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Abstract

Transonic viscous flow around a cropped delta wing
with a round leading edge is investigated by solving the
Reynolds averaged thin-layer Navier-Stokes equations.
A low Reynolds number k — ¢ turbulence model is used
for the evaluation of the turbulent viscosities. The angle
of attack is either 10 or 20 degrees, the Mach number is
0.85 and the Reynolds number based on the root chord
is 4.5x 10%. The results are compared with experiments.

Introduction

Despite the increase in computing power, there are
several aspects in the solution of the Navier—Stokes
equations that remain unsolved. A major problem
is the accuracy of the turbulence modelling. Several
algebraic turbulence models(!:2) exist for attached flows,
but those models can treat neither complex geometries
nor separated flows properly. Another major drawback
of the algebraic models is the inability to take account
of history effects.

Recently, the trend has been to implement more so-
phisticated two-equation turbulence models to Navier—
Stokes codes. More sophisticated and complex mod-
els require more computing power, but since they have
more physics behind them, they are expected to pro-
duce more accurate results. These models, such as the
k — ¢ model® are usually not very suitable for high-
Reynolds number flows with thin boundary layers. The
presence of a solid wall has to be modelled separately.
The original approach with the & — ¢ model is to use
wall functions, which requires a complicated boundary
treatment. Another approach, applied in the present
work, is to use low-Reynolds number models, in which
the presence of a solid wall is taken into account in the
source terms and in the calculation of turbulent viscos-
ity.

In the present study the flow past a cropped delta wing
at transonic speed is solved using Chien’s low-Reynolds
number k — ¢ turbulence model®. The investigated
wing is the round leading edge delta wing with a leading
edge sweep angle of 65° examined in the International
Vortex Flow Experiment on Euler Code Validation(®).
Previously, the same wing has been calculated using
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both Euler and Navier-Stokes codes.

The Reynolds number of the calculated cases is 4.5x 108,
and therefore the calculations are performed with a
totally turbulent boundary layer. Previously, these
cases have been calculated using the Cebeci-Smith
turbulence model (). In the present study, emphasis is
laid on differences between the solutions obtained using
the Cebeci-Smith model and the k—e model. The angle
of attack is either 10.76° or 19.48°, but detailed results
are presented only for the case a = 10.76°.

The calculations are performed with a Navier-Stokes
code called FINFLO that solves the Reynolds averaged
thin-layer Navier—-Stokes equations by a finite-volume
method. The scheme applies the flux-difference splitting
of Roe () and the time integration method is implicit. A
multigrid V-cycle is used to accelerate the convergence.
The code has been developed at the Laboratory of
Aerodynamics in the Helsinki University of Technology
and is described in Refs.(39) .

Numerical Method

Gaverning Equations

The Reynolds averaged Navier-Stokes equations, and
the equations for the the kinetic energy k and dissipa-
tion ¢ of turbulence can be written in the following form

U  AF-F) 6(G-Gy) OH—-H,)
T T T oy T =)

where U = (p, pu, pv, pw, E, pk, pe)T. The inviscid
fluxes are
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Here p is the density; the velocity is V = ui+ v;+ wl;; p
is the pressure, and E the total internal energy defined
as

— —

pvV .-V

E = pe+ + pk 3

where e is the internal energy. The pressure is calculat-
ed from the perfect gas law

p=(y—1)pe (4)

where 7 is the ratio of specific heats ¢, /c,. The source
term ( has non-zero components, which will be given
later, only for turbulence equations. The viscous fluxes
are

Fy= Tz

UTpr + VTgy + WTpy — ¢z
(O 6z)
pe(0e/0z)

Gy = Tys (5)
UTgy + UTyy + WTy, — gy
v (0k/0y)
1e(0¢/0y)

H, = Tzz

UTgy + VTyz + WTyz — ¢,
Lr(Ok/0z)
1(8¢/87) ),

For the Reynolds stresses, we apply Boussinesq’s ap-
proximation

[an + 8u,~
H e ™ 9a;

