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Abstract

A perturbation method for analysis of nonlinear
wave interaction in  three-dimensional
compressible boundary layer is developed. The
method is based on a biorthogonal eigenfunc-
tion system for three - dimensional compressible
boundary layers. It is assumed that character-
istic space and time scales of the disturbances
are much less than space and time scales of non-
linear development and an averaging technique
in intermediate scales may be applied. The
method is a generalization of Zelman’s results
for two-dimensional incompressible boundary
layer. As an example a three-wave interaction
is considered. A numerical example for so called
Tollmien-Schlichting wave interaction shows
possibility of amplification for rather broad
packets without an exact resonance synchro-
nizm for three-wave interaction.

1. Introduction

Laminar-turbulent transition in boundary layer
flow occurs as a result of unstable disturbances
amplification. At sufficiently low level of ex-
ternal forcing (free stream turbulence, acous-
tic, vibrating of the streamlined surface etc) a
considerable part of the transition zone may be
described by the linear hydrodynamic stabili-
ty theory. A final stage of the development
is a nonlinear one, and consideration of distur-
bance nonlinear interactions may help in under-
standing of possible scenarios in the transition
to turbulence. The fundamental experiments

by Klebanoff et all*) discovered appearance and
Copyright © 1994 by ICAS and AIAA. All rights reserved.

growth of three-dimensional structures in tran-
sition zone, and the transition was accompa-
nied by occurrence of high frequency spikes in
oscilloscope observations. Amnother picture of
transition to turbulence was found by Kachanov
et al®. In their experiment a primary distur-
bance was induced in boundary layer by a vi-
brating ribbon, and an amplification of rather
broad packet of disturbances at half frequency
of the primary disturbance was found. Experi-
mental investigations(3)~(®) have shown an op-
portunity of various scenarios on the final stage
of laminar-turbulent transition. A discussion of
physical features in the nonlinear mechanisms
is given in the review by Kachanov("). Her-
bert and Morkovin(®) called the first type of
transition as K-breakdown. The second type
does not have generally accepted name, and we
callit as N-type of transition in accordance with
terminology of the review(”, It was established
that for relatively large value of primary distur-
bance amplitude the K-breakdown mechanism
reveals itself. When the primary disturbance
amplitude is relatively small, the N-type does
play the leading role. In application to a natu-
ral boundary layer flow transition it means that
there are primary waves that were selected due
to their amplification in linear stage; and their
amplitude values relative to other background
disturbance amplitudes determine possibility of
N-type or K-type scenario.

Nonlinear interactions in boundary layer flow
have been investigated in many theoretical
works. The most part of the models was based
on the so called weakly nonlinear stability the-
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ory. The corresponding bibliography may be
found in Herbert’s review(®). Among them we
would like to point out the papers(19)=(12) that
have the crucial role in the wave-resonant
scheme of transition(”). A theoretical oppor-
tunity of subharmonic resonance was pointed
out by Craik('®), It was suggested to consider a
resonant triade of a two-dimensional Tollmien-
Schlichting wave with two subharmonic oblique
waves in a two-dimensional incompressible
boundary layer. If the frequency of a primary
wave is equal to w; and a wave number in the
downstream direction is equal to o, the oblique
resonant waves have frequency w, = w;/2and a
wave number component in downstream direc-
tion a2 = a1 /2. The oblique waves have equal
values of transversal wave number components
+6. In the work by Nayfeh and Bozatly(}1)
four waves interaction was considered to explain
three-dimensionality in K-breakdown. Because
in this model the Craik’s type of resonance also
plays an important role, the theory was called
as Craik-Nayfeh-Bozatly model. Zelman and
Maslennikova(1?) analyzed resonance interac-
tions in a boundary layer flow with averaging
method that is adjustable to any kind of wave
packet interactions in scope of weakly nonlinear
theory. In terms of the method they success-
fully compared theoretical results with experi-
mental data. Explanation of the method and
its application are in the paper(13),

Although theoretical results by Zelman and
Maslennikova are in good agreement with ex-
perimental data for N-type of breakdown, the
first detailed comparison of theoretical and ex-
perimental data  was  obtained by
Herbert(1){15) in terms of the secondary insta-
bility model. In this model a composition of a
mean flow and a primary wave is considered as
a basic flow for secondary instability analysis.
There are the following assumptions:

