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Abstract

The classical linear stability theory of a laminar
boundary layer flow is coupled together with the so-called
el method in order to predict transition location.
Classical use of this technic is done with boundary layer
calculation but in some complex cases, the main flow
needs to be calculated by solving the steady Navier-
Stokes equations. This paper is devoted to the analysis of
three examples of such cases. The first one deals with an
isolated small bump placed on a flat plate. In the second
one, a classical ONERA D airfoil is considered. In both
cases, transition occurs near separation. With the third
example, the effect of a leading edge bluntness in
supersonic flow is studied. Finally, in these three cases,
comparisons with experimental results are given.

Introduction

The subject of laminar-turbulent transition is of
considerable practical interest and has a wide range of
engineering applications, due to the fact that transition
controls the evolution of important aerodynamic
quantities such as drag or heat transfer. In a low-
disturbance environment and on a smooth surface, the
first step of the transition process is the so-called
boundary layer receptivity, that causes the free stream
fluctuations to enter the boundary layer and to generate
unstable waves. The linear amplification of these waves
constitutes the second step of the transition process, and
it is described by the linear stability theory. The third
stage occurs when wave/wave interactions and higher
order instabilities develop. This non linear evolution
results in the breakdown to turbulence with the first
occurrence of turbulent spots.

It is clear that a rigorous modelling of such a
sequence of complicated phenomena appears to be a very
difficult task : the detailed characteristics of the free
stream disturbances are not very well known in many
cases, the receptivity theories cannot be used routinely
for practical purposes and many aspects of the non linear
stages are still unclear. In spite of this negative situation,
transition predictions must be made. For this purpose,
the most popular tool is the e method, that is based on
linear stability theory only. Stability computations
require the knowledge of the mean (or basic) flow field,
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which is often obtained from boundary layer
computations. In some complex cases, however, the
basic flow needs to be calculated by solving the steady
Navier-Stokes equations. The objective of this paper is to
describe three series of numerical results dealing with
such complex configurations : two-dimensional bump
on a flat plate, separation bubble on a wing, leading edge
bluntness effect at supersonic speeds. The study is
restricted to two-dimensional mean flows.

Principle of the stability computations

Any fluctuating quantity r' (velocity, pressure,
density or temperature) is expressed by :

r' = r(y) exp [i{ax + fz - ot)] 1

In the present computations, ® and f are real
numbers and o = oy + i0tj is a complex number.
Depending on the sign of ¢, the disturbances are damped
(ai > 0), neutral (o =0) or amplified (aj < 0).

The principle of the eM method is well known : for a
given frequency, the total amplification rate is given by :

X
In(A/AQ) = |- ajd X
X0

(2)

A is a measure of the wave amplitude, and the index
0 refers to the streamwise position where the wave
becomes unstable. After the total growth rate has been
computed for several frequencies, it is possible to define
an envelope curve which is denoted as n. With a low
disturbance environment, it is assumed that transition
occurs as soon as the n factor reaches a critical value in
the range 7-10, i.e. when a given frequency is amplified

by a factor e’ 1 el0,

For the first two series of computations (two-
dimensional bump and separation bubble), the flow is
incompressible and the computations were performed
with the COCIP code developed at CERT (D). As the
most "dangerous" disturbances are two-dimensional, B is
set equal to 0 in relation (1). For the third case (bluntness
effect at high speeds), oblique waves need to be taken
into account. The so-called envelope strategy is used : at
each streamwise location, the disturbance growth rate is
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calculated as a function of the propagation direction

V= tan’l(B/ar) in order to determine the most unstable
direction yM. The integration (2) is then performed with
the values of ajM = aj(yM). The CASTET code, also
developed at CERT (2), was used for these computations.

