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Abstract

In flows with a high intensity turbulent mean
part, laminar boundary layers undergo transition
through direct excitation of turbulence. This is
called by-pass transition. Regions form that are
intermittently laminar and turbulent. By-pass
transition is typical for turbomachinery flows.
Classical turbulence modelling based on global
time averaging is not valid in intermittent flows.
To take correctly account of the intermittency,
conditioned averages are necessary. These are
averages taken during the fraction of time the
flow is turbulent or laminar respectively. Start-
ing from the Navier-Stokes equations, condi-
tioned continuity, momentum and energy equa-
tions are derived for the laminar and turbulent
parts of an intermittent flow. The turbulence is
described by the k — ¢ model. The supplemen-
tary parameter introduced by the conditioned
averaging is the intermittency factor. In the
calculations, this factor is prescribed in an alge-
braic way. Results for flat plate test cases are
given.

Conditioned averages

We define an intermittency function I(x,y,z,t)
with value 1 in a turbulent region and value 0 in
a non-turbulent, say laminar, region. The time-
averaged value of this function during some
time interval T is defined as the intermittency
factor

T
v = 1 / I(x,y,2,t)dt = v(x,y, 2, t).

T Jo
The time interval T s chosen to be
large with respect to the time scales of
the turbulence, but still small with re-
spect to the time scales of the mean flow.
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Ct = 27y /pU%,

Nomenclature

skin friction coefficient.

f.,fa damping functions.

I intermittency function.

k turbulence kinetic energy.

Rey, = Unx/v distance Reynolds number.

Reg = U8/vr momentum thickness
Reynolds number.

Tu turbulence intensity (%).

a global time average.

u average during turbulent state.

u value during laminar state.

u, v fluctuating velocity components.

Ur = \/Tw/p friction velocity.

ut =1 /u, velocity in wall units.

yt =yu, /v distance in wall units.

¥ intermittency factor.

61 displacement thickness.

€ turbulence dissipation.

n dynamic viscosity.

p density.

6 momentum boundary layer

thickness.

Sub- and Superscripts

1
t

laminar state.
turbulent state.

tot sum of mean molecular and
Reynolds quantities during
turbulent state.

tr transition.

conditioned Favre-averaging.
conditioned Reynolds-averaging.
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Figure 1: Upgoing front

We calculate first the turbulent condi-
tioned mean value of a quantity for Reynolds-
averaging. Afterwards, we verify the results for
Favre-averaging. As an example we take the ve-
jocity component in x-direction: u. This quan-
tity can be decomposed in mean and fluctuating
components by

u=1u+u’
u=wu +u for =1
u=uy for 1=0.

Laminar fluctuations are neglected here. The
turbulent mean value and fluctuation satisfy

- — 1 [T
Iuf =0 Iu =~m; = —/ Tudt.
T o]
The laminar mean value and the global mean
value satisfy
(1-Du=(1-y)w and =78 + (1L —7)u.

Further, we derive the equations for the con-
ditioned averages of a space or time derivative
quantity. The turbulent conditioned average of
a space derivative term 32 is defined by 132 .

ax
During the turbulent phase we decompose by

u=1; +u; and 9u = ai—!-%
¢ x~ 8x @ ox’
We accept that the quantlty 3“* is uncorrelated,
like ui, such that the time average during the
turbulent phase is zero. As a consequence the
contributions of the turbulent phase in the in-
tegral defining the mean value is 'ya—{fxl. Further,
there are contributions coming from the fronts
between turbulent and laminar zones. Fig. 1
shows schematically the passage of an upgoing
front, i.e. a front where the state changes from
laminar to turbulent.
During the passage of the front, the space
derivative is seen as
du u -1 uf

dx 6)(1 6X1 !
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where we accept that the front is spaced over a
distance éx,. We take now as convention that
we consider the front passage as part of the
turbulent phase. The contribution of an upgo-
ing front to the integral defining the turbulent
mean value is given by

1 6t
Tl — @5

where §t; is the time interval during which the
front passes. We consider the mean value of
u; even during this small time interval as being
zero. The quantity %—? represents the passage
velocity ¢, of the upgoing front in x-direction.