1. Mean flow in the boundary layer is consid-
ered as a parallel one; 2. The primary Tollmien-
Schlichting wave has locally constant ampli-
tude; 3. Nonlinear self-interaction for secon-
dary disturbance is neglected. The secondary
instability model provides a convenient numeri-
cal method to analyze a subharmonic reso-
nance. Later the secondary instability method
was applied to compressible two-dimensional
boundary layers(1®). The secondary instabili-
ty method as Zelman’s method demonstrates a
possibility of broad band packet amplification.
We consider the secondary instability method
as a useful tool to analyze subharmonic reso-
nance interactions, while the Zelman’s averag-
ing method is a regular perturbation method,

which contains a procedure to take into account
next terms of the asymptotical solution; and it
allows to analyze other kinds of nonlinear inter-
actions. Moreover, after assumption about scal-
ing in space and time, the secondary instability
equations may be reduced to the equation for
the subharmonic disturbance in the Zelman’s
method.

The problem of nonlinear interaction in three-
dimensional boundary layer becomes very com-
plicated. Lekoudis(!?) found many resonant tri-
ades in boundary layer over a swept-back wing,
but an interaction of the disturbances was not
considered. The first application of a pertur-
bation method to a nonlinear problem in the
incompressible tree-dimensional boundary lay-
er was done by El-Hady(!®), It was shown that
there are various opportunities for the reso-
nance interaction because in three-dimensional
boundary layer different types of disturbances
may exist (Tollmien-Schlichting waves, cross-
flow instability, Gortler instability and so called
vertical vorticity disturbances). The calcu-
lations(18) showed a strong amplification of dis-
turbances due to nonlinear triad interactions.
Nonlinear interactions in three-dimensional in-
compressible boundary layers were also consid-
ered in scope of secondary instability
theory(19):(20),

In summary of the introduction, we would like
to point out that the problem of nonlinear inter-
actions in three-dimensional compressible
boundary layers has not been considered yet.
The goal of the present paper is to formulate
a procedure that allows to generalize Zelman’s
results for 3D compressible boundary layer flow.

2. Biorthogonal eigenfunction system

Success in the perturbation method depends on
the appropriate choosing of corresponding lin-
ear solution presentation, because in the next
order of magnitude, which is associated with
nonlinear interactions, functions are calculat-
ed with the help of this basic solution. The
main tool of amplitude equation evaluating is
solvability condition for equations obtained in
the next orders of magnitude. Usually there
is a non-uniform system of ordinary differential
equations and the non-uniform part of the sys-
tem must be orthogonal in some sense to the
solution obtained in the main order of magni-
tude. Thus, the first step in the generalization
of the perturbation method is to formulate the
basic system of functions for linear problem and
to point out an orthogonality relationship.

A biorthogonal eigenfunction system for spa-
tially growing disturbances in two- dimension-
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al compressible boundary layer was proposed
in the paper(?!), A three-dimensional version
of the system was published in(®?). The for-
mulation of the eigenfunction system suggests
quasi parallel boundary layer flow, because the
characteristic scale of disturbances is compara-
ble with boundary layer thickness and much less
than scale of non-uniformity of the basic flow.

Let’s consider a plane paralle]l three-dimensio-
nal boundary lay flow of a compressible gas. We
select as coordinate system: y is the distance a-
long the normal to the streamlined surface; Oz
axis is along the velocity vector of the mean
flow at the edge of the boundary layer; and Oz
axis is along the streamlined surface and nor-
mal to Oz axis. Navier-Stokes equations are
being written in dimensionless form by using
the displacement thickness §* calculated with
mean velocity profile in the z - direction; and
the velocity scale U, is the velocity at the edge
of the boundary layer. We measure the time in
units §*/Up, the pressure is referred to o, UZ.
The temperature, viscosity and density are also
measured in units of corresponding quantities
outside the boundary layer: T.,u. and p..

