface. One side of the network may
be collapsed into a point. Each surface patch is stored
on a separate file. The modular structure of the pro-
gram package makes it easy to add a module (if de-
cided) converting NURBS-surfaces to these spline sur-
faces. A CAD-interface is probably necessary anyhow
in order to convert the geometry definition to surfaces
suitable for CFD calculations.

3. Program Description

For the sake of simplicity and to make it easy to
exchange modules in the future, each step in the grid
generation process is represented by a separate pro-
gram. In this section all programs currently included
in the program package will be described in detail.
The programs are linked together with Unix scripts.

Figure 1 shows a simple example of a 2-
dimensional grid. The background grid is composed of
five nodes only, one at each corner of the outer bound-
ary and one in the centre. The boundary is composed
of eight spline curves. The grid on the boundary is
computed by program DIVEDG, then the grid in the
interior is computed by program ADVFRO. We see
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Figure 1: Simple example of a grid.

that we have a nice transition in triangle size from
the boundary into the interior of the grid.

3.1 Program ADVFRO

This program  generates tetrahedra for
3-dimensional grids and triangles for 2-dimensional
grids. We will describe only the 3-dimensional grid
generator. The algorithm works in a very similar way
for 2-dimensional grids. The program is based on the
Advancing Front algorithm. There are three input
files, one for the background grid, one for the trian-
gulated boundary grid, and also a file specifying some
input parameters. The background grid is a coarse
grid of tetrahedra used in order to specify the tetra-
hedron size and stretching of the grid to be generated.
The transformation matrix Ms (symmetric 3 x 3) of
the grid to be generated is specified at each node in
the background grid. The transformation matrix de-
pends on the desired tetrahedron size and directional
stretching. The formula to calculate the transforma-
tion matrix is given in(®). A tetrahedron with unitary
edges in the transformed (normalized) space will have
the specified size and strecthing in the physical space.
The data structure of the program is based on eight
lists. They are given below:

1) Store the coordinates for all nodes in the back-
ground grid.

2) Store the four node numbers for all tetrahedra
in the background grid.

3) Store all tetrahedra in the background grid in
an Alternating Digital Tree (ADT). A detailed
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description of the ADT data structure is given
in(9)
in(®),

4) Store the coordinates for all nodes in the grid.

5) Store the node numbers of the face, and the
tetrahedra numbers adjacent to the face, for all
faces in the front.

6) Store all faces in the front in an ADT data struc-
ture.

7) Store all faces in the front in a heap list depend-
ing on their size. A detailed description of the
heap algoritm is given in(19),

8) Store all faces in the front which were not able
to be the base for a new tetrahedron. This is
called the list of bad front faces.

The Advancing Front grid generation technique im-
plemented in this program consists of the following
steps:

1.1) Store the background grid in an ADT data
structure. This will make it easy and fast to
search for the proper background tetrahedron.
The time to search for a tetrahedron located in
a certain region will be propotional to log(N),
where N is the number of tetrahedra stored in
the tree. Before the tetrahedron is stored in the
tree the node coordinates have been converted
to integers.

1.2) Store the faces in the initial front (the bound-
ary) in an ADT data structure.

1.3) Store the faces in the initial front in a heap list
depending on their size. The size of a face is
taken to be the height of the tetrahedron to be
generated with the face as the base face.

2.1) Select, from the heap list, the front face with the
smallest size. This face will be the base face for
the next tetrahedron to be generated. Calculate
the centre point of the new base face. The face
is deleted from the heap list.

2.2) Select, from the ADT data structure, the back-
ground tetrahedron inside which the centre
point of the base face is located. Interpolate, by
linear interpolation, the transformation matrix
at the centre point from the values at the nodes
of the tetrahedron. This is called the current
transformation matrix. A detailed descrip-
tion of the linear interpolation is given in(11),

3.1) Use the current transformation matrix to trans-
form the nodes and centre point of the base face
to the normalized space.
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Figure 2: Geometry for a delta wing.

3.2) Calculate the ideal position in the normalized
space of the top point used to form a new tetra-
hedron. Calulate also the posititions of some
help points. Transform these points back to the
physical space.

