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In this paper the guidance system of a missile is
designed by Linear Exponential Quadratic Gaus-
sian and Dual Control (LEQG/DC) method, i.e.,
both optimal control and estimation problems
are considered simultaneously early in the be-
ginning of the design process. In addition to
applying traditional Linear Quadratic Gaussian
and Dual Control (LQG/DC) approach by tak-
ing the state weighting matrix to be negative
definite, such that the magnitudes of both state
and control input can be raised to increase the
observability of the system, the most important
key point of the proposed method is to change
the performance index into Linear Exponential
Quadratic (LEQ) form, by this way the optimal
control gain can take both system and measure-
ment noise covariances into consideration. An
example of missile guidance system design is also
given to show that the performances such as miss
distance and state estimation of the proposed
method are better.

Introduction

In general, the Linear Quadratic Gaussian
(LQG) method [1-7] is extensively used in op-
timal control and multivariable control systems
design, which is based on the regulator concept
[8], 1.e., to keep the states regulated from system
and measurement noises as well as to make the
effort of control inputs to a minimum value. The
state estimator is usually designed by the robust-
ness recovery process at the final step to retain
the robustness stability of the optimal control,
e.g., the LQG/LTR (Loop Tansfer Recoveryg
method. Since the magnitudes of both states an
control inputs are kept to the minimum values,
that the observability of states is always poor. If
there are larger system and measurement noises,
then the performance of resulting system would
even be decreased. This is the major disadvan-
tage of guidance and control systems obtained
by the traditional LQG and LQG/LTR methods
[1-9].
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Although the balanced realization meth-
ods [10-13] are proposed to solve this problem,
nevertheless, the compensator, control inputs as
well as states trajectory are defined in the first
step. Therefore, the improvement of this bal-
anced realization method is limited. The other

methods to increase the observability are ob-
tained by either adding the observability weight-
ing factor into the performance index [14] or let-
ting the state weighting matrix to be negative
definite [9,15-16], such that the magnitudes of
both state and control input can be raised. The
disadvantage is that which will reduce the sta-
bility margin of the original systems.

The main idea of the proposed method
is to take the dual control [9,17-26], i.e., both
optimal control and estimation problems, into
consideration from the beginning of the design
process. Therefore, in addition to applying tradi-
tional Linear Quadratic Gaussian and Dual Con-
trol (LQG/DC) approch [9] by taking the state
weighting matrix to be negative definite, such
that the magnitudes of both state and control in-
put can be raised to incease the observability of
the system, the most important key point of the
proposed method is to change the performance
index into Linear Exponential Quadratic (LEQ)
form [27-30], by this way the optimal control
gain of the control system can take both system
and measurement noise covariances into consid-
eration, which can provide better performances
than those obtained by LQG based methods.

In this paper, three other different guid-
ance laws of a missile obtained by LQG, LEQG
and LQG/DC methods are compared with the
proposed LEQG/DC design, it can be seen that
the performances such as miss distance and state
estimation obtained by LEQG/DC method are
better than the others. The organization of this
paper is as follows: Section 1 is the introduction.
Section 2 derives the general solution of LEQG
problem. Section 3 formulates the LEQG/DC
problem of a missile guidance system. Section 4
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gives the simulation results and discussions. Fi-
nally, the conclusion is drawn in Section 5.

General Solution of LEQG Problem

In this section, the optimal control based on
Linear Exponential Quadratic Gaussian (LEQG)
performance criteria is derived by applying the
Hamilton-Jacobi-Bellman(HJB) equation [31].
Let the system be represented by the following
time-invariant state equation

&= Ax 4 Bu + Tw (1)
and the measurement process
y=Czr+v (2)

where x,u and y are respectively n-, m- and
g-dimensional state, control, and measurement
vectors, A,B,I' and C are n X n, n X m,n X p and
g X n matrices, respectively, w and v are p- and
g-dimensional uncorrelated Gaussian white noise
processes with zero mean and covariances

Bl{w()ywT (r)} = Wo(t — 1) (3)
E{u(t)oeT(r)} = Vo(t ~ ) oy

and
E{u(t)wT(r)} =0 (5)

The problem is to minimize the following
LEQG performance criterion:

t

f
Iz, to) = oB{esp(ZaT (17)5pa(ts) 4 = / (=T (6)Qa(e)
to

+  wT(Ru(t)]ds}}  (6)

where o is a real number, F{-} and exp{-} are ex-
pection and exponential function operators, Sy is
an n X n positive semi-definite weighting matrix
for the terminal states. In order to increase the
states observability, Q is set as an n X n negative
definite state weighting matrix [9,15-16], and R
is an m X m postive-definite control weighting
matrix.