We define a complex vector-function A with 16
component: A; = u - z velocity component;
A; = Ou/dy; A3 = v - y - velocity compo-
nent; A4 = P - pressure disturbance; As =
T - temperature disturbance; Ag = 8T/dy;
A7 = w - z-velocity component; Ag = dw/dy;
Ag = 8A1/6z; A10 = 8A3/6:c, Au = 8A5/6:c,
Alz = 6A7/8x; A13 = 6A1/3z; A14 = 8A3/62;
Ais = 0As/02; A = O0A7/0z. Linearized
Navier-Stokes equations are being written in
the following form

A
HoZZ + £9—-—(L aA) +0,22 C oy

at " oy \ %oz 0y
JA A
HygA + Hz-(;}-; + Hs%-;;

where H; and L; are matrices 16 x 16. Their
non-zero elements are presented in the Appen-

dix Al. The following biorthogonal system
{Aag, Bag} is introduced.

. d dA
—wHoAqp + rm (Lo—(—iyiﬁ-) + (2.2)

dA . )

+ 1 d;" = HioAap + iaHyAnp + iBH3 A op;
¥Y=0: Aapt = Aaps = Aaps = Agpr = 0;
y—o0: JAggil<oo (5=1,..,16).

— d «dBag

szo Bap + —2:17 (Lo—gg—) - (23)
~ 1928 = {3yBop  iaH;Bap - PHiBap
y=0: Bapgz = Baps = Bags = Baps = 0;
y—00: |Bagjl<oo (j=1,..,16).

In Eqgs (2.2), (2.3) and what is following a, 8,w
are in general case complex numbers; * denotes
adjoint matrix; the bar above indicates com-
plex conjugation. The biorthogonal system has
both discreet and continuous spectra. Insta-
bility waves exist among the discreet spectrum
solutions that tend to zero at y — o0. The con-
tinuous spectrum solutions are limited outside
the boundary layer. If @ and 3 are real param-
eters we deal with the temporal stability theory
when disturbances may grow in time. If wis a
real parameter, the disturbances may grow in
space. We are considering w and f real; @ may
be a complex parameter. For each fixed w and
B we can repeat the procedure of the work(2t)
to obtain the conclusion about completeness of
the introduced system. The following orthogo-
nality relationship is valid

< HzAaﬁ; B‘Yﬁ >= Aa7; (24)
16 %

<A B>= ll_rf‘l)z /e"”A_,-F,- dy;
Jj=1 0

where Agy = 6o is the Kronecker symbol, if
one of the numbers belongs to the discreet spec-
trum; Agq = §(a — 7v) is the delta-function, if
both numbers belong to the continuous spec-
trum. In numerical analysis it is more conve-
nient to calculate A,g and B,g with an arbi-
trary normalization. Thus, in a general case we
have in the Eq. (2.4) a factor that depends on
the normalization. Certainly, the final results
are independent of the normalization.
Although the proposed form of biorthogonal
eigenfunction system is a convenient one for or-
thogonality analysis, computational procedure
may be more embarrassing than in regular sta-
bility analysis, where eight ordinary differential
equations are considered. Therefore, the next
important step in our method is to carry out
a correspondence between the solutions of the
Egs. (2.2), (2.3) and the solutions in regular
formulation of stability problem in compress-
ible gas.
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Linear stability equations in three- dimension-
al compressible boundary layer are written in

th 1 i -
tioen Sr(eg;l,(g.i) form of the system of eight equa

dZ.p
dy

where the vector Z contains only eight compo-
nents that are the same as the first eight com-
ponents of the vector A,g; H, is a matrix 8 x 8,
its non-zero elements are presented in the Ap-
pendix A2. The boundary conditions for the
solution are the following

= H‘ Zaﬁ, (2.5)

¥y=0: Zapi = Zops = (2.5a)
Zaps = Zopr = 0;
Yy—=00: |Zagjl<oo (j=1,..,8).

The adjoint problem may be written in the form

- ‘Ij;;ﬂ =HiY.5  (26)
with the following boundary conditions
y=0: Yop=Yopu = (2.6a)
Yaps = Yaps = 0;

y—o00: [Yapil<oo (j=1,..,8).