3.3) Calculate, in the normalized space, the mini-
mum radius of a sphere with centre in the ideal
point enclosing the base face. Enlarge this ra-
dius with a factor > 1.3.

3.4) Transform this sphere back to the physical
space. Calculate a box enclosing this trans-
formed sphere. This box is called the search
region.

4.1) Collect, from the ADT data structure, the front
faces (partly) inside the search region. Trans-
form the nodes for these faces to the normalized
space. Collect also, from this list of front faces,
the nodes that are inside the search region.

4.2) Order the collected front nodes, the ideal point
and the help points in a list depending on how
regular tetrahedra they will form.

5.1) Select the best point (the point with the small-
est order factor) from this list and create the
new tetrahedron. If there was no point in the
list, store the base face in the list of bad front
faces, go back to step 2.1 and selelect a new face.

5.2) Check, in the normalized space, if the new tetra-
hedron intersects or nearly intersects any of the
collected front faces. If it does, go back to step
5.1 and select a new point. We use the tech-
nique with covariant and contravariant coordi-
nates to check for intersection between the faces
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Figure 3: Ideal point and help points.

of the tetrahedron and the faces in the front. A
detailed description of this is given in("), We
use a restrictive condition, we consider it as in-
tersection even if they are some distance away
(<0.3, input in parameter file) from each other.

8.1 Calculate the size for the new front faces using
the current transformation matrix.

6.2 Add the new node, tetrahedron and front faces
to their respective lists.

6.3 Delete the faces, that are no longer front faces,
from the lists of front faces.

6.4 If there are any face left in the list of front faces,
go back to step 2.1

3.1.1 Ideal and Help Points

The ideal point is placed above the centre point (on
the normal to the base face passing through the centre
point) at the distance é caclulated by the formula:

6 = 0.83min(1.8b, maz(0.5b,1.0))
1
b= -3-(b12 + b3 + ba3)

where b;; = distance between nodes 7, j of the base
face; i,7=1,2,3.

Help points are placed at the distance 0.7 above
the centre point and at distance § above each of the
three nodes, see figure 3. We do not have help points
closer to the base face, as in®). Our experience is that
this might cause ever descreasing front faces in diffi-
cult regions. This will eventually lead to a hopeless
situation, see figure 4 showing all faces around a hole.

Figure 4: Decreasing faces around a hole.

3.1.2 Ordering of Points

The collected front nodes, the ideal point, and the
help points are ordered in a list, se step 4.2 above. The
order factor for the ideal point and the help point at
0.76 is 1.0 and >>1.0 respectively. The order factor
for the three node help points is 0.99 if b < 0.7, oth-
erwise 1.01. Hence, the three node help points are
selected before the ideal point if a rapid expansion
of the grid cell sizes is required. We believe this will
facilitate a rapid expansion of the grid cell size. An or-
der factor is also calculated for the collected old front
nodes, depending on how regular tetrahedra they will
form. If the tetrahedron is of good quality the order
factor is < 1.0. Several criteria have been proposed,
see e.g.(811). We use a criteria taking into account
both the skewness of the tetrahedron and the distance
between the centre point and the top point. As long
as the projection of the top point is inside the bace
face, the tetrahedron is considered to have no skew-
ness. However wee do not think the criteria is that
critical, as long as it is reasonable. It is probably
more important how the check in step 5.2 above is
done. The faces of the new tetrahedron must not be
too close to the old faces in the front. Otherwise this
will cause trouble later on. Creation of one tetrahe-
dron of low quality is acceptable as long as the further
grid generation is not hampered.

3.2 Program RESTRT

In some regions of the grid it may not be possi-
ble to generate grid elements (tetrahedra/triangles)
of good quality. This is particularly true for 3-
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Figure 5: Generic hole in the grid.

dimensional grids. Hence, holes are left in the grid,
see step 5.1 in the description of program ADVFRO.
Figure 5 shows a situation where the hole can not
be filled with terahedra without adding a new node
inside the hole. This is because the diagonals on the
three vertical sides are unsuitably oriented. Note that
this is not caused by a poor algorithm. The problem
is inherent in the Advancing Front grid generation
concept. It is worth to stress that this situation has
no counterpart in a 2-dimensional space. When prob-
lem arise in the grid generation process it is often a
variation of this theme. As explained in section 3.1.1,
adding a new node may be the solution, but it may
also cause more problem later on.

