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A RAPID SCHEME FOR ESTIMATING
TRANSITION ON WINGS
BY LINEAR STABILITY THEORY

M GASTER & F JIANG
Cambridge University Engineering Department

Renewed interest in laminar flow aircraft has cre-
ated the need for faster methods of predicting tran-
sition than are at present available. The most com-
monly used technique, the e¥ method, is based on
linear stability theory. Transition is generally found
to occur roughly where the amplification of linear
waves exceeds some empirical threshold. The cal-
culations needed to predict this location require the
evaluation of a large number of eigenvalues of the Orz-
Sommerfeld equation. This is both time consuming
and expensive. The scheme has its merits, but is too
unwieldy for routine design purposes.

It is shown here that the calculations of wave
growth can be carried out very much faster by in-
troducing further approximations. In this discussion
only two-dimensional incompressible flows are consid-
ered as the first stage of the development of a fully
three-dimensional design tool.

The velocity profiles on a wing designed for ex-
tensive regions of laminar flow have relatively weak
pressure gradients in the critical regions of the bound-
ary layer and can be modeled well by the Falkner-
Skan family. The dispersion relationship linking wave
growth to frequency and Reynolds number were rep-
resented by a set of two-variable Padé approximants
for a range of Falkner-Skan profiles. The wing bound-
ary layer velocity profiles were matched locally to the
similarity pressure gradient parameter so that appro-
priate Padé coefficients could be found from the pre-
computed tables. The calculation of the amplification
curves could then be carried out very quickly indeed.
Not only was the calculation performed some 500-
1000 faster than by the direct Orr-Sommerfeld ap-
proach, but the differences in estimating ‘N’ turned
out to be less than 3%. In view of approximations
already used in the Orr-Sommerfeld approach this
difference is of no consequence.

The extension to a fully three-dimensional scheme
appears to be straightforward.
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1. Introduction

The next generation of large transport aircraft could
well benefit from laminar flow, and the estimation
of the transition to turbulent flow is a necessary re-
quirement for design. The most commonly used pre-
diction scheme based on linear theory is the well-
known eV method. The boundary layer on the wing
is assumed to be known and the spatial amplifica-
tion rate of eigenmodes of different frequencies are
computed so that the ‘N’ factor can be found (Mack
1977). The task is time-consuming and tedious if
the required eigenvalues are calculated by solving the
Orr-Sommerfeld equation directly. The requirement
of relatively large amounts of computing time pre-
vents stability studies from being used for a wide
range of different wing designs and flight conditions.
In this paper, we present a method for the rapid es-
timation of eigenvalues that can be used to calculate
wave growth in the boundary layers of wings. For the
incompressible case, we assume that the non-similar
laminar boundary layer on the aircraft wing can be
represented accurately enough by the one parameter
similarity family of Falkner-Skan, the pressure gra-
dient parameter defining the profile as a function of
the streamwise location. The value of this param-
eter was determined by matching the displacement
thickness and either the second derivative of the pro-
file at the wall, or the momentum thickness of the
boundary-layer with the Falkner-Skan family. Then
the eigenvalue relation of the boundary layer profiles
can be estimated from those of the Falkner-Skan fam-
ily which will be represented by some simple analytic
expressions.

The feasibility of approximating the eigenvalue re-
lation by simple elementary analytic expressions is
based on the fact that the Orr-Sommerfeld equation
defines an analytic dispersion relation A(a,w, R) = 0,
except at isolated branch points. This was first sug-
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gested by Gaster (1968), and later effected by Gaster
& Jordinson (1975), who used a power series repre-
sentation to approximate the eigenvalues in some re-
gion of the wavenumber-frequency plane in their stud-
ies of the Blasius boundary layer flow. Gaster (1978)
further demonstrated that the rate of convergence
of this series could be vastly improved by resort-
ing to the Shanks nonlinear transformation (Shanks
1955). This idea of exploring the analytic proper-
ties of the eigenvalues was followed by Jiang (1990)
who extended the power series technique through the
use of the Padé approximant (Baker & Graves-Morris
1981) to construct an analytic rational-fraction func-
tion for the eigenvalue relation. This approach was
suggested by Gaster (1978) as an alternative scheme
to improve the convergence of the power series rep-
resentation. The Padé approximant method has cer-
tain advantages over the power series representation
in that its validity is not limited to a convergence cir-
cle. It gives better accuracy over a wider region by
representing a function by a ratio of two polynomials,
essentially mapping singularities to infinity. Its ad-
vantages over the Shanks transformation come from
its explicit expression whose analyticity can be anal-
ysed, whereas, the Shanks transformation only offers
a blind iterative process. Although the Shanks trans-
formation can extend the usable region of the power
series, its accuracy is limited by the fact that it in-
troduces artificial singularities. On the other hand, it
is always possible to choose one of the Padé approxi-
mants which is free from these artificial singularities
in the region of interest.