Applying the separation theorem, a Kalman
filter is used to obtain the optimal estimated
state from the noisy measurements, and the state
estimation equation can be written as

&= A%+ Bu+ Ky(y — C#) 6
Since the input to the optimal controller is a lin-

ear combination of Z, therefore, the performance
criterion of Eq.(6) can be rewritten as
Jatg) = o’E{exp{%:i’T(tf)Sfi(tf)

t
. f
+2 / ET(0Qa(e) + wT(ORu(B)d}) ()
to

where the original state vector & in Eq. (6) is

replaced by the estimated state vector &, and
K is the Kalman filter gain defined as

Kk =pcTv? (9)
where the error covariance P = E{(z — &)(z —

2)T} is propagated forward in time by the Ric-
cati equation
p=ar+pPal yrwrl —pcTv=lcp, P(g)=Py (10

Since the Kalman filter is an unbiased estimator,
that the correction term (y — C&) of Kalman fil-

ter in Eq.(7) may be regarded as an equivalent
white noise with zero mean, and the covariance
of which is the same as that of v, i.e.,

E{Q-c&}:o (11)
and
E{(y - C&)(y - 08)T} = Ré(1) (12)

Now the Hamilton-Jacobi-Bellman(HJB) equa-
tion, with the reformulated LEQG performance
criterion defined by Egs.(7) and (8), can be de-
rived as follows:

By Eq.(7) the estimator equation of
stochastic optimal control can be rewritten as

di = f(%,u, t)dt + K(y — C#)de (13)
where d is an incremental operator and
(&, u, t) = A&(¢t) + Bu(t) (14)

By Eq.(8) the performance criterion can be
rewritten as

t
f
J(&, t)=o’E{ezp{a®[i(tI),tf]+a’/ Q[(s), u(s), s}ds}}  (15)
t

where
ir
@[i‘(tf),tf] = ;.i (tf)Sfi(tf) (18)
Qlz(s), u(s), 8] = 2[£(s), 8]+ Y[u(s), 4] (17)
ala() sl = 4T()Q8(s) (®)
and
¥lu(s), ol = ZuT()Ru(e) (19)

Let the value function V(Z,t) be the minimum
performance [32] from ¢ to t,i.e.,

V(& t) = X?txa J(&,t) (20)

then by Eqs.(15) and (20) one has
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V(s,¢)

t
f
:Eitn) o’E{ewp{cr@[:i:(tf), tel+ cr/ Q[#(s), u(s), sjds}}
t
t+ At
= “Eltn) dE{ezp{o'@[:i:(tf), tel+ a’/ Q[£(s), u(s), s)ds
» t

tf
+U/ (l[i(s), u(s), slds}} (21)
t+ At

where At is a very small time interval. Because
u(t;) at t; > t do not affect z(s) at s < ¢, there-
fore, the minimizing operator may be operated
on each term in Eq.(21) and yields

t4+ At
V(z,t) = minoE{ezp{o Q[#( ), u(s), slds}
u(t) \

X  min

WAy E{exp{a@[:i(tf), tf]

tf
to / Qfa(s), u(s), slds}}}
t+ At

t+ At
= m(ltn) aE{emp{o’/ Q[&(s), u(s), sjds}
“ ¢

x-‘l;v[i(t + At), t + At]}

= min o E{exp{c[Qi(t), u(t), ]At}
u(t)
x%V[i(t-{»At),t-{-At]} (22)

In the above derivation, since At is very small,
the following approximation is applied:

t+ At
/ Q[a(e), u(s), slds = Q[2(t), u(t), s]At (23)
t

The exponential term and V[&(t + At),t + At]
in Eq.(22) can be expressed in a Taylor series
expansion about # and t, after neglecting the

higher order terms above (At)?, one has
;:zp{o'ﬂ[ﬁ:(t), u(t), tJAt} & 1 4 onf(t), u(t), t]At (24)
and