Similarly the contribution from a downgoing
front is given by

l _ )6t2
(0 —w)ge=

The contribution from one passage of a turbu-
lent zone is

2@ —w)(— - ). 1)

Cxz Cx,

By integrating over many passages, a sum of
terms of form (1) appears . The interpretation
of this sum is straithforward. We consider the
definition of the intermittency factor on the po-
sition P(x,y,z) and on a position P’, an infinitesi-
mal distance éx further in x-direction. When the
upgoing front passes at time t; at the position
P, it passes at time t; + 2 at the position P’.
Similarly, the downgoing frc;nt passes at times i,
and ty + ci:-‘- Neglecting higher order variations
of ¢y, and’c,, during the passage, the fraction
of time turbulent fiow is seen at point P is given
by

_ Btz —t1)

= T ,
while at point P' it is
Btz — t1) + 6_x 1 1

(

'Y+6'Y= T T cx2 _:x—l.)'

Hence

dy 1 1 1
ox Tz(cx, Cx, )

This results in the rule for a space derivative

_ Y
[ = y— - —. 2
St + (@ —w) " (2)
This rule is valid for every other space direction.

The laminar conditioned mean value is sim-
ply

8\1]
)5

(1- I) (3)

—( -



The sum of the expressions (2) and (3) gives

E _0(yE  + (1 =7)wm) ou
x ox - oax!
which, of course, should be the result.

Following a similar reasoning, conditioned
mean values for a time derivative quantity can
be constructed. We consider Ig%. The con-
tribution of the turbulent phase to the integral
defining the mean value is yZ&. The front con-
tributions are respectively

@ —wm) g (m—T)
bt 6ta

For v constant in time, there is complete com-
pensation of these two terms. For varying v,
there is a resuitant contribution. Over a time
interval T, the passage of the upgoing fronts
is advanced in the mean by the amount 121T,
while the passage of the downgoing fronts is re-
tarded with the same amount. So over a given
time T, for y augmenting in time, more upgoing
fronts pass than downgoing fronts. The resul-
tant contribution of the fronts to the integral
is
oy
e
So the time derivative rule is like the space
derivative rule ‘

(T —w)

128 =028 | (g, -ul)%'tl. (4)

Further we need the conditioned average of
the product of a quantity and the space deriva-
tive of an other quantity Ia%. The contribution
of the turbulent phase to the conditioned aver-
age is

ob | O
'Ya‘ax atax )

During the passage of an upgoing front, the
term is seen as
a¢ + a} + a3 bl—bg—b};
2 6x1 )
The contribution to the integral is

(a* ’““(b1 —by) - iﬂ) ﬁ

2 2 6)(1

Taking into account the contribution from the
downgoing front, the final result is

Iae.h J %_{_ 1ab;$
ax - T |Max T e
ay + a; gy aibi oy
by — b)) — —.
+ 2 (be bl)3x+ 2 Ox (5)
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Finally, global mean values of quadratic
terms like Reynolds stresses —(u/v’) must be de-
duced.

For I=1, we have:

W=tu-u =

= U -8 + (1 —7)u —u}
= —(1-7)T —w)-—u}.

ﬁ-ﬁg ——u’,

For I=0, we have:

’

u=u—u = UuU-—uy
= o +(1-7wu-w
= (T —w).
Hence
W) = (1-7)2@ - w)®+ (np)?
+2(1 —9)(Ue —w)ug for I=1
= Y(aE —w)? for I=0.
w2 = (1 -7 - w)?
+ (w)? + (1 =77 (@ ~w)?
= () +v(1 - 7@ —w)’. (6)
Similarly

u'v = yupvg 4 (1 — )@ — w)(Ve —w).