[N/ .
—PpU; Uj =

2 - 2
= 3(V- V)] = 5pkbi; (6)

where pp is a turbulent viscosity coefficient. The molec-
ular viscosity is calculated from Sutherland’s formula.
In the k — ¢ model the turbulent viscosity is calculated
from
pk? Re,
M @)
Qoo

In ‘the momentum and energy equations the kinetic
energy contribution has been connected with pressure

Hr =c

and appears in the inviscid fluxes. The viscous terms
contain a laminar and turbulent part. Similarly, the
heat flux is written as

5 _ = —(ylr r
§=—(k+kr)VT = ("Pr+“TPrT)VT (8)

where k and kr are molecular and turbulent thermal
conductivity coefficients and Pr and Prp are laminar
and turbulent Prandtl numbers, respectively. In this
study Pr = 0.72 and Pry = 0.9 are used. The diffusion
of turbulence variables is modelled as

weVE = (p+ -’},{-)Vk )

peVe = (p+ ”;T-)Vf (10)

where 0} and o, are empirical coeflicients.

The equations are scaled with free-stream speed of
sound co,, density poo, temperature To,, viscosity
Moo and reference length L.,. In particular, the
nondimensionalized kinetic energy and dissipation of
turbulence are expressed as k* = k/ci and & =
€¢/(c2,/Los). The present scaling retains the form of
the inviscid fluxes, whereas the stress terms have to
be multiplied by May/Res. In the following, scaled
variables are used and the superscripts have been
dropped for simplicity.

Source Term

Near the wall the low-Reynolds number model proposed
by Chien (4 is adopted. The source term for Chien’s
model is given as

k
P pe? _2Ma°° € -vt/2
lk 2 A Reos ﬂy’%

where v, is the normal distance from the wall, and y*
is defined by
Reoo p|V x V|11/2
+ 1o PIV XV
=] ]

. L Ma, 7 (12)
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The production of turbulent kinetic energy is modelled
using Eq.(6)

du;
— oyl 1
P= puzujazj ,
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The source as well as the equations for k and ¢ contain
empirical coefficients. In the present study, we have
applied the following set of coefficients

c1 =144 cg = 192(1 —_ 0.226—-Re:‘}/36)
o, =1.0 ¢, = 0.09(1 — 6—0.0115y+)
o.=13
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where the turbulence Reynolds number is defined as
P e

Rer =
T pue Mag,

(14)

Spatial Discretization
For the solution, a finite-volume technique is applied.
The flow equations have an integral form

jt/UdV+S/F(U) d5 = /de

for an arbitrary fixed region V w1th a boundary S.
Performing the integrations for a computational cell i
yields

(15)

i 2 S s 4 v,

faces

(16)

where the sum is taken over the faces of the computa-
tional cell. The flux for the face is defined as

F=n,F+n,G+n,H (17)

Here F', G and H are the fluxes defined by Egs. (2-4)
in the 2-, y- and z-directions, respectively.

In the evaluation of the inviscid fluxes, Roe’s method(")
is applied. The flux is calculated as

F =T1F(TU) (18)

where T is a rotation matrix which transforms the

dependent variables to a local coordinate system normal

to the cell surface. In this way only the Cartesian form

F of the flux is needed. This is calculated from
1 1 &

P = P REN]-5 3 rONOlat

(19)

where U' and U™ are the solution vectors evaluated on
the left and right sides of the cell surface, 7(*¥) is a Jaco-
bian matrix A = 0F/8U = RAR™!, the correspond-
ing eigenvalue is A*), and o(*) is the corresponding
characteristic variable obtained from R™1AU, where
AU = U™ — U'. A MUSCL-type approach has been
adopted for the evaluation of U’ and U”. In the evalua-
tion of U’ and U”, primary flow variables (p, u, v, w, p),
and conservative turbulent variables (pk, pe) are uti-
lized.