Another way to handle this problem is to delete the
layer of tetrahedra around the hole, and then restart
the grid generation from this new front. The restart
program RESTRT locates the holes and deletes the
layer of elements around the holes, in order to create
a new front.

The procedure consists of the following steps:

1) Mark the faces that are still in the front.
2) Mark the nodes located on these front faces.

3) Mark the faces that have 1, 2 or 3 front nodes,
(user defined).

4) Delete the tetrahedra having a face marked in
step 3.

5) Renumber the nodes, faces and tetrahedra.

The grid generator is then used once again with
this new front as input. A random parameter can
be set by the user effecting the order in which the
faces are selected and/or the order factor of the points.
Thus,since the grid generation process is not exactly
repeated this time the same situation will hopefully
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Figure 6: Grid quality statistics.

not occur and the holes will be filled. If some holes
still remain in the grid the restart program must be
used once again. Usually this has to be repeated a
limited number of times.

A more radical solution may be to swap some of
the edges around the holes. Then it must be checked
that the new faces do not intersect the other faces.
We will write a program for this purpose.

Figure 2 shows the geometry and symmetry plane
for a delta wing. The grid generated around this wing
consits of 322.000 tetrahedra and 650.000 faces. After
the first run 4.600 faces still remain in the front. This
corresponds to approximately 460 holes. Grid quality
statistics for this grid is shown in figure 6.

3.3 Program SMOOTH

This program is used in order to smooth the grid
generated by the grid generator. Each node is up-
dated iteratively. The well-known Laplace smoother
defined by the formula:

N
Xn+l . ¥n + gﬁf_z(f}: _X‘n)
k=1

is used, where N is the number of nodes surrounding
the node X to be smoothed. Cr¢ is a relaxation fac-
tor. The node is updated from step n to step n+1
only if:

min(ATH, L, A > min(AT, ..., AY)
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Figure 7: Grid quality before smoothing.

where A; is the volume of tetrahedron j, and M is
the number of tetrahedra surrounding the node X.
Hence, the grid can not be inverted. Since each node
must be updated immeditely it is not possible to vec-
torize the algorithm. The measure we use here is the
ratio:

min(Ay, ..., Apm)
maz(Ay,...,Apm)

Quality =

By using this measure we do not need the back-
ground grid, since it is not necessary to normalize the
size of the tetrahedra. Figure 7 and figure 8 show the
quality statistics for the wing profile grid shown in
figure 14, before and after smoothing respectively.

3.4 Program COLOUR

Our finite volym flow solver(!?) use the colour-
ing techique in order to vectorize/parallelize the al-
gorithm. The program described here is used in order
to compute the colouring of the grid. That means
that the edges and faces of the tetrahedra (edges of
the triangles for 2-dimensional grids) in the grid are
collected into different groups. Two different colour-
ings are computed, one for the convective terms and
one for the dissipative terms. The colouring pattern
for the convective terms is computed by the following
simple procedure:

1) For each face store the top nodes in the two
adjacent tetrahedra.
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Figure 8: Grid quality after smoothing.

2) Invert the list above. For each node store the
surrounding faces.

3) For each node:
Walk through the surrounding faces. For each
face check if a colour already has been selected,
if not - select a colour that not has been used
for any face surrounding this node.

Despite the simple scheme, the number of colours
is very close to the minimum possible value (the max-
imum number of faces surrounding any point). The
colouring pattern for the dissipative terms is com-
puted by a similar procedure.