Conditioned Navier-Stokes equations

It is immediatelly clear that the rules for con-
ditioned mean values and derivatives go over to
Favre-averages. We define mean and fluctuat-
ing parts of density:

p = Btsd for I=1, where Ip =17,
p = pm for I=0.
Hence

=7 +(1-7);-

Further, a turbulent Favre-average for velocity
is defined by

I;TU = Yp G .
The global Favre-average follows from
pu =pli=7p 0 +(1—v)pu.

We derive now the conditioned turbulent mean
mass equation.



The unaveraged equation is

dp 8pu QBpv

T ox Tay ="

According to the rules for derivatives, we obtain
as turbulent conditioned mean equation

9p, Oy dp, — Al
UrT +(Pt )—* 5}: + (P G —Plul)a_x
9p, ¥ Oy
+v (.; + @ — v dy =

This equation can also be put into conservative
form as

8P, + O(7p, it ) + 9(7p, ¥t ) —
ot Ix dy
Oy Oy Oy
Mg TAuG AV (7)

The laminar equation simply is

Spm v

dp | Opu _

ot T Tox

By summing (7) and (8) multiplied by (1 —+),
we obtain

0vp + (1 —7);m) 0(YPy it + (1 —v)pr )
dt dz

(v ¥t + (1 —7)mv1)
dy

+

This equation represents a global mean mass
equation.

The conditioned turbuient mass equation
used in the calculation is

ap; 9p, Gy 9p, — 18y
o T Tox T ey — TP
9

139y 1

+(pmu — PGy )—— — 9
(mu — B ‘)78 + (W PtVt) 3y (9)
Similarly, the momentum equations can be
treated. We write the momentum equations in

compact form as

dpu; | Bpujy dp _ On;
ot ox; Ox; dx;’

where the summation convention is used. The
terms 7;; denote the molecular stress compo-
nents. During the turbulent phase, the Favre-
and Reynolds-decompositions are

pui = p(ii + ug)
puiny = p(f + ug)(Teg + ugg)
P = Py +pt
no= Ty + T
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=0.

The turbuilent conditioned equations are

95, 9P, Girilly;

7223 L 5 s — ) L+ 42220
5t t Uti 1 6t ax;
ap ”

+ ah tJ + (pt unut) + P“tx“ej 4] uhulj)———

X5 0%;

3P, _ Ay _ aTtu by
at ox; + (P P‘)ax; T o + (75— i) ox;’

The usual eddy viscosity modelling approxima-
tions are now introduced:

— 2 . -
-;‘-ilj1 = —puguy = —3P ke 655 + 2:S4i5
T = Zﬁ,étij
o~ 17752
peke = EPuti
& _ 1[0 duy) 1, du
I Ox; 9x; Y ox !

where f}} are the Reynolds stress components,
f(t is the turbulence kinetic energy during the
turbulent phase, u; is the eddy viscosity and
§t;3 is the rate of shear tensor based on Favre-
averages during the turbulent phase. We ne-
glect here front contributions to the turbulent
mean shear stress.
For instance,
equation is

the resulting momentum-x

(P, U ) 4 (p, Gy Ui ) 4 O(p, e ¥y )
ot ox dy

OB + 3P ke) _ O(h+ m)Sexx | B(fh+ pe)Sexy
+ = +
Ix ox dy

_ . 1oy 10y
—Ptut)"““ +(awmy — ptutut);gi

ot
.18 _2_..18
+(PIU1V1—ﬁeutVt);5}+(Pl—Pt — 2Pt t) 7

+(mw

3

1 a'y
9x

1 67

- [M Stex — (B + #t)Stxx ]
- {Pfl Sixy — (P’ + Il:t)stxy}

The momentum y-equation is similar. The
energy equation can be treated in the same
way. The result is as for the other equations
an equation which is similar to the global aver-
aged equation supplemented with source terms
due to the front passages. The resulting energy
equation is