The characteristic variables which include the coupling
with the kinetic energy of turbulence are

a(l)-'(l—-—-—)p 6p 3p6k
a@)_—.i(-ka + pebu + 6p+ 5k)
2¢2'3 prp 4 3/’
al® = pbv
a® = péw (20)
a<5):i(2k5 — pebu+ Sp+ = 6k)
202'3 p—p p 3P
a® = pok
o) = pde

Calculation of the Viscous Fluxes and the Source
Term

The viscous fluxes as well as the derivatives in Eq.(12)
are evaluated using a thin-layer approximation. For
example, in the calculation of P the velocity derivatives

are approximated in the i-direction as
( ). (Sngu)ipije — (Sneu)i—1y2
Oz Vi
_ (net)izaye = (nou)i-1/2

d;

(21)

where d; is the cell thickness in the i-direction. Veloci-
ties at the cell surfaces are obtained as averages from the
nodal values. In the computer code the thin-layer mod-
el can be activated in any coordinate direction. For the
derivatives in the viscous fluxes on the surface i + 1/2,
Eq.(21) is applied for a shifted contol volume V;41/2.

The source term and the possible wall correction in the
the turbulent viscosity are calculated similarly in the
i-, j- and k-directions. As a result the source term may
contain several wall terms, and the wall correction of
turbulent viscosity is different in different coordinate
directions if walls are present.

Boundary conditions

At the free-stream boundary the values of the depen-
dent variables are kept as constants. In the flowfield,
k and ¢ are limited to their free-stream values. In the
calculation of the inviscid fluxes at the solid boundary,
flux-difference splitting is not used. Since the convective
speed is equal to zero on the solid surfaces, the only con-
tribution to the inviscid surface fluxes arises from the
pressure terms in the momentum equations. A second-
order extrapolation is applied for the evaluation of the
wall pressure.

The viscous fluxes on the solid surfaces are obtained
by setting u = v = w = 0 on the wall. The central
expression of the viscous terms is replaced by a second-
order one-sided formula. The wall temperature is set
to the free-stream stagnation temperature. The viscous
fluxes of k and € are also set to zero at the wall.

Solution Algorithm

The discretized equations are integrated in time by
applying the DDADI-factorization (19, This is based
on the approximate factorization and on the splitting of
the Jacobians of the flux terms. The resulting implicit
stage consists of a backward and forward sweep in every
coordinate direction. The sweeps are based on a first-
order upwind differencing. In addition, the linearization
of the source term is factored out of the spatial sweeps.
The boundary conditions are treated explicitly, and a
spatially varying time step is utilized.
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The implicit stage can be written as follows
At + a4t -
[+ —Vz_,(ai Sig1/247 =8 Si—17247)]x

At -
[+ 7 (05 Sj41/2Bff =07 Sj_1/2B; )] x
At )
[I+ T/;(8;5,(;4.1/20;—aﬁﬂsk—lﬂclz)}x

[ — AtDJAU; = %-t-'R

where 0] ik and &7 s are first-order spatial difference
operators in the ¢, _7 ‘and k directions, A, B and C are
the corresponding Jacobian matrices, D = 8Q/8U, and
R; is the right-hand side of Eq.(16). The Jacobians are
calculated as

% = R(A* +kD)R™! (23)
where A¥ are diagonal matrices containing the positive
and negative eigenvalues, and k is a factor to ensure the
stability of the viscous term. The idea of the diagonally
dominant factorization is to put as much weight on
the diagonal as possible. The tridiagonal equation sets
resulting from Eq.(22) are replaced by two bidiagonal
sweeps and a matrix multiplication in each direction.

The matrix inversion resulting from the source term lin-
earization is performed before the axial sweeps. Several
forms have been suggested for D. In order to improve
stability, only negative source terms can be linearized.
The terms related to the walls are not linearized here.
Thus the only contribution arises from the dissipation
terms of Eq.(11). Following Vandromme(!), the dissi-
pation can be written in the k-equation as

Beoo u oty

Mae, pr

—pe = — (24)
Since the production term is positive, its linearization
is not possible. However, there is a strong coupling
between the flowfield, turbulent viscosity and the pro-
duction term P. The stiffness of the equation set can
be reduced by using the following trick

6P P
30 = AU (25)

In this way the maximum change of U caused by P
is limited to |AUqz|. The resulting Jacobian of the
source term can be written as

P|
QQ.: a pik mazx -25 0 (26
U 0 1Pl o, s )
IAipeimwl 2pk

The maximum changes |AUp,,| are evaluated using the
current values of pk and pe as

[A(pk)maz| = pk/Ch [A(P€)maz| = pe/C. (27)

Since the turbulent viscosity is twice as sensitive to
changes of k£ as to changes of ¢, C. was set to 5, and
Cr = 2C; in the present study.