3.5 Program NUMTET

This program is used in order to estimate the num-
ber of tetrahedra (triangles) generated by the Advanc-
ing Front grid generator. The input to this program
is the backround grid only. It is assumed that the
background grid completly but not excessively covers
the region where the grid has to be generated. The
transformation matrix at the centre of each tetrahe-
dron is interpolated from the values at the nodes. The
size of the grid tetrahedra to be generated inside each
background tetrahedron is estimated from this trans-
formation matrix. The number of tetrahedra inside
the background tetrahedron is taken to be the vol-
ume of the background tetrahedron divided by the
estimated tetrahedron size. The number of tetrahe-
dra in every background tetrahedron is then summed
up to get the total number of tetrahedra.
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3.6 Program EXTEDG

So far all programs described can be used in both
two and three dimensions. However, the first step in
the generation of a 3-dimensional grid is to generate
the grid on the boundary surfaces.

This program reads all surface patches from the
files and extract the boundary curves. The boundary
curves are represented by a set of points. Since the
surface patches may not match exactly, the program
accepts a tolerance specified by the user. Only one
patch on each object need to have the outward normal
pointing in the right direction. The other patches are
reversed automatically if necessary. Figure 9 shows
a simple surface composed of 7 surface patches. All
corners of the patches do not match. One edge of a
patch may be degenerated to a point.

The boundary curves are extracted by the follow-
ing procedure:

1) Extract all boundary curves. Store them in a
list. The curves are represented by the points
on the edges of the networks defining the surface
patches

2) If an endpoint of one boundary curve is, within
a certain tolerance, the same as an endpoint in
another (or the same) boundary curve - make
them identical.

3) Check if the endpoint of one curve is, within
a certain tolerance, located on another curve.
If it is, divide the latter curve into two curves.
The new endpoints for the two curves are copied
from the endpoint of the ”intersecting” curve.
Continue this process until no endpoint is lo-
cated on any other curve.

4) a) If more than two curves have the same two

endpoints - divide one of the curves into two
curves and go back to step 3.
b) If two curves have the same two endpoints -
make the curves identical. Thus, copy the points
defining the curve from one of the curves into
the other one in the reversed order.

5) Store the new boundary curves on files, one file
for each patch.

3.7 Program DIVEDG

This program reads the boundary curve file for
each surface patch. By use of the background grid
the boundary curves are divided into line segments
of proper size. In the first step the boundary curve
is approximated by straight lines through the points.
There are two copies of each boundary curve, be-
longing to two adjacent patches. Since the points in
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Figure 9: Surface composed of 7 patches.

these two boundary curves are running in the oppo-
site direction, the division of the boundary curve into
line segments must be independent of this direction,
otherwise the grid points in the two adjacent surface
patches will not match. This is accomplished by taken
as the start point the endpoint with the minimum
x/y/z-value. If the endpoints are the same, check the
points next to the endpoints. Finally, in a second step,
this distribution is applied to a cubic spline through
the original boundary curve points. The line segments
are written to a new boundary curve file.

3.8 Program MAPSRF

This program maps a surface patch and its bound-
ary curves to a 2-dimensional quadrilateral with
straight edges. The shape of the patch and the length
relations between the four/three edges of the patch are
kept as much as possible. The reason is that the size
and stretching of the triangles in the mapped space
will then not be so distorded. This will make it easier
to produce a grid of good quality. The mapping is
good if it is possible to flatten the surface patch with-
out excessive strecthing. The techique used is similar
to the mapping in(".

The steps involved in the mapping of the surface patch
are:

1) Calculate the arc-length of the four edges in the
3-dimensional space.

2) Rotate the patch so that the shortest edge will
be the top edge in the 2-dimensional (z/ — y/)
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space. The other edges are called bottom, left
and right.

3) Calculate the arc length distribution along the
edges in the 3-dimensional space.

4) Place the lower-left corner at (0,0) in the 2-
dimensional space. Use the arc length distri-
bution calculated in step 3 to place the points
on the bottom edge along the z/-axis. The top
edge is made parallell to the z/-axis. The y/-
coordinate is taken to be a weighted mean of the
lengths of the left and right edges. The centre of
the top edge is placed so the shape of the patch
is kept as much as possible. Use the arc length
distribution calculated in step 3 to distribute
the points along the top edge. The points on
the left and right edges are distributed along
straight lines using the arc length distribution
calculated in step 3.

5) The interior points are calculated as the in-
tersection of straight lines between lower-upper
edge and left-right edge.