(P Er ) 4 9@, H: ) 4+ 9@, He ) _
ot 9x dy
O(7 fexfie + 7% —TiY")
dx



tot ~ = tot
+a(Ttxyut +7 7-':ny —Qy )

dy
138y
+(mE1 — B, Ec)——‘+(Pleuz —PcHtut)—""
e . 6
+pHiv —ngtVt)""“}:
—tots 1 107
= [Nt + My — Tigle — Tigy Vi) = 5 Bx
1 87
- tot ~ - tot ~
- [nxyul + ngyv1 — Ttgyut Tt;y t] 7 ay
10y 108y
—tot w tot
+ [ — G52 St lay —d55"] o (11)

The mean total energy Et and mean total en-
thalpy H; during the turbulent phase are given
by

B = ét+2(ut+v?)+kt
I.:It = E + + kt,
where & is the mean internal energy. 7—'{3‘

are stress components formed by the sum of
the Reynolds stress components and the mean
molecular stress components during the turbu-
lent phase. In the same way q* are total heat
flux components during the turbulent phase.

Conditioned turbulence equations

We derive here the equation for the turbu-
lence kinetic energy during the turbulent phase
ki. From a combination of the conditioned
mass equation and the conditioned momentum
equations, an equation for the mean flow ki-
netic energy during the turbulent phase can be
derived. This equation is

8p, 30%  8p, 1uddy L a P, "y a7 ot
ot ax,- t 0% ! 3Xj
_ 1
= utiBi - zut?xA (12)

where A is the source term in the conditioned
mass equation (9) and B; are the source terms
in the conditioned momentum equations due
to intermittency. The term B, can be seen
in equation (10). The equation (12) is sim-
ilar to the equation for the global mean flow
kinetic energy but differs from this equation by
the source terms due to intermittency. From
the unaveraged mass equation and the momen-
tum equations, similar to (12) the equation for
the unaveraged kinetic energy is found as

dpju?

+ dp3uiy; u op k]
ot 0%

g U
Ix; 0x;

=0. (13)
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The conditioned averaged equation during
the turbulent phase corresponding to (12) is

8(p; 0% + P ki)

ot
—— - —_ 1 o~ ~ »  » wa n
a(p, %u?iutj + Py ke Gy + Uripugug + 2putx “q)
0%;
~ aﬁt v aﬁ » ap;
gk T By TN ey
. 0Ty aTﬁ, aTm
—U ot = U o = Uy
ox; ox; 0%
1 1 18y
= (5muf— 57 88 — Poke)= 5t
1 2~ _ ~
+(5a ufug — 5P iy — 7, ke iy
. m 1 »2 » 1 a’Y
Ui PUg U 2put1 Ugj )’Y ax
ﬁti+u_:;+u1;( _ )1 Jy “cipt_l__a_j_
2 P v 8% 2 q0x
g + u—'t, + ui 1 9y “:iﬁ'ij 18y 14
2 (ms T“’)'yax, 2 'yaxJ-'( )

We denote the source term due to intermittency
in (14) by C. By combining (12) and (14),
the equation for the turbulence kinetic energy
during the turbulent phase is found as

~ . 1 _n2m
0p k¢ ap ke utu 6( uhTu + 2p ti Ut )
at I%; 0%
e aﬁt n ap;; - a?ifj{ o 6Ttij
TGy TN Ty T M ey
» ‘9”'{;3 1
U5 = C—1yB; + SGjA. (15)
% 9x; 2"

The left hand side of this turbulence kinetic en-
ergy equation has the same form as the global
turbuience kinetic energy equation. We recog-
nize the following terms:

Oty
Production : Py _—f} "
0x;
a(l-lT;T_' _ El— p n 2 n )
Diffusion : ti’ tij tj 't 2 Pt t)
0x;
.. ou.
Dissipation : —7; an
6 0P, —omg
Compressibility : p' —2 — u}; —& —u 1
P y:P 0x; B 5%,

ti axj
The source term due to intermittency in the

f(t equation can be worked out into:

1 10
[2pl(uh_ut1) —Ptkt] —'5%



1 MRCTUNIE SIS Serr ) B 02
+ [5P1 (uli - uti) uj — spt ks Ugj — §Puti ] " axj
Uy + w = iy oy _ugpi| 19y
+ { 2 (P —Pt) 2 ] v 9x;
;Z +ugi — Gy _ . uwiTy | 18y
i h e e =Yy 29 (16
2 (Tllj Ttx]) 2 ~ an ( )