2. Eigenvalue problem

Consider a two-dimensional incompressible boundary
layer aligned along the &-axis of a Cartesian coordi-
nate system (&, §) perturbed by a small external dis-
turbance. Here (&, §) is used to denote dimensional
coordinates and a caret ~ will be used to denote di-
mensional physical quantities. The disturbance is as-
sumed to be of small amplitude so that the use of lin-
ear theory is justified. In this case, the disturbance
velocity v in the y direction is governed by the fourth-
order Orr-Sommerfeld equation, in a non-dimensional
form,

"~ 2a%" + atv — iaR(T — w/a)(v" — a?v)
+iaRT v = 0, (2.1)

where a, w and R are respectively the wavenumber,
frequency and Reynolds number. Primes denote dif-

ferentiation with respect to the dimensionless vari-
able y. The length scale is the displacement thickness

4, ) -
5:/ (1-T) ds,
1]

and the velocity scale is the edge velocity T (#). The
non-dimensional mean velocity U is determined by
the boundary-layer equation in terms of the pressure
distribution. For the flow over an aerofoil, U is gen-
erally expressed as a function of the non-dimensional
coordinate m,

(2.2)

where U, is the free stream velocity, ¥ is the
kinematic viscosity and the subscript b denotes the
boundary layer flow.

The homogeneous equation (2.1) with vanishing ve-
locity components on the wall and at infinity defines
an eigenvalue problem for the parameters o, w and
R. For boundary layer flows it is not straightfor-
ward to calculate eigenvalues because serious numer-
ical difficulties arise at large Reynolds number be-
cause the equation is stiff. Because of this, a num-
ber of numerical methods have been developed to
numerically integrate the Orr-Sommerfeld equation
(for details, see Drazin & Reid 1981). One such
scheme is the compound matrix method developed
by Davey (1982), which is known to be very reli-
able, but time-consuming. If it is necessary to cal-
culate eigenvalues of the boundary layer on a wing at
a number of streamwise locations at various design
conditions the computational effort is considerable.
However, it turns out that velocity proflles on these
wings are very close to those of the Falkner-Skan fam-
ily over two-dimensional wedges. The mean velocity,
U(ng) = f'(ny), is determined by the boundary-layer
equation

flll + f,f” -I—ﬁ(l - fIZ) — 0’

where (3 is the pressure gradient parameter, the non-
dimensional coordinate 7y and the streamfunction
f(nz) are defined by

- 1/2
o Y&
vei(atm)

P(%,9) ,
(2 - B)T (8)p#)1/2

(2.3)

and

flng) =
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the subscript f denotes the Falkner-Skan flow. The
pressure gradient is the single parameter that deter-
mines the shape of Falkner-Skan profiles. Thus 3 is
the key factor in approximating the boundary layer
profiles with the Falkner-Skan family profiles. How-
ever, to match the boundary layer profiles with the
Falkner-Skan family there is a second parameter to
be determined apart from 3, because the streamwise
coordinate & on the wing is not the same quantity as
that along the wedge flow. Thus &’s have different
meanings in the definitions of 7, and 7y of (2.2) and
(2.3) though  is the same. There is a second factor,
say v(&), that links these two variables. Suppose

. Y _r(3),

x(2) x(2)
where x is a common factor and # is the same quan-
tity now, we have

Y and =

m = v(2)n;.