This mapped 2-dimensional surface network will
also be the new 2-dimensional background grid af-
ter diagonalization. The 3-dimensional tranforma-
tion matrix Mg (3 x 3) is interpolated from the
original background grid (the tetrahedra are stored
in an ADT data structure) and translated to a 2-
dimensional transformation matrix M, (2x2) applied
at the points of the 2-dimensional surface network.
Since a 2-dimensional background grid is used, and
not the original 3-dimensional background grid, ex-
actly the same grid generation program (ADVFRO)
can be used both for surface grids and ordinary 2-
dimensional grids. The drawback is that the surface
network must be fine enough to resolve the character-
istics of the background grid. However, this should be
no problem since the surface network always can be
refined. This boundary and new background grid will
then be used by the 2-dimensional grid generator.

3.9 Program SPLSRF

This program maps the 2-dimensional unstruc-
tured grid, generated in the mapped space inside a
surface patch, back to the physical space. The surface
is approximated by a bicubic spline surface through
the network of points. The 2-dimensional unstruc-
tured grid is read from a file, mapped and written
back to the same file.

The steps involved in the mapping back to the phys-
ical space are:

1) Represent the surface patch by a bicubic spline
surface through the network of points. I- and
J-index are used as the u- and v-parameter.

Figure 10: Surface grid on the same surface

2) Calculate the I- and J-index (reals) for every
node in the 2-dimensional unstructured grid.
Bilinear interpolation on the diagonalized sur-
face patch is used. The ADT data structure is
employed for the searching of the proper net-
work triangle.

3) Use the spline representation to map the nodes
back to the 3-dimensional space.

3.10 Program ADDSRF

This program reads all surface grid files and
merges them to one surface. Figure 10 shows a surface
grid generated on the surface given in figure 9. The
boundary of each patch is kept, but the grid is smooth
through the boundaries. The triangles are smaller in
the lower left corner, as specified.

3.11 Program DELPNT

This program deletes doublets of nodes in a 2-
dimensional boundary grid file. The nodes at the end
of each curve in the boundary grid file exist twice.
These redundant nodes are removed and the remain-
ing nodes are renumbered.

This program does also delete doublets (triplets,
etc.) of nodes in a 3-dimensional surface grid file. The
nodes at the boundary of each patch in the surface
grid file exist more than once, since they also exist in
the adjacent patches. These redundant nodes are re-
moved and the remaining nodes are renumbered. The
ADT data structure is used for the searching involved
in the algorithm.
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Figure 11: CPU time of grid generator, ( A ).

4. CPU Times and Memory Requirements

The programs with significant execution times
and memory requirements are those used for 3-
dimensional grid generation. All of them have execu-
tion times less than propotional to O(Nlog(N)), where
N is the number of tetrahedra. The execution times
in the table below are for a 3.5 Mflops computer.

Program Number of Minutes/
words/point 100.000 tetrahedra

ADVFRO 25 45

RESTRT 60 1

SMOOTH 80 5

COLOUR 80 2

Figure 11 shows execution times for the grid gen-
erator ADVFRO on a 3.5 Mflops computer. We see
that the execution time depends almost linear upon
the number of tetrahedra. Theoretically the execution
time should follow the asymptotic Nlog(N) behaviour
of the ADT algorithm. The program ADVFRO re-
quires less memory than the other programs. The
reason is that only the faces in the front is stored in
the memory.

5. The Grid Generation Package

The 3-dimensional grid generator has been mod-
ified for use also for the generation of 2-dimensional
grids, since there are so much in common. Thus, there
is only one grid generator used for all purposes. The
grid generation package requires a background grid
file and files defining the surface patches. There is

also a parameter file common for all programs. The
parameter file is given below. The amount of input
given by the user, except for the background grid, is
very moderate. Before the grid generation starts it is
suitable to check that the grid will have the desired
number of elements. This is done by use of the pro-
gram NUMTET. The background grid (or the density
parameter) is modified if the estimated number of el-
ements differs to much from the desired number of
elements.