In each of the four parts in this source term, the
components which are grouped into the square
brackets compensate more or less each other.
We consider as an example the first group of
components. in a wall bounded flow, the tur-
bulent mean velocity component in the direc-
tion of the wall is larger than the laminar ve-
locity component near the wall, while the re-
verse is true far away from the wall. So near
to the wall, the considered coefficient is pos-
itive; further away from the wall where lami-
nar and turbulent velocities are approximately
equal, the coefficient is negative; far away from
the wall it is again positive. So, the mean in-
fluence on the generation of turbulence Kinetic
energy is very low. The same can be said from
the three other parts. The conclusion is that
the source term in the Et equation has only a
second order effect in the sense that it can al-
ter the distribution of kt in a wall bounded flow,
but not the mean level. Therefore taking into
account the modelling which anyhow has to be
done in the left hand side of the equation (15),
it seems appropriate to neglect the right hand
side. We verified the influence of the source
term by bringing in the first and second group

of terms, but leaving out pu:izu:j, into a calcu-
lation. These introduced terms are free of any
modelling. The influence on the results was
completely negligible. The source terms in the
Navier-Stokes equation (9)-(11) are much more
significant and cannot be deleted.

It is very important to come to the con-
clusion that the source terms in the turbu-
lence equations can be neglected. For the fct-
equation it would be not difficult to introduce
models for the terms in (16) that need clo-
sure since these terms are linked to the diffu-
sion process. It would however be almost im-
possible to construct the second equation for
turbulent quantities since, for instance, the e-
equation has not at all the same rational basis
as the k-equation.

We model the turbulence by the classical
(low Reynolds number) k- and e-equations, but
written for the turbulent conditioned averaged
values. These equations, written in the Yang-
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shih variant(®) are

Op ke | Opkely ki _
ot Ix 8y
a - Mt 8Rt 8kt
—_ Lk il —t Py -7, ¢
% H o) Ox ( + ) + Py — P, €,
Op € | Ip, & iy + Op e Ve _
at ox ay
8 aet 3 - Mt 8&}
_8—_( )_+8y( +a5 8y
1
-+ [Cslpk Cezfzpt et] T +£:
where
~ _ 8ﬁﬁ aﬁtj 2 “aﬁtk
Pu = {“‘ [axj T 3o
. ) By
_6upt ke } —E-XJ—I
- _ kt [
pe = CufipkeT T = é, + P, &
pie 0%y 8%y _ Py ke y
g = BAZUZT g oAV
Pt 3ijk Bijk 7
f, = 1-exp(aiRy+asR}+ asR;)
th _ Py RtT
fz = 1 —exp(——ﬁ) Rg = P .

The following model constants are used :
C, = 144, C, =192, ox = 1, 0 = 1.3, Cu =
09, a; = —1.5 1076, ag = —5.1077, ag = —1.10~ 10,

2
At the wall, ky =0 and B, &w = 2p (—3@:) are

imposed.

Intermittency modelling

The intermittency v can be described alge-
braically according to Dhawan and Narasimha
by

v(x) = 1 — exp [—fic(Rex — Rexir)?], (17

where # is the nondimensional turbulence spot
production rate and o the turbulent spot propa-
gation parameter. This law is valid for concen-
trated breakdown at x,,, which is typical for nat-
ural transition. The parameter fic in (17) has
been correlated by Mayle(?) based on intermit-
tency measurements for zero pressure gradient
flow as

fic = 1.25107"Tui. (18)

The position of transition x¢ has been corre-
lated by Mayle(®) and Hourmouziadis®) as

420 Tu=-%9,
460 Tu™"%. (19)

Regey =
Regyy =



T

| .
VA
Zs Ztr Z
Figure 2: Intermittency in distributed break-

down.

There are slight differences between both corre-
lations. We found the best agreement with the
experiments for the Hourmouziadis formula.