VIs(t+ A6, b+ A1 & V(#,1) + Ve(d, DAL+ VT (5, 0)A8

+vI(s, t)atas
+-:—(A:B)TV5_.:E(:&, A (25)

where the subindex denotes the partial deriva-
tion with respect to that variable. By Eq.(13)

A

i

2(t 4+ At) — #(t)
& u, )AL+ Kf(y —~ C&)At (26)

then by Egs.(11) and (12) both mean and vari-
ance of A defined by Eq.(26) can be derived

as

E{Az} = f(&,u,t)At (27)

and

B{a:a3T} = (&, 4, )57 (&, u, e)(a0)? + KfVK}"Ac (28)
Substituting Eqs.(23)-(28) into Eq.(22), one has

V(g,t) = m(irS{V(&, £) 4 Vils, AL + VI (&, 1) F(%, u, )AL
ult

+ VR 01, u, e)(a0)?
+-;-tr[vﬁ(a, O 1(& 6, 0 f T (&, u, t)(AL)>
+V33(8, VK VK] Al]
$o0U%, u, )V(2, DAL + o, u, )Ve(5, t)(AL)
o, u, OVT (3,052, u, t)(A8)?
o0&, w, OV (&, ) F(&, u, 1)(A0)°
+ %Q(a‘:, u, Ot [VER(E, ) (5, u, )L (5, u, t)(At)>
+V34(8, VK VE] (A8} (29)
where t,.[] is a trace operator.
Substituting Egs.(14) and (17) into Eq.(29)

one can obtain the Hamilton-Jacobi Bellman
equation of LEQG performance criterion as:

@) = min (00 + T (ORUOIV(E Y

1 ; T
+5trlVpa(8, 0K VKT
+vE(#, 0)l4s + Bul} (30)

Following optimal control theory 1&325, the Hamil-
tonian function H is related to the derivation of
value function as:

Vi(#,t) = —min H(&, u, t) ' (31)
u(t)

Comparing Eqgs. (30) and (31) one can find

H(z,u,t) = g—[zT(t)Qz(t) + uT (W) Ru(D]V (2, 1)
+V (5, 6)[A% + Bu]
+56rlVea(s, DK, VKT (32)

Applying optimal control theorem, the optimal
control must satisfy the following equation

8H
Bu

um=u*

cRu*V(2,t) + BL Vy(%,t) (33)

#

So from Eq.(33), the optimal control u*(t) can
be obtained as

u*(t) = —%R"l BT v, (5, v ~1(4, 1) (34)

Substituting Eq.(34) into Eq.(30), the HJB equa-
tion is reduced to

- Vs = —:-[5;TQ¢

+ ;17‘/_1("” v T (2,0BR™I BT vy (s, )v (s, IV (2, 1)

+ v, 0148 - %BR'IBTVE(@ vz, 0l

+ %tr[vﬁ(i, 6Ky VKT] (35)
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Suppose optimal value function V(Z,t) to be as
the following form

V(g t) = chezp(giTS;‘t) (36)

where D is a scalar function of time and § is
a positive-definite symmetric matrix, both of
which are to be determined as follows:

By Eq.(36) one has

2
abewp(i—ﬁ:TS.’r) + fz-—DiTéiezp(g-iTSi) (37)

Vt =

a
Vi = o’Dsseap(2T 5) (38)
Vis = a’zDSezp(—:-chSa“:)+o'aDSiﬁ:TSezp(;-iTSi) (39)

Substituting the corresponding terms defined by
Egs. (36)-(39) into Eq. (35) one has
LI U LT DU
- aDe:np(;a: Sx)—-—z—Da: Smezp(;z S#)
2
= Z.:Tqs Z:Tsa
= 5 Q De.w:p(2 S%)
2
+%—§:TSBR_1BTDSa‘:ezp(§iTS:2)
402037 SPzexp( %iT )
—azDiTSBR_'lBTSiezp(—:—iTSi)
+.;-c,.[aszKfVK}']ezp(i;-iTSj)
+o'3DS:‘t:‘rTSKfVI(;‘Fezp(giTSi) (40)
Since Eq. (40) must be hold for any Z(t), so

equating the corresponding terms one can obtain
the following relationships

. - f_ T
~b = ~Dir[SK; VK] (41)
and
—5=Q+ 54+ aTs - s(Br™1BT —aKfVK}')s (42)

with the boundary conditions of D and § to be
derived from Egs. (6), (21) and (36), i.e.,