$SURFACE PATCHES

---- number of patches —-
7

-~~~ test distance for corners ——————-————w--
0.01 ’

$ADVANCING FRONT

---—- type of run : 1-4 ~---( Restart=2-4 ) --
1

—--—- threshold parameter : 1-6 -—---—-—r————
---- parameter for random number : 1-50 --—--
14

--—— grid density parameter : > 0.0 ———~-——-
1.0

$RESTART

---- minimum number of points on front face

3

$SMOOTHING

--- number of iterations ---

50

--- relaxation factor

0.5

5.1 Surface Grid Generation Script

As explained in the previous sections many pro-
grams are involved in the process of generation of a
surface grid. For the sake of simplicity and to make
it easy to exchange modules in the future, each step
in the grid generation process is represented by a sep-
arate program. These programs are linked together
by use of a UNIX-script. The script below shows how
the programs are linked together.

#!/bin/csh

#--- grand loop for all surface patches ----
#copy parameter/background file to tmp files
cp PARGRD.DAT ZZZ111.TMP

cp BACGRD.DAT ZZZ222.TMP

# read number of surface files

set LINE = ‘cat PARGRD.DAT | \\

avk °’/\$SURFACE[ JPATCH/ {print NR+2}’‘

set NFIL = ‘cat PARGRD.DAT | \\

awk "NR == $LINE"®
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# extract boundary curves from all patches
extedg.x

#--- grand loop for all surface patches —---
eN=0

while ($N < $NFIL)

CN=¢N+1

# copy into local files

cp ZZZ111.TMP PARGRD.DAT

cp 22Z222.TMP BACGRD.DAT

cp PATGRD.DAT_$N PATGRD.DAT
cp CURGRD.DAT_$N¥ CURGRD.DAT
# divide each curve into line segments
divedg.x
# map each surface patch and boundary to 2D
mapsrf.x
# delete identical points on boundary curves
delpnt.x
# generate the unstructured grid
L1:
advfro.x > ZZZERR.TMP
# read the message file
set ERR = ‘cat ZZZERR.TMP | grep -c ’ERR’‘
if( $ERR == 1 ) then
cat STAGRD.LIS
echo "Edit Parameter file"
L2:
echo "Then write continue."
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set dummy = $<
if( $dummy != continue ) goto L2
smooth.x

restrt.x
goto L1
endif
# smooth the grid
smooth.x
# map the 2D surface grid back
splsrf.x
cp TETGRD.NET BNDGRD.DAT_$N
end
ittt end of grand loop ———=—————m——-

# add all boundary grids into one file
addsxrf.x

# delete identical points

delpnt.x

# copy parameter/background files back
cp 2ZZ111 .TMP PARGRD.DAT

cp ZZZ222.TMP BACGRD.DAT

# delete local files

rm ZZZ%.TMP BNDGRD.DAT_#* CURCRD.DAT_*

Figure 12 shows a surface grid on a fighter configu-
ration. The surface is composed of 20 surface patches.
We see that the grid is smooth and regular, also at
the patch boundaries.
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Figure 13: Cut through a 3-dimensional grid around a delta wing.

5.2 Volume Grid Generation Script

When the surface grid has been generated it is
time for the generation of the volume grid. The pro-
grams involved are: ADVFRO, RESTRT, SMOOTH
and COLOUR. They are used one after the other.
The script below shows how the programs are linked
together. We see that smoothing is done before the
layers around the holes are deleted. This gives a mod-
ified (smoothed) grid around the holes, which will fa-
cilitate the grid generation.

#!/bin/csh
# copy the parameter file to a tmp file
cp PARGRD.DAT ZZZ111, TMP
# generate the unstructured grid
L1:
advfro.x > ZZZERR.TMP
# read the message file
set ERR = ‘cat ZZZERR.TMP | grep -c ’ERR’‘
if( $ERR == 1 ) then
cat STAGRD.LIS
echo "Edit Parameter file"
L2:
echo "Then write continue.”
set dummy = $<
if( $dummy != continue ) goto L2
smooth.x
restrt.x