According to Mayle(?) and Gostelow et al. (%),
in by-pass transition a Gaussian distribution
of the spot production at the onset of tran-
sition is more realistic. To take account of
this distributed breakdown, the growth param-
eter fic cannot be seen as constant in the
beginning of the transition zone. Fig. (2)
shows schematically the evolution of F(y) =
v—In(1 —v) in function of distance for dis-
tributed breakdown(®). In such a diagram a
concentrated breakdown would correspond to
a linear curve. In actual experiments, the lin-
ear growth is obtained at about the level v
= 20%. To model the initial behaviour of
the growth, we draw a polynomial through the
points x,, x¢y and x; with y-levels 1%, 2,5% and
20%, with x;—x,, = x¢: — %, and boundary condi-
tions %% =0 at x = x; and %1— equal to the value
of the linear law at x = x;.

To the best of our knowledge, there are no
criteria available for start of transition with dis-
tributed breakdown. Therefore, in the calcula-
tions, we use the Houmouziadis formula (19)
but applied to the start of transition x, instead
of x¢;. There is clearly a need for more adapted
correlations for the start of transition x,.

Results

The above equations have been used to cal-
culate an intermittent flow on an adiabatic flat
plate with no pressure gradient (% =0). Two
test cases with different turbulence levels have
been chosen to compare computational results
with experimental data. The test cases are de-
scribed by Savill(®) and are indicated by T3A
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and T3B. The first test case corresponds with
turbulence level Tu = 3% and freestream veloc-
ity U = 5.4m/s. The second one has Tu = 6%
and U =9.6m/s.

The equations are solved in their steady
state form by a relaxation procedure. A vertex-
centered finite volume discretization combined
with an upwind TVD formulation is used. Full
details of the numerical method are given by
Steelant and Dick(®). To obtain stability of the
relaxation method, a careful treatment of the
source terms is necessary. The negative source
terms have to be linearized and put on the left
hand side of the equations.

A stretched grid of 385 x 97 points was used.
The grid extends upstream of the plate, with
the sharp leading edge at station 97. The first
grid point in the direction normal to the plate
lies at about y* = yu,/v = 1, where u, is the
friction velocity. Stretching was applied normal
to the plate and in the flow direction near the
leading edge. A detail of the grid in the leading
edge region is shown in figure 3

TN
\
T
T

Il HH\H\H

B

HAHH A A e fod e d
FEPNURPAED D 00 00 O 108 (O O (OO0 OO SV S SN0 Y R |

|
|
H ll!“l

tmm

Figure 3: Detail of the grid near the leading edge.

Uniform inlet profiles for total temperature,
total pressure, k and ¢ were specified. At inlet,
Mach number was extrapolated from the flow
field. The values of k and € at the inlet were
calculated with the equations for k and ¢ for
uniform flow with velocity U:

8k
U-a—x = —€,
B¢ €2
U~ = -C,5,
dx

where at the leading edge the foliowing values
were matched to be in accordance with the ex-
periments, for L = 1m :
€
U3/L
€
U3/L

k= .03(%U2), =2.86 1073, (T3A),

k= .os(guz), = 1.2210~% (T3B).



The upper and right boundaries are outlet
boundaries. There, pressure was imposed. Ve-
locity components, temperature and turbulent
quantities were extrapolated. The part of the
lower boundary upstream of the leading edge
was treated as a symmetry line. At the plate,
no-slip and adiabatic boundary conditions were
imposed. Density and pressure were obtained by
characteristic combinations of the equations.

The test cases T3A and T3B are in princi-
pal meant to have zero pressure gradient. In
the actual experiments there is globally a slight
favourable pressure gradient. The evolution of
the free stream velocity for the test cases is
shown in figure 4. For the T3B case the free
stream velocity has a small oscillation. In the
calculations, the oscillation has been filtered out
(dotted curve in fig. 4). The non-uniform free
stream velocity profile is imposed by the cor-
responding pressure distribution on the upper
boundary. In principle, a non-zero pressure gra-
dient influences the spot growth parameter. We
did not take into account this effect.