Consequently for the hdispla.cement thickness § and
momentum thickness # we have

by =r(8)-8;, b =r(8) &/v(&), (2.4)
and

by =r(8)-6r, b5 =n(8) 6/x(2),

where 6 and 8 denote non-dimensional quantities. For
the Falkner-Skan family, both 6; and 8; are functions

of 3,

(2.5)

8 =Moo — F(M1eo)s

and .
6, = F"(0) - Bb;
1+8

There are different ways of determining the two pa-
rameters 3 and v from the given boundary layer data.
Since the displacement thickness has been used as
the length scale in deriving the non-dimensional Or:-
Sommerfeld equation, we have to keep it constant for
the two profiles and obtain the second equation by
matching another physical quantity. One way of do-
ing this is by matching the momentum thicknesses,
i.e.

3_,! = 31, and éf = éb. (2.6)
In terms of (2.4) and (2.5), this leads to
& &
G_b- - 'é}"? (2'7)

which is the relation that has to be satisfied to find
the corresponding value of B(£) for the boundary
layer profile. This can be done by iteration.

The second way of matching is to require the sec-
ond derivatives of the two profiles to be the same on
the wall, i.e.

n u U,
bp=8 oand & Uf 9U10) = d "(0) (2.8)
Since -
d*U;
——=-(0) =
dnj
and
d U, d Ub
b( )— (0)’
we have -
,d*U
= - (0) = -6} (2.9)

to determine the value of B, which again can be found
by iteration. In neither case does v appear in the final
calculation.

Thus the estimation of eigenvalues of the boundary
layer can be reduced to that of calculating eigenval-
ues of the Falkner-Skan family. It would be possible
to pre-calculate massive numbers of eigenvalues for
the Falkner-Skan family with different values of 8 to
create a vast look-up table, but this is not the best
approach. :

3. Padé approximants

Here an approximate description of the dispersion of
the eigenvalues is used. Three methods have been
used in the past. They are based on the fact that
the Orr-Sommerfeld equation defines the complex
eigenvalue w as an analytic function of the com-
plex wavenumber o and Reynolds number R ex-
cept at some isolated points and can therefore be
expressed by an elementary analytic function, such
as a power series (Gaster & Jordinson 1975) or a
rational-fraction function of a and R. It has been
shown by Jiang (1990) that the Padé approximant
method (Baker & Graves-Morris 1981) provides a
better solution than the power series coupled with
the Shanks nonlinear transformation (Gaster 1978).
A two-variable Padé approximant is used to represent
the eigenvalue relation for the Falkner-Skan velocity
profile with a given S.

A two-variable Padé approximant defined by
Chisholm (1973) can be obtained from a two-variable
power series. Thus a two-variable power series for
the eigenfrequency w is formed as a function of both
the complex wavenumber a and Reynolds number R.
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It is important to treat the Reynolds number as a
complex variable. Firstly, it enables the eigenval-
ues to be expanded in a complex Reynolds number
plane so that their properties can be examined more
efficiently. Secondly, Squire’s transformation can
then be used to reduce the three-dimensional eigen-
value problem appropriate to oblique waves to that
of a two-dimensional one. This is because for com-
plex wavenumbers, Squire’s transformation defines a
complex Reynolds number for the two-dimensional
problem even if it is real in the three-dimensional
case. Therefore, it is sufficient to discuss the two-
dimensional dispersion relation A(a,w,R)=0.

To construct a power series for the function w(a, R)
from the original differential equation (2.1), w(a, R)
is expressed as a Taylor series of the form

Amn(a - ao)m(R - RO)n1

where ag and Ry are the centres of the expansion in-
side the analytic regions of the complex a-plane and
R-plane. The coefficients can be determined by the
derivatives of w(a, R) at the center. The values of
the derivatives can be calculated by the Cauchy inte-
gral theorem in terms of values of the function along
closed contours in the independent variable planes. It
is convenient to choose circular contours within the
analytic region of w(a, R), thus

1 27 2%
Apn = ——r—
T 4ntemen /0 /o w(e, B)

e~ ¥m0a g=in0r 40, dhp,

where #, and rg are respectively the radii of the cir-
cular regions. Since », and rp are usually less than
unity, it is wise to avoid dividing »7' and 7% in the
numerical calculation by defining

N-1M-1

w@,R) =Y Bm

n=0 m=0

m n
- R—R
(a “") ( ") : (3.1)
Ta TR
By discretising the circles into K and L points, B,
is calculated numerically by the double summation

L-1K-1

an':f}iz Zwkl

=0 k=0
exp(—i2rmk/K )exp(—i2nnl/L), (3.2)

where the values of wy; are found from the Orr-
Sommerfeld equation on the circle a; = ap + rqetf®
and R; = Rg + rpet®.