Two-dimensional bump on a flat plate

For the stability analysis of a laminar boundary layer
developing on a given body, most of the time, the
surface of this body is assumed to be strictly flat,
without bump or inhomogeneities. But in practise, the
geometry is of course less regular, evaluations of these
imperfections appear therefore necessary. Fage (3) made
some fundamental experiment concerning isolated two-
dimensional bumps, localized on a flat plate. The bump
is symmetrical and its shape has an analytical expression
(cubic curve). Different heights h of the bump were
tested, but in all cases, h has an order of magnitude
which is comparable to the boundary layer thickness and
the slope along the bump is always smaller than 5° with
respect to the flat plate. Some calculations have been
done by Cebeci and Egan 4) ; similar experiments were
performed at CERT (°) and corresponding calculations
were done (). In (3), (4), (6), the bump is localized at x
close to 0.5m; in (5), x is close to 0.3 m. In the

following, the flow is assumed to be two-dimensional
and incompressible.

Steady flow

For large values of the height h and for large free stream
velocities, separation occurs in the rear part of the bump.
A Navier-Stokes code (7) was used in order to determine
the steady flow. A typical result is shown in figure 1
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fig.1 Steady flow calculation around the bump

The flow is accelerated in the first part of the bump and
decelerated in the rear part. In this example, the flow is
very close to separation as it can be noted in the Cf
evolution. With hot-wire measurements (), main
velocity profiles have been obtained along the bump, a
comparison with a numerical result is given on figure 2,
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fig.2 - Comparison between experiment and Navier-
Stokes calculation.

It corresponds to a x position just behind the top of the
bump : just before separation. In this case, the shape
factor H = 61/@ is rather high, close to 4 ; it follows
that the flow is very unstable.

Stability analysis
Classical Orr-Sommerfeld theory is then used and, in

terms of the e method, N factors are calculated for
different frequencies. Figure 3 shows a typical result for
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fig.3 - Stability computation around the bump.
the conditions of figure 1 : the flow becomes unstable
before the bump, but is still laminar ; the acceleration
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has a strong and complete stabilizing effect. But, just
after the top, high frequency Tollmien-Schlichting waves
exhibit a very rapid increase. For high values of Ue and
of the height h, transition can be fixed in this rear part of
the bump. Even in this extreme case, it has been
possible to determine experimentally an N factor for

different frequencies ). A result is given on figure 4 in
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fig.4 - Comparison between experiment and stability
computation.

comparison with linear stability theory. The agreement
seems to be very satisfactory, except the final decrease of
the theoretical value, but this one is not physical :
transition occurs at x/c ~ 0.35 m. Finally, concerning
the transition location, the following table summarizes
the results obtained in (4), the original experimental
results of Fage () and our present results :

Ue h XT XT XT
(m/s) (mm) | (Cebeci) | (CERT) | (Fage)
25.17651 0.7874 1.37 1.24 1.39
21.153 | 1.3335 1.17 1.16 1.39
2377441 1.3335 0.82 1.05 1.14
28.956 | 1.3335 0.64 0.91 0.89

Transition is theoretically estimated when the n factor
reaches the value nT =8.4. Despite this difficult
configuration (rapid x variation of the mean flow,
separation), the overall agreement is acceptable. One of
the conclusions of this study is the following : the
bump is symmetrical, when Ug and h are not too large,
stabilizing and destabilizing effects are more or less
comparable, but for large values, symmetry is broken :
transition can occur in the adverse pressure gradient
region. Furthermore, in that case, the frequencics of the
most amplified instability waves are higher than those
which correspond to the flat plate case and, as
demonstrated in (5), even the phenomenology in the
transition regime is not the same. "High frequency
transition” takes place instead of the classical spots
appearance. Is that a general feature of inflexional

instability in comparison with the flat plate viscous
instability ?

Se tion bubble on a two-dimensional win

Experiments were carried out at CERT (®) on a two-
dimensional ONERA D wing. The model was placed
without incidence in a wind tunnel, the test section of
which was 300 mm x 400 mm. The chord of the profile
was 200 mm, the potential flow velocity, 24 m/s with a
free stream turbulence level equal to 0.3 %. Laminar-
turbulent transition was found to occur between
x/c =0.8 and x/c=0.9. According to the classical
procedure of linear stability theory, the first task is to
calculate the steady main flow.