There is a fundamental difficulty in the simulation
of external flows, where large regions of essentially
laminar flow are connected with turbulent regions near
the flying vehicle and the wake. The values of the
turbulence quantities may vary by orders of magnitude
within a short distance. Occasionally, a tiny change
Ak may be much larger than the current value of k,
and it is possible that an unphysically large value of
pr would result if € does not increase correspondingly.
Because of this, some further limitation either in pugp
or the turbulence quantities is necessary. After the
implicit sweeps Apk is limited to 1/6 and Ape to 1/3
of their current values. Also the maximum size of ur
is limited in order to guarantee physically reasonable
values during the iteration. In the present test cases
the specified upper limit of uy was so high that the
steady state results are not affected by the limitation.

In order to accelerate the convergence, a multigrid
cycling is used. The method of Jameson (12) with a V-
cycle has been adopted. The basic implementation of
the mulgrid cycling is described in () and is not changed
because of the implementation of the k — ¢ model.

Since pr is a nonlinear function of the turbulence
quantities and the shape of the boundary layer, the
resulting turbulent viscosities on the coarser grid level
may differ considerably from those evaluated on the fine
grid level. In order to circumvent this, the turbulent
viscosities were only calculated on the finest grid level
and those values were transferred to the coarser grids.
This procedure improves the robustness of the multigrid
cycle significantly.

Wing Geometry And
Computational Grid

The wing selected for these calculations is the round
leading edge cropped delta wing used in the Internation--
al Vortex Flow Experiment on Euler Code Validation(®),
The leading edge sweep angle is 65° and the wing has
a taper ratio of 0.15. The reference length for the
Reynolds number and moment coefficient is the root
chord ¢,. The wing profile is constant over the span
and is defined at the root by

+(0.1183v/z — 0.2101z + 0.3501z% — 0.340623)
_ 0<2<04
Y=\ NACA 64A005
04<z <1
The grid we used in the calculations is a single-block
structured 128 x 48 x 64 O-O grid. The wing surface
is shown in Fig. 1. Since only symmetric cases are
calculated, only half of the wing is modelled.
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Fig.1. The grid on the surface of the cropped delta wing.

The outer edge of the grid with free-stream boundary
conditions is a sphere centred at the middle of the root
chord with a radius of 10c,. The reference point for
the pitching moment calculation is # = 0.57¢, and
the reference length for the moment calculation is the
root chord ¢,. The grid is heavily clustered on the
wing surface to obtain approximately 25 cells in the
boundary layer. Previous experience suggests that this
gives sufficient resolution inside the boundary layer.
The height of the cells on the surface is about 3 - 10~5,
resulting in a y* value of the order of 1 in the middle of
the first cell. The grid is also slightly clustered on the
leading edge and the trailing edge and also on the tip to
obtain better resolution in areas of large gradients. The
grid is nearly orthogonal on the wing surface except
at the trailing edge and the tip. The volume grid is
generated using a transfinite interpolation method.

Results

Test Case Rey, = 4.5 x 10° and o = 10.76°

This flow case has previously been calculated by Kau-
rinkoski & Siikonen(®) assuming laminar flow and as-
suming turbulent flow with the Cebeci~Smith turbu-
lence model. In the present study, a comparison is made
with the previous results.

Transition of the boundary layer was not modelled
separately; instead, the turbulence model was allowed
to predict the location of transition. In this case the
free-stream values of the turbulence quantities were set
tok=4x%x10"% and ¢ = 1 x 108, The effect of the
free-stream values on the solution was not studied. The
initial conditions were k£ = 0.000038 and pr = 1. The
value of k corresponds to a turbulence intensity of 0.005.