In this way, | Bms| is generally a monotonically de-
creasing function of the summation index m and n.
The decreasing rate can be examined by the contour
plot of log |Bpy| in the (m,n)-plane. The contours
will be a set of almost parallel lines with constant
m+n. The contour level decreases as m-+n increases,
which indicates that w can be approximately repre-
sented by (3.1). However, as w is a function of two
independent variables, there are different ways of con-
structing power series, such as w(a?, R), w(a? aR)
and so on. Our trial studies showed that the expan-
sion for w(a?, R) was more convergent than that for
w(a, R), and for w(a?, aR) was even better, in terms
of the smoothness of log | By, | as a function of m and
n. For the expansion with o? and aR as indepen-
dent variables, the contour plot of log | By | showed
that the values of log | B, | generally decreased lin-
early as m + n increased but the slope had a sudden
change for small n where log [Bmz| << log|Bm1].
This means that |8w/8(aR)| is much smaller than
|w] at the expansion point (aR)e for given a. When
a power series for the wavespeed ¢ = w/a was con-
structed by the same procedure with its coefficients
denoted by D,,,, we found that its coefficient con-
tours were much smoother. In addition, for large val-
ues of m and n, | Dy, | is smaller than | B,y |, implying
that the series for ¢ is more accurate than that for w
for the same number of terms. It may be noticed
that the above results are actually determined by the
structure of the Orr-Sommerfeld equation (2.1) itself,
where a?, aR and w/a are three natural parameters
of the equation. Thus we will use the double power
series

N-1M-1

c(az,aR) = E = Z Z Dpn

n=0 m=0

(az - a%)m (aR - (aR)o)"
Pa2 TaR !

where 7,2 and r,p are respectively the radii of the
expansion circles in the complex a? and aR planes.
The coefficients D,,,, were obtained in a similar way
to By in (3.2) with eigenvalues calculated on the
circle (aR); = (aR)o+rare'® for every a taken from
al = al + rqaeift.

The two-variable diagonal Padé approximants of
Chisholm are defined to have a given maximum power
in each variable, rather than to have a given total
maximum power. The [L/L] Padé approximant is
thus of the form

L L
2/ dar) = 3 3 NesNern |

p=0r=0

(3.3)

1107



L L
DD qw Mg,

#=0v=0

(3.4)

where Mgz and Ay g denote (a? — al)/r,s and (aR —
(aR)o)/rar respectively. The coeflicients p,, and g,
are determined by the coeflicients D,,, of the series
(3.3). Without loss of generality, (3.4) can be normal-
ized by taking gop = 1. The number of coefficients to
be determined is then

(L+1)2+[(L+1)*-1] =2L* +4L +1.

For example, if L = 5, the above result means that
there are 71 coefficients to be determined.

In general, the coefficients in the [L/L] Padé ap-
proximant can be determined by formally letting

L L o oo
[Z b q,wxg,A;R] [Z > DX, AgR]

p=20 v=0 n=0m=0

L L
E Z Pur AL AoR + 0(’\1512 '\‘2,‘3{" :

p=0r=0
The second term on the right hand side indicates that

coefficients of all terms of total order less than 2L +1
are equated. The number of equations is

2L+1
Y k=2L+3L+1.
k=1
Since
Pur =quy =0 for pu>L or v> 1L,

we have (L + 1)? equations from

[ v
Z Z qUTD;l--—U,V—-T = Puv

(3.5)
=0 7r=0
for 0<u<LIL, 0<v<IL,
and L(L + 1) equations from
L v
Z Z qUTDp.—G',V—T =0 (36)
o=0r=0
for 0Sv<L L<pu<2L—y,
u L
Z Z an-D[l—O,V——T =0 (37)
o=071=0
for 0<pu<IL, L<v<2L—p.