Calculation of the steady main flow

Using the experimental values of the pressure
coefficients, a boundary layer calculation showed that a
separation occurred at x/c ~ 0.72, in the laminar region.
Therefore, like for the previous case of the bump on the
flat plate, it was necessary to solve the steady two-
dimensional Navier-Stokes equations written for an
incompressible flow. This code has been developed by de
Saint Victor (®). The primitive variables are used in a
staggered mesh, the scheme is implicit and a SIMPLE-
like procedure is implemented. For the example given on
figure 5, there are 110 points on each side of the wing
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fig.5 - ONERA D airfoil : mesh for the Navier-Stokes
computation.

and around 30 points in the boundary layer. Transition
location is fixed at x/c ~ 0.83 and a simple algebraic
turbulence model is used for x/c > 0.83. An example of
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results is given on figure 6. Displacement thickness 81
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fig. 6 - Displacement thickness and momentum
thickness : comparison between computation and
experiment

and momentum thickness 8 are represented as functions
of the curvilinear s/c position. Four results are
represented. The symbols come from experiment. The
dashed line corresponds to a laminar boundary layer
calculation with the calculated (Navier-Stokes) Kp
distribution, separation occurs at s/c = 0.76. The dotted
line and the full line represent Navier-Stokes calculation
with two different meshes. The agreement is very
satisfactory as illustrated by the decrease of 81 at
transition. Other results can be found in (10). Finally, at
each station in x, the flow is calculated with respect to
the following axis : the first one is tangent to the wing,

the other one is normal to it. Let us write (U, V) the two’

corresponding components of the velocity.
Stability analysis

Two different theories are compared. The classical one
uses the parallel flow approximation by neglecting the
vertical component V of the main profile. The
fluctuation is searched under the normal mode (1). The
second theory is the so-called PSE approach, proposed in
1987 by Herbert (11). Non parallel effects are taken into
account : the V component is no longer neglected and
the fluctuation has a generalized form :
X

u(x,y.t) = u(x,y) ei ( Ja(é) d§ - ot)
X0

The wave number o is complex and has a weak
dependence on x as well as the amplitude function u(x,y).
In both theories, w is real. The first approach leads to an
eigenvalue problem, the second one to a system of partial
differential equations, which is parabolic in x.

In the two described fluctuation forms, the imaginary part
of a represents a growth rate, defining thercby the

amplification of the disturbances Ln %%‘7’3 given by (2)
which depends on x and on f, the physical frequency,
linked to ®. In terms of the classical e method, we

write N(x,f) =Ln é;%’g, where Ag is the amplitude of

the perturbation at the neutral curve. In the linear theory,
A does not have to be fixed. The N(x,f) factor depends
on the frequency ; varying this latter, the most amplified
case has been found to correspond to f=1 000 Hz.
This is in agreement with experimental
measurements (8). Figure 7 represents four different
results for f = 1 000 Hz. There are two different calcul-
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fig. 7 - Stability computations comparison

ations of the main flow : boundary layer (BL) and
Navier-Stokes (NS) and two different stability
approaches : Orr-Sommerfeld (OS) and the second one
(PSE). The two curves with the BL calculation stop at
s/c ='0.74 (let us recall that separation occurs at
x/c = 0.72). We can firstly remark that, up to
s/c = 0.74, BL and NS are in very good agreement with
respect to stability analysis which is really a fine test.
Secondly the PSE approach can be applied for complex
flows, possibly with separation. Thirdly, non parallel
effects, measured with the differences between OS and
PSE, are small. As shown in (10), this result is a general
one for two-dimensional flows. Non parallel effects seem
to become more important already with oblique waves
and more generally with three-dimensional flows.

Effect of leadin ¢ bluntness in supersonic flow

The effect of nose bluntness on transition at high
speed has been studied by many investigators due to its
importance for many hypersonic configurations. Stetson
et al (12), for instance, studied the transition mechanisms
on blunt cones at a free stream Mach number equal to 8.
One of the main results was that transition location
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moved downstream for small values of the nose radius.
Malik et al (13) performed a linear stability analysis for

these experiments. By using the e® method, it was found
that the predicted transition Reynolds number increased
due to small nose bluntness, in qualitative agreement
with Stetson's measurements.