D(ty) =1 (43)
and

S(tp) =54 ‘ (44)
Substituting Eqs.(36) and (38) into Eq.(34), the
optimal control can be obtained as a linear com-
bination of the estimated states:

w*(t) = ~rR~ BT 52 (45)
where S must satisfy the Riccati equation de-
fined by Eq.(42).

It should be noted that by Egs. (9), (10),

(42) and (45), if the weighting factor ¢ # 0in Eq.
(42), then the optimal control gains would take

both system and measurement noise covariances
gW and V) into consideration,which is different
rom those obtained by LQG method, and this
is the reason why certainty equivalence principle:
cannot be held by LEQG method, but it provides.
another degree of freedom for the design to get:
better performances. In the mean while, since:
the state weighting matrix ) is negative definite,,
that the observability of the proposed method is:
better than that obtained by LQG method.

In addition, if 0,4, is the upper limit of o in
Eq.(42) to make the effective control weighting
Ress to be positive definte, i.e., Repy and omas
are defined as

“1 2T _ =157 _ o5 T
BR_; B! = BRT'B' —aKVK; (48)

and

Repy >0 for o < Omaxz (47)
Then for 0 < 0 < Omaz, the magnitude of effec-
tive control weighting R.ss in Eq. (46) is larger
than that of the original R. According to op-
timal control theory it is well known that the
bandwidth and overshoot of the system can be
decreased, therefore, the system is less sensitive
to the environmental noises. However, if o < 0,
then the above conclusions will be reversed, i.e.,
the magnitude of R, is reduced, and the band-
width as well as the overshoot of the system
would be increased. It should be noted that if
0 > Omag, then R.f; would become negative
semi-definite, therefore, the gain margin (-6dB
to codB) and phase margin (£60°) of the opti-
mal control system cannot be preserved.
LEQG/DC Guidance Law Formulation

In general, the optimal guidance laws are
derived by LQG method [32-33], Therefore, both
state and control input are always regulated to
zero, and the missile is always in constant bear-
ing triangular geometry. However, it is well-
known that the observability of such a homing
trajectory is poor [9], so that the acceleration
of the target maneuver cannot be estimated ac-
curately, which will degrade the performance of
LQG optimal guidance law in practical engage-
ment. .

It was reported [34] that the observabil-
ity of homing guidance system is proportional to
the time-to-go. Therefore, if the state weighting
matrix is taken to be negative definite [Qf, then
the magnitudes of both state and control input
can be raised to increase the time-to-go, and the
observability of system can also be increased.

For the convenience of presentation, the
guidance law development is based on two di-
mensional analysis as shown in Fig.1l. In ad-
dition, the target maneuver is assumed to be
randomly reversing Poisson square wave [35] as
shown in Fig.2. Then both the performance in-
dex and the state equation are respectively as:
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t
f
J = oB{eapl o} + 4 / (W?(8) - q)ae]} (48)
tg
and

0o 1 0 yq 0 0
t=10 0 1 yg |+ ] -1 |u+ 0 w  (49)
0 0 ~2¢ A 4 2v

where u is missile acceleration command in y-
axis, v is the number of times of target maneuver

crossing zero per second, w is a gaussian white.

noise with zero mean and variance to be as

Elw(t)w(r)] = as(t)s(t ~ 7) (50)
It should be noted that in Eq.gtig) the autopi-

lot time delay of missile is neglected. Let the
measurement equation be as

Yd
z=[1 s} 0][-’/}1 + v (51)
Ag

where v is also a gaussian white noise with zero
mean and variance as

Elv(t)v(1)] = ou(t)6(t ~ 1) (52)
Noted also that w and v are uncorrelated, i.e.,
E=[witpI(+)=0 (53)

By LEQG method developed in Section 2, one
has the estimated state equation as

6 1 o Ya 0
E=10 o 1 dg |+ | -1 |utKz-2) (54)
0 0 ~2v A 0

where K is the Kalman gain of the filter [32]

2uwgo
K= | 2?2 (55)
wos

41/263 1

)& (56)

and where

wo = (

Tu

Then one can obtain the guidance acceleration
commands and compare the results by computer
simulation in the following section.