In addition L equations are provided by equating the
sums of coefficients of the L pairs of terms

Ai’/\ZII’?‘l—k and Azlzl-'-l_kA’c;R (k:1721"'1L)a

that is,

E L
Z E(qaer—’:ZL-H—-k—r

o=0r=0

+Q1’0D2L+1—k—'r,k-—a) =0 (1 <k< L) (38)

Thus the (L + 1)? — 1 values of g, are found from
(3.6) to (3.8). The additional (L + 1)? values of py,
are then given by the summation in (3.5). For dif-
ferent [L/L] diagonal Padé approximants, the zeros
and poles in the complex a-plane for fixed R and in
the complex R-plane for fixed a can be found. The
real zeros or poles, if any, of the function w(a, R) will
appear consistently in this sequence. An optimum
approximant can then be chosen such that it is free
from all the artificial poles and zeros in the region to
be studied, leaving only those which are inherent to
the physical problem.

The convergence region of a two-variable Padé ap-
proximant is difficult to visualize since it is four-
dimensional. Figure 3.1 shows the error contours of
log |wps4—wos| in the real («, R)-plane for the case of
Blasius flow, where wp4 are obtained with different
orders of Padé approximants obtained from a power
series with a = 0.06, 742 = 0.03, (aR)s = 550,
ror = 250, K = 32, L = 48 and wpgs are calculated
directly from the Orr-Sommerfeld equation. Agree-
ment between the Padé estimate and that provided
by the solution of the Orr-Sommerfeld equation was
very good close to the centres of expansion. The [5/5]
Padé approximant gives 6 decimal accuracy within
the stability loop. The CPU time for calculating the
same 60 x 60 eigenvalues from this approximant is
9.1 seconds, some 2500 times faster than by direct
eigenvalue evaluation.

The Padé approximant turns out to be less ac-
curate for small values of @ and R. This difficulty
with small o arises because of the inherent singular
property of the eigenfrequency w for the very long
waves. This singular point is bound to affect not
only the Padé approximant method, but also other
analytic representations of w(a, R). On the other
hand, the solutions of the Orr-Sommerfeld equation
at low Reynolds numbers should only be accepted
with reservation since the fundamental assumption
that the undisturbed flow can be approximated by
the parallel flow model of the boundary-layer equa-
tion becomes unrealistic. The failure of the Padé
approximant method at small R may well produce
errors no greater than those arising from using the
parallel flow approximation at low Reynolds num-
bers. In the transition-prediction calculation for air-
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craft wings, the calculation of eigenvalues for small 4. Ampliﬁcation curves

values of aR are not required.

04

Cif

04

01r

015

R

Figure 3.1 Contours of log lwps — wos| where
wpy are calculated from the Padé€ approximant
(3.4) with orders of (a)L =5, (B)L =17, (¢)L =9
and wos from the Orr-Sommerfeld equation.
Contour levels are -8, -7, -6, -4, -2,

In the previous two sections the two basic steps
of the rapid scheme for estimating eigenvalues and
then the amplitude ratio have been outlined. The
given boundary layer velocity profiles are fitted fo the
Falkner-Skan family so as to obtain the correspond-
ing pressure gradient parameter § and using Padé
approximants to represent the eigenvalue relation for
the Falkner-Skan profile.

The representation of the eigenvalue relation for a
general Falkner-Skan profile can be achieved by con-
sidering a set of Padé approximants covering a range
of B’s. Then by suitable interpolation the Padé coef-
ficients can be determined for any specified pressure
gradient parameter. The total 24 two-variable power
series for a number of values of B were formed. The
increment chosen for the values of § was not con-
stant since the eigenfrequency for the given a and R
changes more rapidly for the smaller value of 3 than
for larger value of 3.

ﬂ (aR)o a% Pa3

0.00 550 0.060 0.0300
0.02 570 0.057 0.0270
0.04 590 0.055 0.0260
0.06 610 0.053 0.0250
0.12 670 0.048 0.0230
0.20 750 0.042 0.0210
0.30 850 0.040 0.0200
0.45 1000 0.037 0.0185
0.60 1150 0.034 0.0170
0.80 1350 0.030 0.0150
1.00 1550 0.026 0.0130

Table 1. Numerical values of the expansion point
and radius for some of the power series set. The
same T4 p, 250, is used for all the series.