The aerodynamic force coefficients obtained for this case
are shown in Table 1. As a comparison, the results
with a laminar boundary layer and the Cebeci-Smith
model are also shown. The experimental results are
_ from Ref.(!3), It is seen that the k — ¢ results for Cy,
and Cp are only marginally improved from the results
with the Cebeci-Smith model, whereas the predicted
pitching moment coefficient C,, 57 is worse with the k—e
model.

The pressure coefficient distributions at cross-sections
z/e, = 0.3, z/c, = 0.6 and z/c, = 0.8 are shown

on the left hand side of Fig. 2. It can be seen
that the ¥ — € model produces results clearly different
from the previous calculations. Most of the gradients
in the spanwise direction are smeared out. As a
result, the suction peak is somewhat underestimated,
especially at z/¢, = 0.8. This is partly a result of the
very high turbulent viscosities produced by the k£ — ¢
model. Although not shown here, 3D-visualizations of
the results show that the vortex core is highly turbulent.
In light of the errors in the pressure distributions, the
turbulence of the vortex core seems doubtful.

Table 1. The lift, drag and pitching moment coefficients
at o = 10.76°, Ma = 0.85 and Re = 4.5 - 108 with various
boundary layer types. .

o = 10.76°, Re = 4.5-10°, Ma = 0.85
CL Cp Cm.57
k—c¢ 0.4908 0.0869 -0.0121
Laminar(®) 0.5057 0.0862 -0.0140
Cebeci-Smith(®) | 0.4935 0.0867 -0.0118
Experiments'3) | 0.4632 | 0.0906 | -0.0086

The surface streamlines and the corresponding pressure
coefficient distributions on the upper surface for this
case are plotted in Figs. 3 and 4, and for the case
«a = 19.48° in Figs. 5 and 6. Compared with the results
from Ref.(8), the vortex is seen to be wider than that
obtained using the Cebeci-Smith model. Also, only
one vortex is formed, whereas the results from Ref.(6)
showed also a clear secondary separation line with the
associated secondary vortex.,

The total pressure contours at cross-sections z /¢, = 0.3,
z/e, = 0.6, 2/¢, = 0.8 and z/c, = 1.05 are seen in Fig.
7. Again, the results with the Cebeci-Smith model
are shown for comparison. These plots confirm the
conclusions concerning the width of the primary vortex
and the secondary vortex.

Fig. 8 shows the velocity profiles at four stations. The
inflection point at ¢ = 76 is due to the primary vortex.
The turbulent viscosity distributions in Fig. 9 are seen
to form a set of almost similar curves, except for the
curve ¢ = 68. Fig. 10 shows the k distribution, and
here also, a distinct peak at 7 = 76 is seen to develop
due to the primary vortex.

The convergence history of the aerodynamic coefficients
is plotted in Fig. 11. The convergence of the lift
coefficient Cp, is typical for the k — ¢ model: a very
restless development is seen and the same property is
also seen from the Cp and C,, curves. The efficiency
of the multigrid method is demonstrated in Fig. 12:
The convergence history of the Ly-norm of the density
residual is plotted with one grid level and three grid
levels. In the former case 5 000 cycles were required
for convergence, whereas in the latter case sufficient
convergence was obtained within 500 cycles.
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Test Case Reo, = 4.5 x 10° and o = 19.48°

The pressure coefficient distributions at cross-sections
z/c; = 0.3, z/c; = 0.6 and z/c, = 0.8 are shown
on the right hand side of Fig. 2. Again, the vortex
width is seen to be larger than with the Cebeci~Smith
model. At z/c, = 0.3 the rapid suction rise at the edge
of the vortex is not properly captured and the suction
peak is underestimated. At z/c, = 0.6 the details of
the suction peak are smeared out as a result of high
turbulent viscosities. At z/¢, = 0.8 the average suction
level is rather good, but the distribution is not correct.
The surface streamlines and the pressure coefficient
distribution plotted in Figs. 5 and 6 indicate vortex
bursting at /¢, & 0.8, which is in agreement with the
experimental result z/c, & 0.82(%).