The correspondence between vector Yoz and
the vector B,g is presented in the Appendix
A2. Also there are the following important re-
lationships, which may be established by direct
substitution:

. _OH,
< HoAqop,Bapg>= i< ——Zap, Yap >;

ow
. O0H,

< HzAap, Bap >= -1 <L -azzaﬁ, Yaﬁ >3
.  OH,

< H3Aqp, Bap >= —i < —aFZaa, Yap > .

3. The perturbation method

We write the nonlinear equations for distur-
bances in the following form

0A 0 0A 0A

A A
HioA + 52-5; + Hsg; + eH (A)A;

where the operator Hy is associated with non-
linear interactions; € — is the amplitude param-
eter. We consider the boundary layer flow as a
parallel one. Non-parallel effects may be con-
sidered also in the scope of the method(13), We
assume that the parameters w, § are real and
the initial data allow to consider disturbances
as a sum of narrow {)ackets with wave num-
bers k(*) = (a,(2) , f*)) and frequencies w(*).
We suppose existence kg = (asg, o) that & >
ko > ¢; and the main idea is based on as-
sumption of different scales in space and time:
1. The ‘fast’ scale in space corresponds to a
wavelength A < 1/kg and the ‘fast’ time scale
is wqy 1 where wq is a character value of the
disturbance frequency; 2. The scales of non-
linear distortion in space and time have order
of magnitude O(e~!) and we can introduce the
‘slow’ variables z; = ex;2z; = €z;t; = ¢f. To
apply the Zelman’s technique we assume exis-
tence of intermediate scales L, and T,: A <
L. < At wyt € T. < (we)™t. More pre-
cisely we have to talk about scales X, and Z,
in z— and z— directions correspondingly, and
the following inequalities must be valid:

6—1 > (aOX’HﬂOZ!’wOTt) > 1.

Due to the introduced scaling the disturbance
behavior in a local area is similar to linear de-
velopment. On the large scales we consider a
nonlinear distortion.

Let’s present a solution of the Egs. (3.1) as a
sum of narrow wave packets

wiiae  B+AB
A=Y / dw / dBAT &%  (3.2)

oA pl-ap

Z A, = Z Z e"A(,")(y, 1,21, )e"a';

s n=0
where .
0,(z,z,t) = oz + ()2 — (94,

If B(*),u(*) are prescribed, the complex eigen-

value of? = o{*) +i0{") may be found from the
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linear problem (2.2). The zero order vector-
function is written as

AP = AoW)au(er,z,t); (3.3)
where A ,o(y) is a solution of the problem (2.2)
with corresponding parameters w(*), §(#),
Therefore, the nonlinear effects in the zero order
are taken into account due to the slow ampli-

tude function a, and its derivative is expressed
as the series

da,

(- -]
— = —¢la;a, + Z e 1F,,, (3.4)

d:z:1

n=1

where F,,, are unknown functions and we as-
sume that O(a;) = O(e). After substituting
(3.2), (3.3), (3.4) into (3.1) we obtain a non-

uniform equation for A(,l):

.00 oAl
Z {HoAl(,l)z-é-t: + Iy —-a-é--i- (35)
]

9 DA .00
rm (Lo 33; - HipAM — HzA(al)lg-"—

z
.00, |
- HsA'('l)z-é-z—}e 0, =
Oa, d
Z {HzA.oFa + HaA.o-ég-; - HoAao-atgf-}-i-

Hy [Z Apoape“'] (Z Aqoaqe"e') + O(e).

To illustrate the method we restrict our con-
sideration with subharmonic type of resonance,
when nonlinear effect occurs in the first order of
magnitude.  Without loss of accuracy we
add in the left and in the right parts of the Eq.
(3.5) term H;A{a;e% to obtain in the left
side the operator of the linear problem (2.2).
We multiply (3.5) by ezp(—ifm) and integrate
with  respect =z,z,t on intermediate
scales X,, Z,, T.:

1 Xotz Zud+z Tu+t
e ——— {{: .
X.Z.T. /d:c /dz /dt{...}e .
-] z t

Therefore, we obtain the following equation:

(1)
(1) .aem aAm
{HoAm e +L1--—-ay + (3.6)

. (1)
Q_(LoaAm ) _ HipAD-

8y dy
a6 .08
W27 ) );0m
Hi AL (z 3 a.) H3ALq 52 }
da,, dam
H:ApmoFrm1 + H"A""’-E;; - HoAmosi;- +
z GPD R p40504 + O(€);
P.9q
Xutz
1[4
hm.?‘*’q = X.Z.T. Z X
2
z-+3 T.+t
dz dtei8,+t'9,—i9,...
F t

The vector G{P? originates from the nonlinear
terms in the Eq. (3.5). If Aw = |wp — wp —
wel > €, Ak = |k — ky — kg| > ¢, the factor
R p+q in the Eq. (3.6) equal to zero. The Eq.