In constructing Padé approximants from the dou-
ble power series only the coefficients of terms whose
total power are less than 2L+ 1 were used. That is to
say, the coefficients p,, and g, in the Padé approxi-
mant were determined by the coefficients D,,, on the
bottom left corner in the (m,n)-plane. Naturally, it
is thought that a better Padé approximant is formed
when the contours of log |Dpy| in the (m,n)-plane
are roughly aligned with the m -+ n = constant lines.
This can be achieved by selecting appropriate expan-
sion points and radii in constructing the power series

1109



for different values of 8. Here r,g has been kept con-
stant at a value of 250, together with smaller values
of a2, 42 and larger (aR)o as 3 increased. Some of
the numerical values were given in Table 1. Two of
the contour plots of log | Dpn| in the (m, n)-plane are
shown in figure 4.1 for 8 = 0.06 and 0.45, respectively,
indicating the general behaviour of the coefficients.

Figure 4.1 Diagram of the contour plots of

log | Dmn | for B = 0.06 and 0.45. The contour

levels are —2, -3, —4, -5, -6, -7, —8, -9, —10,
—11,-12,-13.

From this set of power series, the corresponding
Padé approximants were constructed. It was found
that the order of [5/5] Padé approximant generally
gave accurate cigenvalues within the stability loop.
The curves of constant temporal amplification rates

found by [5/5] approximants for 8 = 0.06 and 0.45
are shown in figure 4.2. These plots can be compared
with those given by Obremski, Morkovin & Landahl
(1969), showing only minor differences. For an arbi-

.trary value of 3, eigenvalues were calculated from the

interpolated Padé formed from the four neighbouring
values of 8.

0.0

Figure 4.2 Stability diagram of the Falkner-Skan
flow for 8 = 0.06 and 0.45. The solid curves are
for the constant temporal amplification rates

w; x 100 and dashed ones for the constant
wavespeed ¢,.

For the transition-prediction study the quantity of
primary interest is the integral of the spatial amplifi-
cation rate at a constant frequency. It was necessary
to find the wavenumber « for given (w, R). This can
be done by constructing a set of Padé approximants
for « as a function of (w, R) or by using w(a?, aR)/a
through an iteration to find the spatial mode. It
turned out that better results were obtained by us-
ing the approximant for w(a?, aR)/a to calculate the
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spatial amplification rate by iteration.

A test case was used to illustrate the detailed
procedure involved in calculating the wave growth
in ]Jaminar boundary layers on aircraft wings. The
flow conditions together with the mean velocity and
its second derivative distribution on a coarse grid
were supplied by the Research Department of British
Aerospace at Hatfield. The Mach number was 0.1,
chord length 4 meters and Reynolds number based
on the chord length was 10 x 108. The distribution of
the pressure coefficient C}, and non-dimensional edge
velocity U are shown in ﬁgure 4.3.

1.5 T v
U—
1 ‘
osf —
=C,
o -
o5}
4 e
0 0.05 0.1 0.15 0.2 0.25 0.3 0.356 0.4 0.45 0.5
z/C

Figure 4.3 Distributions of the non-dimensional
edge velocity U and pressure coefficient C,
along the chord length for the test case.

The data file contained values of n;, U(n;) and

ﬁ"(nj) at about 400 positions of 7 for approximately
40 streamwise locations up to &/C = 0.5, where 2
is the streamwise distance from the leading edge and
C is the chord length. The step size An was not
constant, being smaller near the wall than near the
outer boundary. In order to check the accuracy of the
scheme it was also necessary to calculate eigenvalues
for these non-similar boundary layers by solving the
Orr-Sommerfeld equation directly. This required the
mean velocity distribution with a finer step size An.
The profile data supplied was used in conjunction
with a cubic spline interpolation scheme to provide
the fine steps needed for the direct Orr-Sommerfeld
equation solution. This had to be carried out at each

streamwise location. The displacement thickness &
and momentum thickness §;, were obtained by the nu-
merical summation of U(n). Since T in (2.1) is the
second derivative of the mean velocity with respect
to the dimensionless variable y, y = §/6s,

1/2

G=m (aas/aﬁo‘,)”2 and & =6 (98/0.) ",

we have

d? Ub dzU;,

b 2
Ay T ?

y=°5;

so that

Once the value of 8 had been obtained at every
streamwise location & for a laminar boundary layer
it was a fairly straightforward matter to compute
growth rates. With the displacement thickness 55(2)
and the edge velocity U(z) being the length scale and
the velocity scale respectively, the Reynolds number
R(#) is given by .

r=Tb,
1%
For a disturbance of constant dimensional fre-
quency @, the non-dimensional frequency w(Z) is
given by

(4.1)

~

b

€

w =

c».]