9.7 5.5

065 //\\ 5.45
P R e N e 64
T3B//
- 5.35

9.55 ‘"/
9.45 \'If
9.4 y/,- 5.2
9,354 5.15

9.344- 5.1

U [my/s]

9.25 | 5.05
0 02 04 06 08 1 12 14 16
X {m]

9.2

Figure 4: Free stream velocity along the flat
plate,

in the turbulent flow equations, only the
source due to %g—z is used. This term is zero be-
fore the start of transition (x) and is activated
after this point. Before the start of transition
the y-level is taken to be 1%. The term %%}
is smooth everywhere, has a maximum between
X, and x; and tends to zero for large x.

Figure 5 shows the skin friction coefficient
in funtion of Re,, obtained for the T3A case,
where the upper and the lower lines represent
the laminar and turbulent values. Curve (a)
represents the experimental data. Curve (b) is
the result obtained with global averaged Navier-
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Stokes equations and the k — ¢ model, without
taking into account the intermittency. As is well
known, this method gives a too early and too
rapid transition. Curve (c) is the result obtained
with the present method. The accordance with
the experiments is very good. The numerical
transition is somewhat faster than given by the
experimental data.
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Figure 5: Skin friction coefficient (T3A).

0 50 100

Figure 6 shows the evolution of the profile
of the global streamwise velocity fluctuation v’
during transition for different positions along
the plate. The global streamwise Reynolds
normal stress is, with the usual approximation,
given by (6):

—

- ~ 1 - -
w? mk= ke +5v(1-9) [(@ - w)?+ (F —w)?,

where k, is the turbulence Kkinetic energy dur-
ing the turbulent phase. Experiments are rep-
resented by square boxes. In the beginning of
transition the experimental data show already

apreciable levels of u' = \/17; The numerically
predicted level is much lower. This is due to
the neglect of the laminar fluctuations in the
calculation. The laminar contribution to v is
important since it is multiplied with (1—+). Fur-
ther in the transition phase the peak is well rep-
resented and corresponds well with the experi-
mental data. Velocity profiles at onset, in the
middle and at the end of transition are shown in
figure 7. As transition is predicted a bit too fast
(fig. 5), the profile in the middle of the transi-
tion tends more to a turbulent profile than given
by the experiments.

Figure 8 shows the skin friction coefficient
in funtion of Re, for the T3B case. In contrast
with the T3A case, the numerical transition is
somewhat later than given by the experimental
data.
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Figure 6: Streamwise fluctuations for different positions on the plate (T3A).
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Figure 9 shows the evolution of the pro-
file of the global streamwise velocity fluctua-
tion u’ during transition for different positions
along the plate. Concerning the streamwise
fluctuation, the same remarks can be made as
in the T3A case: the fluctuations are under-
predicted in the beginning of the intermittency
zone while the levels correspond better further
downstream. Velocity profiles at onset, in the
middle and at the end of transition are shown
in figure 10. As transition is predicted a bit
too late (fig. 8), the profile in the middle of
the transition tends more to a laminar profile
than given by the experiments. The quality of
the predictions of the T3B case is lower than
in the T3A case. It is however difficuit to draw
a definite conclusion about the T3B case due
to the low quality of the pressure distribution
in the experimental set-up. In particular, the
oscillation in the pressure profile is a disturbing
factor.

Conclusions

Conditioned averaged Navier-Stokes equations
have been derived to model the transition zone.
An algebraic law for the intermittency factor
v has been proposed to simulate distributed
breakdown. Two flat plate flows with high tur-
bulence levels (Tu = 3% and 6%) were caiculated
and compared with experiments.

The present method predicts the transitional
behaviour much better than what can be ob-
tained with global averaged equations.

The general distribution of the skin friction
in the boundary layer is very well predicted. Ex-
cept for the beginning of the transition, the tur-
bulence level and the profiles of turbulent fluc-
tuations are well predicted. Velocity profiles are
in good agreement with measured profiles.
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