The results presented in this paragraph are related to
the analysis of the bluntness effects for flat plates at
Mach 3.5. The details of the computations are given
in (14).

Mean flow computations - Numerical difficulties

The computations were carried out for a sharp leading
edge and for blunt leading edges with a small radius r. In
order to properly calculate the entropy layer effects, the
compressible Navier-Stokes equations are solved in a
small region including the subsonic zone around the
leading edge. Further downstream, the mean flow field is
deduced from PNS (Parabolized Navier-Stokes)
calculations. The numerical codes were developed at
CERT by Lafon (15),

It is well known that the numerical accuracy of the mean
flow results must be extremely high, because the
stability resuits will be very sensitive to any small
departure from the "exact" flow field. Inaccuracies of the
stability results arise particularly when the instability is
inflectional. In this case, the growth rate depends on two
parameters : the height yg of the generalized inflection
point and the value of p dU/dy at this point. It follows
that the basic flow calculations need to be very accurate
in the neighbourhood of yg, especially when this point
is located far from the wall -as it is the case at supersonic
speeds. To illustrate this problem, figure 8 compares the
n factors obtained from two mean flow computations,
one with 50 points in the direction normal to the wall,
the other with 100 points. Although there is no visible
difference in the velocity and temperature profiles, the n
factors differ by about 10 percent. All the results
presented below were obtained with a grid having
180 points in the direction normal to the wall. About
800 points were used in the streamwise direction.

In order to reduce the computing time, the stability
equations are solved from the wall to some upper limit
which is smaller than the upper boundary. of the mean
flow calculations. A difficulty, which is linked to the use
of the Navier-Stokes equations, is to define the extent of
the integration domain of the stability equations in the
direction normal to the wall. This problem is of major
importance in the present case due to the entropy
swallowing effects. It will be briefly discussed below.
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Results

Figure 9 shows a comparison between measured and
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fig. 9 - Transition Reynolds number as function of the
radius r. Comparison between experiment and stability
computations

computed transition Reynolds numbers. The
experimental data were obtained on a flat plate in the
"quiet tunnel” at NASA Langley for a free stream mach
number equal to 3.5 (16)_ The stagnation temperature and
the stagnation pressure are 300 K and 11.5 bars,
respectively. The wall is adiabatic. The theoretical values
of RxT were obtained for n=9.5 and for two values of

r: O (sharp leading edge) and 0.0114 mm. The
agreement is satisfactory.

Similar computations were carried out for other values of
r and other values of the stagnation pressure. The results
are summarized in figure 10, which shows the evolution
of RxT as a function of the Reynolds number Ry formed
with the leading edge radius. The open symbols
correspond to n =7, the full symbols correspond to
n=9.5. There are in fact two values of Rx for the
computational points associated with the three higher
values of Ry. They correspond to two different heights of
the integration domain of the stability equations.
Although these heights differ by a factor two, the final
results are close together.

The major results is that RxT increases as the leading
edge bluntness increases. In the experiments, however,
this trend is reversed when Rp exceeds some critical

value. A simple linear stability analysis cannot reproduce
this behaviour.
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Conclusion

The e method remains the most widely used
technique to estimate the transition location. In the linear
regime of amplification, it is able to determine the
characteristics of the unstable eigenmodes -provided the
basic flow is accurate enough. It is also a very efficient
tool for parametric studies : for a given test model and
for a given disturbance environment, the e method can
predict the variation of the transition location when
changing a parameter which governs the linear stability
properties of the flow - for instance the height of a bump
or the radius of a leading edge.

However, many numerical and experimental studies

pointed out the deficiencies of the ¢ method : the
receptivity mechanisms are not accounted for, and the
non-linear phenomena are replaced by a continuous linear
amplification up to the onset of transition. Clearly, the
first problem is a long term issue. As far as non-linear
mechanisms are concerned, the PSE represent a
promising approach. But, in any case, the key problem
remains to define the value of the n factor at the onset of
transition.
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