Instead of showing results for the constant @, it is
convenient to use a non-dimensional frequency F,

F =ap / Uz.
In this case,
\2
w=F (Um/U) R. (4.2)
The amplitude ratio is determined by
o=l
In = - —dz, 4.3
(AO) o O ( )

where a; is the imaginary part of the wavenumber
a(w, R) = &6;, which is calculated by the Padé ap-
proximants through an iteration process. The lower
integration limit %¢ is the location where o; = 0.
Some care was needed to find this point because there
were only a limited number of profiles in the stream-
wise direction in that region. The value of a; will
jump from a positive value to a negative one from
one location to the next. In the calculation, &g is
assumed to be given by

n N - Ty — T
o= [2 2 2 P
Apg — Xy
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where #._ is the last location where —a;(2_) < 0
from the leading edge and &, is the first location
where —a;(%.+) > 0. The contribution from &¢ to &,
for the integral (4.3) is given by

N o

~ ga £y —

- a‘idz - Py ~ 3
,/;so 2 bayi—a

22
a+,-

which is really very small.

S ————

1000 1500 2000 2500 3000 3500 4000 4500
R

0 500

Figure 4.4 Distributions of the pressure gradient
parameter § and the standard deviations o,
obtained by matching & and 4.

The standard deviation

o= {—1‘1?2(—[75 ——U—j)2

1 U, (&
52 |G- (%)

where the factor 6;/6, in front of d2U; /dn} is due

to the requirement of Sf =&, is a quantity used
to examine how close the BAe profiles were approxi-
mated by those of Falkner-Skan. The matched values
of B3, together with the standard deviations o x 100,
obtained by matching 6 and 6 are presented in fig-
ure 4.4. To show the results more conveniently 8 has
been plotted against the Reynolds number R whose
dependence on the streamwise location 2 is deter-
mined by (4.1). As can be seen, this aerofoil has a
relatively flat pressure distribution over much of the
surface and only small variations in 8 are evident

2 e 12 1/2
d?U;
)
dnj

covering the range 0.0 to 0.1 in the zone where the
Reynolds number is large enough to allow amplifica-
tion. The value of the standard deviation is greatest
at the location where —C, stops increasing rapidly
and begins a slow increase. When both the BAe
profiles and Falkner-Skan profiles are plotted around
these locations large values of o arise mainly from the
discrepancy between the second derivative distribu-
tions. However, since the Reynolds number is small
near the leading edge these first few locations do not
contribute to the integral (4.3). The total amplifica-
tion curves for various frequencies for this test case
are presented in figure 4.5, where the curves refer to
the direct Orr-Sommerfeld solutions and the symbols
refer to estimates provided by the Padé approximant
method with the values of 3 determined by matching
§ and T"(0). The error for the value of N-factor is
less than 3%.

i (£)

—
>

] b Ln (= ~J 00 \O
T

Figure 4.5 Total amplification curves for various
frequencies, where the curves are obtained by
solving the Orr-Sommerfeld equation and the
symbols by using the Padé approximant method.

5. Discussion

From the result of the test case it appears that the nu-
merical scheme developed in this paper is sufficiently
accurate for the purpose of estimating transition by
the amplification ratio. The method can speed up
the calculation of the amplification ratio by a large
factor without significant loss of accuracy. The re-
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sult obtained by matching the momentum thickness
is similar to that obtained by matching the second
derivative at the wall. It is therefore only necessary
to provide values of the displacement thickness dis-
tribution and the second derivative on the wall to
do the fitting for a particular wing design. Alter-
natively, if there is a difficulty in providing accurate
second derivatives, profile matching can also be used
to achieve reliable result.

It turned out that most of the Padé approximants
that have been constructed will not be used in the
practical calculation since —a; < 0 when R < 500.
This suggests that it might be worth constructing
more Padé approximants in the range —0.1 < 8 <
0.1.
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