(3.6) is a non-uniform equation for A% and the
left part is the same as the equation for the lin-
ear problem (2.2). To avoid a singular character
of the solution in (3.6) the right side must be
orthogonal to the solution B, obtained from
the Eq. (2.3) with corresponding parameters
a, B, w. Thus, we obtain solvability condition
that gives a definition of the unknown function
Fm1:

_ wpOam _
T we 02, wa O
< G B,o > )

< H3Amo, Bpo >’

1 dam
Fo 1 da

2

Pq

(3.7

Wy = — < H3 Ao, Bmo >;
< HoAmo, Bmo >

w = _< H3Amo, Bmo >
< HoAmo, Bmo >
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4. Boundary-layer model

In numerical example we consider a boundary
layer flow over an infinit span swept wing in
the so called local self-similar approach. In this
model of the boundary layer the governing
equations are reduced to a system of ordinary d-
ifferential equations with Lees-Dorodnitsyn
variables depending on the local pressure gradi-
ent and on the Mach number outside the bound-
ary layer. The equations for the two dimension-
al boundary layer in a compressible gas were
considered by Li and Nagmatsu(*®) (see also the
book(?%)), and the equations could be general-
ized for the three dimensional case(27).

The coordinate system used for the boundary
layer model is depicted in Fig. 1, where s is the
distance from the leading eadge along the sur-
face contour, and z* is the distance along the
leading eadge.

Fig.1 The coordinate system in the analysis over
a swept-back wing.

We use the variables

£= /QeNeUe ds, (4.1)

0
U!I
QelUe [ 0@
= —= [ —dy. 4.2
" ,_250/&:; 4y

where U, is s— velocity component outside the
boundary layer (we remind that U, is a total
velocity outside the boundary layer). The pres-
sure is constant across the boundary layer and
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the mean flow parameters are assumed to be in-
dependent of z*. Thus, we postulate for stream
function, s— and 2*— components velocity, to-
tal enthalpy the following presentations:

(s, 1) = (s)f(m) (4.3)
U(s,n) = Ue(s)f'(n); (4.4)
W(s,n) = We(s)q(n); (4.5)
I(s,n) = I.(3)g(n); (4.6)

where a prime denotes a derivative. Due to the
assumption on the independence relative to z*,
W, = W, = const. Also we have I.(s) = I, =
const, where subscript 0o denotes free stream
parameters. As a result, the following system of
ordinary differential equations may be obtained
in the local self-similar model:

CrMy+ff"+ [5’9— - (f’)’] Ba =0; (4.7)

(CeY +fd =0 (4.8)
t

C ! !

- = 4.9
( Pr ) +fg (4.9)
1-Pr (y-1)M?

Pr 14 f"_;_lle

X [C(f'f" cos® ¥y, + qq'sin® T,)]';
c=-2L, (4.10)
Oelte
2¢ dU,
= el 4.11
Bu AT (4.11)

¥, is the angle between the vector U}, of the flow
velocity outside the boundary layer and the s—
component velocity U,; M is the Mach number;
Pr is the Prandtl number; v is the specific heat
ratio. In the absence of suction from the bound-
ary layer, the boundary conditions for the Eqgs.
(4.7) - (4.9) are:

fl=q=0;
fe,9-1

n=0: f

7—00:

(4.12)
(4.13)

The boundary condition for the enthalpy de-
pends on heat transfer (cooling or heat insulat-
ed wall):

g(0) =g, or g(0)=gu. (4.14)
The system of Eqs. (4.7) — (4.9) was solved
numerically with the fourth-order Runge-Kutta
method with a constant step across the bound-
ary layer.