Simulation Results

In this section the guidance laws obtained
by LQG, LEQG, LQG/DC and the proposed
LEQG/DC methods are compared with Monte-
Carlo computer simulations. Three variances of
measurement noise (i.e., 0,=0.01°%, 0.1° and 1°)
are used for the performance analysis of miss
distance and state estimation. Three values of
weighitng factor o (e.g., 0.00001, 0.001 and 0.01)
are also used for trade-off study. The related sys-
tem parameters are listed in Table 1.

Firstly, the average, standard deviation, and
maximum values of miss distance are considered.
From Tables 2 to 4, it can be seen that if o, is
small (i.e., 0.01%), then there are no much dif-
ferences among the methods. However, if o, be-

comes larger (e.g., 0.1°), the results obtained by
the proposed LEQG/DC method become better.

As o, is equal to 1%, there are much more im-
provement especially for the case with ¢=0.001.

Secondly, since the target acceleration esti-
mation is the most important one for optimal
guidance, that the estimation error of target ac-
celeration is studied as follows. From Figs. 3 to
11 one can see that if o, is smaller (i.e., 0.01°)
then the target acceleration estimation errors are
larger for the larger o of the proposed LEQG/DC
method. However, when o, becomes larger (e.g.,

0.1° or 19), the target acceleration estimation
error becomes smaller. The reason of these ef-
fets can be seen from Figs. 12 to 20, that is,
if 0, is small (i.e., 0.01°) then the acceleration
commands of missile is delayed, however, when
o, becomes larger (e.g., 0.1° or 1°), then the
acceleration commands of missile are advanced.
Therefore, the proposed LEQG/DC method can
increase the observability for the larger measure-
ment noise conditions, and improve the miss dis-
tance performance.

Conclusion

(1)  From the results of simulation, one can
see that if the magnitude of measurement noise
is small, there are no much differences among
LQG, LEQG, LQG/DC and LEQG/DC meth-
ods, However, the performance of the proposed
LEQG/DC method would be better for the
larger measurement noise conditions, which is
consistent with the theoretical prediction.

(2)  One should trade off the weighting fac-
tor o of the proposed LEQG/DC method, which
should be kept to a small value especially when
the magnitude of measurement noise is small.
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Fig. 1 The intercept geometry of a guided missile system.
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Fig. 2 The poisson square wave model target maneuver,

Table 1 The related system parameters.

Anvang

Parameters Values
Ve 600 (m/sec)
% 400 (m/sec)
' B 49 (m/sec?)
v 0.1 (times/sec)
Rr74(0) 5000 (m)
| Barry (0) 0 (m) 5
{ 32 4
Tg 7
R*Mza,,
Ty (=5+)°
'q 0.004
c 600

Table 2 Miss distance comparisons for ¢,=0.01°.

Items |Average Niss {Standard Deviation [Maximum Hiss
Distance (m) [of Hiss Distance () {Distance (m)

Guidance laws
196 4.037633883 0.062401257 0.15024368
LEQG o=0, 00001 0.023243365 0.065291123 .22146552
o=0.01 0.037834436 0.058527075 0.17002971
LQG/DC 0.11470131 0.12501497 0.16115850
LEQG/DC ¢=0.00001 {-0.053071676 0.12800397 0.27853720
=0).001 1.0514085 0.28181469 0.49388628
o=0.01 4.6976543 1.6154090 0.41237802

Table 3 Miss distance comparisons for o,=0.1°.