The aerodynamic force coefficients obtained for this
case are shown in Table 2. For comparison, the results
with the Cebeci-Smith model®) and the experimental
results(13) are also shown. The k — ¢ model predicts the
integrated force coefficients C, and Cp more accurately.
The pitching moment, however, is in error. This
indicates a false chordwise pressure distribution but
good average pressure level. The error in the location
of the aerodynamic center is, however, only 0.025c¢,..

Table 2 The lift, drag and pitching moment coefficients
at o = 19.48°, Ma == 0.85 and Re = 4.5 - 10% with various
boundary layer types.

a = 19.48°, Re = 4.5-10°, Ma = 0.85
CL Cp Cm.57
k—¢€ 0.8398 0.2827 -0.0043
Cebeci-Smith® | 0.8154 0.2765 -0.0120
Experiments!3) | 0.8970 0.3082 -0.0269
Conclusions

Transonic viscous flow past a cropped delta wing has
been calculated using a low-Reynolds number &k — ¢
model. In comparison with the earlier results obtained
using algebraic turbulence models, the quality of the
result is slightly improved but the convergence speed of
the new model is lower.

The k — ¢ model is seen to be highly sensitive to
the initial and boundary values specified for the case.
Despite this, more physical information is obtained
from the flow field, since the turbulence model is not
functionally bound to a solid wall but can produce
turbulence from the gradients in the flow field.

The k — ¢ model turns out to be slightly better than
the Cebeci-Smith model with respect to integrated
forces. The turbulence intensity inside the vortex core
is, however, suspiciously high and further improvements
are needed for reliable simulations.
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Fig.2. Cp-distributions at z/c, = 0.3, 0.6 and 0.8 for o = 10.76° (left) and for o = 19.48° (right) as calculated
with the k — ¢ model, the Cebeci-Smith model(®) and with a laminar flow assumption(®), Reso = 4.5 x 10° and

Ma s = 0.85. The experimental results are from Ref.(5),



Fig.3. Surface streamlines of o = 10.76° using the k — ¢ model (left) and the Cebeci—Smith turbulence model()
(right) at Reco = 4.5 x 10% and Ma, = 0.85.

Fig.4. Pressure coefficient distributions of & = 10.76° using the k—¢
model(8) (right) at Reeo = 4.5 x 10% and Ma o, = 0.85.
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2/ b

Fig.5. Surface streamlines of o = 19.48° using the k — ¢ model (left) and the Cebeci-Smith turbulence model(®)
(right) at Reoo = 4.5 X 10° and Ma oo = 0.85.

i

e 3 Sy /_" =
Fig.6. Pressure coefficient distributions of & = 19.48° using the k - ¢ model (left) and the Cebeci-Smith turbulence
model(®) (right) at Reoo = 4.5 x 106 and Ma o = 0.85.
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Fig.7. Total pressure distributions at z/c, = 0.3, 0.6, 0.8 and 1.05 for & = 10.76° using the k — ¢ model (left) and
the Cebeci-Smith model(6) (right) at Reco = 4.5 x 10% and Ma = 0.85. Apg/pooc, = 0.05.
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Fig. 8. Velocity profiles at 2y/b = 0.27. o =
10.76° and Reoo = 4.5 X 105, /¢, = 0.234, 0.284,
0.356 and 0.450, respectively.
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Fig. 10. Turbulence kinetic energy k at 2y/b =
0.27. o =10.76° and Reoo = 4.5 x 106,
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Fig. 12. The convergence history of lg||Ap|ja/n
using one grid level (solid line) and three grid levels
(broken line).
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Fig. 9. Turbulent viscosity pr at 2y/b = 0.27.
a = 10.76° and Reco = 4.5 x 105, z/cr = 0.234,
0.‘%84, 0.356 and 0.450, respectively.
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Fig. 11. Convergence of Cy, Cp and Cyp, at
a = 10.76° and Reoo = 4.5 X 10° with one multigrid
level.