5. Numerical example of nonlinear interaction

We consider three Tollmien-Schlichting waves
with amplitudes €;,€2,€3 in a boundary lay-
er with the local parameters ¥, = 10°; g =
0.1; M = 0.6; R = 2600 that correspond to
modelling of boundary layer flow in middle part
of an airfoil.

The dimensionless frequency parameter F =
wpe/UE was chosen for the waves as Fi = 15.6-
107%; F; = F3 = Fy /2. In this example we use
the length scale 6* based on the s—component
profile in a boundary layer.

The stability equations (2.5) and (2.6) (direct
and adjoint problems) were solved with forth-
order Runge-Kutta method; and a procedure
of ortonormalization for linear independent so-
lutions was used. The eigenfunctions in (2.5)
were normalized with the velocity disturbance
amplitude equal to 1.

The first wave was taken with the z—component
of the wavenumber f; = 0 and the correspond-
ing eigenvalue was found equal to oy = 0.1364—
0.2577-10~3. The second wave was chosen with
B2 = 0.1 and the corresponding eigenvalue is
equal to oz = 0.6703-10~! 4-10.4740-10~2. The
scale parameters were chosen as X, = Z. =
200. The scales satisfy to assumptions of the
averaging method for disturbances with ampli-
tude < 0.5%. To analyze an opportunity of a
wide band amplification we varied the
z--component of the wave number (3. At 3 =
—0.1 we have a synchronizm with accuracy O(e)
(o3 = 0.6683 - 10~ +40.7561 - 10~2).

ons

a
93 om yalin.

5%
- [N\

3 /N

o1%
-0.005
0%
-0.014 ~
0015 ~—
212 -0 ), -0.08
3

Fig. 2 The growth rate o3 vs 33 for various am-
plitudes ;.

The spatial growth rate o3 = —Im(as) + €1 A3
was calculated for ¢, = €3 with phase shift
equal to zero. The nonlinear effect in the
growth rate is described by the term with the

factor Az. In the Fig. 2 we can see that the non-
linear interaction may cause an amplification of
the waves from a wide band of the wave number
z—component.

The analogous result for o3 is shown in Fig. 3.

0015
as%
o2 m
o0
V/Z2E\
Pt .
0.005 T
o%
0005
0.0t N
R Y7 -84 -0.08

Fig. 3 The growth rate o2 vs §3 for various am-
plitudes €.

0.013
o2 5%
N
- / aux \

“d

/ U3% X
VN
asos] // 01% &

WM 0.2 -0.1 0.1 02 03

&

Fig. 4 The growth rate o3 vs detunning param-
eter &3 for various amplitudes ¢;.
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To illustrate a role of frequency detunning we
considered 83 = —f, and varied F3. The results
are shown in Fig. 4. The detunning parameter
is defined as &3 = 1 — 2w; /wy.

Thus, we can see that a wide band of wave pack-
ets may be amplified due to the nonlinear inter-
action without exact synchronizm.

6. Concluding remark

In the summary we would like to emphasize
that the presented method allows to consider
two- or three-dimensional flows, compressible
or incompressible ones. In case of a supersonic
boundary layer there is an opportunity nonlin-
ear interaction of normal modes with external
disturbances (for example, with acoustic distur-
bances); and the proposed procedure also can
be applied to this problem. Any difference in
problems is reflected in dimension of the system
of equations and in explicit form of the matri-
ces.

Acknowledgments

The author thanks Dr. M.B.Zelman for metic-
ulous explanations of his results. The author
would also like to thank Prof. E. Reshotko for
opportumty to be acquainted with the
Report(®7),

Appendix Al

We denote the ratio of the second viscosity to
the first one as e and introduce r = 2(e + 2)/3;
m = 2(e—-1)/3; D = d/dy; M - Mach number,
R - Reynolds number; Pr - Prandtl number; v
- specific heat ratio. The subscnpt s denotes a
profile of the basic mean flow. p! = du,/dT,.

H' denotes an 1, j-th element of the matrix H.

H§' = —R/(p,T,);

Ht = yM*; HY® = —1/T,;

HE =1/T,;

HE* = RPr(y - 1)M? /p,;

Hgs = "‘RPT/(“:TJ);

B = —R/(u,T.);

L3’ = —pr/R;

L{’ =1 (j=1,..,8);

LY=m+L L =m+1.