Items |Average Wiss {Standard Deviation |Maximum Miss
IDistaace (n) jof Niss Distance (=) {Distaace (m)
Guidance laws

LQG 1.8905047 1.5348276 0.91341507
LEQG o=0.00001 1.4871212 1.6151485 4.0419690

o=0.01 3.3691893 1.8212800 0.023674632
LQG/DC 4.1018886 1.3387010 0.43087086
LEQG/DC o=0.00001 0.56192421 1.14283878 0.98649687
o=0,001 0.098664293 0.11971943 0.16569720

o=0.01 1.0521388 0.29819372 0.47587123 ..

Table 4 Miss distance comparisons for o,=1°.

Jtems [Average Miss {Standard Deviation [Maximum Miss
Distance (m) jof ¥iss Distance (m) {Distance ()

Guidance laws
LQG 0.078427851 0.27275038 0.52427808
LEQG o=0.00001 0.094204381 0.23125879 0.57256636
o=0.01 0.071076989 0.26709553 0.58610445
LQG/DC 1.0755232 0.21427937 0.63409944
LEQG/DC o=0.00001 | 0.15857727 0.13461492 0.49934753
o=0. 001 0.78148403 0.16970472 0.39831113
6=0.01 2.7924885 0.85715813 0.82697904
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Fig. 3 The estimating error comparison of target acceleration
for 6y=0.01 and ¢=0.00001 ( LEQG, LEQG/DC).

0 1 2 3 " 5
TIME(SEC) LQG(A) LEG(+) LQG/DC(o) LEQG/DC(s)
Fig. 4 The estimating error comparison of target acceleration

for 5y=0.01 and 5=0.001 ( LEQG, LEQG/DC ).

——— N

: 3 4 5
TIME(SEC) LQG(A) LEG(+) LQG/DC(0) LEQG/DC(s):

Fig. 5 The estimating error comparison of target acceleration
for y=0.01 and 6=0.01 ( LEQG, LEQG/DC).

2309

ACCELERATION ERROR (MPS/SEC)

0 i 2 3 4 H
TIME(SEC) LQG(A) LEG(+) LQG/DC(0) LEQG/DC()

Fig. 6 The estimating error comparison of target acceleration
for 6y=0.1 and 6=0.00001 ( LEQG, LEQG/DC).
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1] i K 3 + 3

TIME(SEC) LQG(4A) LEG(+) LQG/DC(o) LEQG/DC(s)
Fig. 7 The estimating error comparison of target acceleration
for oy=0.1 and o=0.001 ( LEQG, LEQG/DC).
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0 t 2 4 4 5
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Fig. 8 The estimating error comparison of target acceleration
for oy=0.1 and =0.01 (LEQG, LEQG/DC).
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Fig. 9 The estimating error comparison of target acceleration
for oy=1 and 6=0.00001 ( LEQG, LEQG/DC).
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Fig. 10 The estimnating error comparison of target acceleration
for oy=1 and =0.001 (LEQG, LEQG/DC).
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Fig. 11 The estimating error comparison of target acceleration
for gy=1 and =0.01 ( LEQG, LEQG/DC).
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[} 1 2 3 4 5
TIME(SEC) LQG(A) LEG(+) LQG/DC(o) LEQG/DC(s)
Fig. 12 The comparison of missile acceleration command
for 54=0.01 and ¢=0.00001 ( LEQG, LEQG/DC).
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Fig. 13 The comparison of missile acceleration command
for 6v=0.01 and =0.001 ( LEQG, LEQG/DC ).
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Fig. 14 The comparison of missile acceleration command
for 6y=0.01 and 6=0.01 (LEQG, LEQG/DC).
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Fig. 15 The comparison of missile acceleration command Fig. 18 The comparison of missile acceleration command
for 5y=0.1 and ¢=0.00001 ( LEQG, LEQG/DC ). for oy=1 and 6=0.00001 ( LEQG, LEQG/DC ).
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Fig. 16 The comparison of missile acceleration command Fig. 19 The comparison of missile acceleration command
for oy=0.1 and 6=0.001 (LEQG, LEQG/DC ). for oy=1 and 6=0.001 ( LEQG, LEQG/DC).
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Fig. 17 The comparison of missil leration cc d Fig. 20 The comparison of missile acceleration command
for 5y=0.1 and 0=0.01 { LEQG, LEQG/DC). for oy=1 and =0.01 ( LEQG, LEQG/DC ).
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