1

goto L1
endif
# smooth the grid
smooth.x
# colour the grid
colour.x
# copy the parameter file back
cp ZZZ111.TMP PARGRD.DAT
# delete local files
rm ZZZ*.TMP

Figure 13 shows a cut through the 3-dimensional
grid around the delta wing. The geometry was shown
in figure 2. 3-dimensional unstructured grids are very
difficult to visualize. A cut through a 3-dimensional
grid gives a very peculiar pattern, since the plane ran-
domly cuts the tetrahedra close to the top or the base.
The problem can be solved by showing the cut as an
iso-surface, where the scalar can be e.g. the volume or
the skewness of the tetrahedron. Then the quality of
the grid is shown by the colour pattern, not the shape
and size of the polygons. Our flow visualization pro-
gram FloView has been extended with this feature
for unstructured grids. Unfortunately that kind of
colour pictures are too difficult to reproduce in black
and white. Anyhow, the figure indicates that there
are small tetrahedra at the leading edge, larger tetra-
hedra mid-chord and away from the wing profile.
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Figure 14: Grid around a wing profile.

5.3 2-Dimensional Grid Generation Secript

Generation of 2-dimensional grids involves the
programs DIVEDG, DELPNT, ADVFRO, RESTRT,
SMOOTH and COLOUR only. In this case the
boundary grid is computed by use of program
DIVEDG only. The script below shows how the pro-
grams are linked together.

#1/bin/csh -
# copy the parameter file to a tmp file
cp PARGRD.DAT ZZZ111.TMP
# divide each curve into line segments
divedg.x
# delete identical points on boundary
delpnt.x
# generate the unstructured grid
Li:
adviro.x > ZZZERR.THP
# read the message file
set ERR = ‘cat ZZZERR.TMP | grep -c ’ERR’°¢
if( $ERR == 1 ) then

cat STAGRD.LIS

echo "Edit Parameter file"

L2:

echo "Then write continue.”

set dummy = $<

if( $dummy != continue ) goto L2

smooth.x

restrt.x

goto L1
endif
# smooth the grid
smooth.x
# colour the grid
colour.x
# copy the parameter file back
cp 2Z2Z111.TMP PARGRD.DAT
# delete local files
rm ZZZ*, TMP

Figure 14 shows the grid around a wing profile.
The grid has a variable stretching decreasing away
from the wing profile. The stretching is approximately
20/1 in the wake region (not shown here).

6. Future Work

We will continue the work and develop a program
for the generation of the background grid. Then this
program package will be complete. The main feature
of this module will be:

The background grid nodes are specified in an in-
teractive session on a graphics workstation using the
mouse. The size and directional stretching of the grid
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tetrahedra are specified at each node. Then, the back-
ground grid is automatically generated by a Delaunay
algorithm. This will reduce the time spent by the user
giving the input. There will also be a possibility for
the user to connect the nodes to a grid by use of the
mouse. In order to generate highly stretched grids for
viscous calculations we will implement the Advancing
Layer concept(!3), We will also implement adaption
by use of remeshing and a gradient sensor as the main
method. This will just be another module added to
the program package.

7. Flow solver

The grids will be used by the unstructured flow
solver for 2- and 3-dimensional geometries we are de-
veloping at FFA. The flow solver(!?) is based on fi-
nite volume discretization using the trapezoidal rule
of integration. For dissipative terms, a blend of
Laplacian and biharmonic operators is employed. A
cell-vertex scheme was preferred over a cell-centered
scheme due to substantially smaller memory require-
ments and better accuracy. Multi-colouring is em-
ployed to enable vectorization and parallellization of
the code. Convergence is accelerated by means of
local time stepping, enthalpy damping and implicit
residual smoothing.

8. Conclutions

A program package for the generation of three-
dimensional unstructured grids around complex ge-
ometries has been developed. The grid generator is
based on the Advancing Front algorithm. Tetrahe-
dra of variable size, as well as directionally stretched
tetrahedra can be generated by specification of a
proper background grid. The geometry is defined by a
set of surface patches. Each patch is represented by a
quadrilateral network of points. The highly modular-
ized program package is easy to maintain and extend.
Surface grids and volume grids generated show that
the program package works well.
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