Hi§ =Hi§=H]; = ;

Hii=1 (j=9,..,16);

on =—Dp,/ps; Hw = RDU, [(1sTs);
H{s = —D(u,DU,)/ps; His = —p, DU, /s

H} = DT,/T,;

HS? = —2Pr(y - 1)M?DU,;

HE = RPrDT,[(p.T,);

Hig = —p,Pr(y - 1)M*((DU,)* + (DW,)*)/p,
— D(p, DT.)/pas

H$ = —2Dp,/p,; HS = —2Pr(y - 1)M*DW,;

His = RDW,/(n,T.); His = ~D(u'DW,)/p.;

H86 = —p'DW,/ps; Hi§ = —Dp,/p.;

H - H;o,s — 11,5 - H;z,'r = _1;

H$' = RU,/(n,T, ), H3® = —Dy,/p.;

Hz = R/[l,, Hz = -7

H' = —1; H}* = —yM?U,; H}® = U,/T,;

H3' =mDp,/R; Hi® = (m + 1)u,/R;

H43="‘U,./T., Hz =”‘DU‘/R

H4 10 = [I./R

H$ = —2Pr(y - l)M’DU.,

H$* = —RPr(y — )M, /p,;

HE® = RPrU,/(u,T,); Hi'' = -1,

H3" = RU,/(u,T.); Hy*? = -1;

5,5 16,7
B = 134 = B3 = B% = -1

HP' = RW,/(u,T,); H3*? = —(m + 1);
H:’m =-1;

H3* = —yM*W,; H® = W, [T,; HY" = -1,
H® == W, /T,; H® = 4! DW,/R;

Hgﬂ = le‘:/R;

H3® = (m + 1)p,/R; Hy™ = p,/R;
HE® = —2Pr(y - YM?DW,;

H3* = —RPr(y - )M*W,/p,;
HS = RPrW,/(p,T,); HS'® = -1,
H::& = —Dﬂ://“:; H':i84 = R/l-‘a;

Hg7 = RW:/(#:T:);

HY = —(m +1); H3"® = —r.
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Appendix A2 The relationships for the vectors B and Y are

We d%notelw =w=-al, - fW.; x = (R/pe - the following
iryM*0)~"; Q@ = Rx/p,. The non-zero ele- By = Y, — iaL®0Y,:
ments of the matrix H, are the following(?3): 1=Y1 —ialy QY

B =Y
HPY =HF=H]®=1; Bs =Y; +iaLl}'’Y; +iBLyM Ve
}I,:: =a? + B — ioR/(u,T,);  _IBQYVHEP + 43d (CY«i)
Ha = _Dul/lj‘l;
H? = —ia(m +1)DT,/T, — iaDu,/p.+ By = UY“_“
RDU,[(u,T,); By =Ys+H, Yy
H = iaR/p, + (m+ 1)y M?ad; Be=Ysi _ em
H2 = —a(m + 1)0/T, — D(,DU.)/p.; By =Yy —ifLs'QYs;
H® = —p,DU, /. 5= Y8~;— B, —iB 1)B
HY = —ja; A® = DT V[T H = iy Mo, By = —iar By — if(m + 1)Bs;
35 de zau, .
H, = —-zw/T,, ‘ = —1i3; Bie = —-(m+ 1) 7 By;
Hu = —ixe(rDT,/T, + 2Dp,/p.); By, = ~iaBg;
HP = —ixo; Bys = —i@Bg — iB(m + 1)By;
Hfa = X[—a - ﬂz + i‘:)R/(/‘I’JTJ)'*' B13 = —i-ﬁ-Bz;
rD*T, /T, + Dy, DT, | (u.T)); dBg z,Bu,
H} = —irxyyM*[aDU, + fDW,— Byy=-(m+ 1)_ + R ——By;
&DT, /T, — &@Du,/[u,); Bys = —if Bs;
H® = ix[r(aDU, + BDW,)/T, + p',(aDU .+ Byg = —ifrBs.
BDW,)/u, — r&oDp, [ (1.Ts));
48 _ sy,
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