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Abstract: The effect of the taper parameter on the
fundamental frequency of clamped elliptic plates with
variable thickness is studied. For this, the thickness is
assumed to change both parabolically and exponentially.
A five term deflection function, which satisfies the
geometric boundary conditions of zero edge deflection and
zero slope, is chosen and the collocation method is used to
solve the basic equation governing the transverse
vibrations of a plate with variable thickness. The
fundamental frequencies of elliptic plates with aspect
ratios varying from 1.0 to 0.3 , which are of equal volume,
have been compared.

INTRODUCTION

Although some literature has recently been
available on the transverse vibrations of elliptic
plates with variable thickness and different
boundary conditions such as Singh's ® and
Prasad's  work, there is still need in extending
the literature. For instance, the effect of the
change in taper parameter of the plates having
equal volume on the fundamental frequency has
not been investigated. It is therefore aimed in this
paper to increase the fundamental frequency of
such plates.

BASIC EQUATIONS
The basic equation governing the transverse

vibrations of a plate with variable thickness in an
open form ®® js as follows :

d'w 'w D o’w
D(ax* 26x26y2+ )+20xax3
D 3w aD *w D 9w
zaxaxay2+26yayax2+26yay3+
PDdw | D dw , #Dotw
Wa)@ ay2 ax2 3X2 ay2

Copyright © 1994 by ICAS and AIAA. All rights reserved.

ICAS-94-10.6.1
32D ¢? 3?D g2
CaCdat X&TWY -
9*D o'w a 2D 52

where w, v(taken to be 0.3), y, h, t denote the
displacement, Poisson ratio, density, the variable
thickness and time respectively. Also appearing in
equation (1) is the flexural rigidity D defined by

Eh®

where E is the Young's Modulus.

D= @

The boundary of the elliptic plate is expressed as

E2+m’-1
Here,

X y
§=‘a‘ and ’n=g

and a and b are the semi-major and the semi
minor axes of the ellipse respectively .

Assuming simple harmonic motion one seeks a
solution of the form

wE m,t) = W(E m)e™™*

where ® is the circular frequency. Substituting
equations (2) and (3) into equation (1) and taking
the variable thickness to be of the form
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,where hy denotes the non-dimensional thickness
of the plate at the origin and 1 represents a
characteristic length defined by c.a , while ¢ isa
constant value (Table 1) depending on the aspect
ratio and the taper parameter, one gets:
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where F =f the aspect ratio k=b/a, the

non-dimensional frequency parameter
A% = 12(1 = v2)y12w?/Eh?

and the variation of thickness

f&m=c1[1+B(8+n?) ] for parabolically
varying thickness,

flE,m) = CzeY(§2+n2) for exponentially varying
thickness.

Here B and y are the taper parameters for the
parabolically and exponentially varying thickness
respectively. In order to be able to compare the
fundamental frequencies of the plates, the volume
of all the plates is equated to 7 by using factors c,
and ¢, . Values of ¢, can be found in Table 2,
while c, is defined as

c, =2/(2+p)

Table 1. Values of ¢

b/a
B 03 04 05 06 08 1
0 | 1.041 1035 1.029 1024 1013 1
02 | 1.041 1035 103 1025 1.014 1.001
04 | 1.041 1035 103 1025 1015 1.002
06 | 1.041 1036 1032 1027 1019 1.005
0.8 | 1.044 1039 1036 1033 1.024 101
1 | 1.048 1.047 1.046 1.045 1.031 1021
1.2 | 1.048 1.048 1.047 1.047 1.038 1.032
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Figure 1. Values of ¢

Table 2. Values of c,

Y C,
0.0 1.0
0.2 0.9033328
0.4 0.8133005
0.6 0.7298239
0.8 0.6527741
1.0 0.581978
METHOD OF SOLUTION

Since the problem does not have an analytical
solution, the collocation method, which is one of
the simplest weighted residual methods, has been
used. In order to obtain enough accuracy a
five-term deflection function satisfying  the
geometric boundary conditions of zero edge
deflection and zero slope is chosen:

W= (a; +a;P +a3P% +2,D3 +asD*)D? (6)
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where  ®=E2+m2-1. The residual ¢,
obtained by substituting equation (6) into
equation (5) is equated to zero in five different
points of the plate considered (Fig.2).

These points are as follows:

P,(0.02,0.02), P,(0.5,0.02), P,(0.3,0.3),
P,(0.6,0.6), P,(0.02,0.6)

Hence five homogenous equations in a, are
obtained :

[A-A?B]{ai} =0. ™

For a non-trivial solution , the determinant of the
coefficient matrix should be equal to zero.

|A-A2B| = 0. ®)

Solution of equation (8) is an eigenvalue problem
leading to a characteristic equation which
involves a polynomial of fifth degree in AZ2. The
smallest positive real root of these polynomials
corresponds to the fundamental frequency. The
fundamental frequency values are presented in
Tables 3 and 4 and are shown in Figures 3a-b
and 4a-b respectively.
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Table 3. The values of A for plates with parabolically
varying thickness.

b/a

B 1 0.8 0.6 0.5 0.4 03

0 110.205{13.226 |20.363|27.815(41.58870.292

0.2 110.796| 13.987 |21.549|29.426 |44.045|75.063

0.4 [11.709]|15.204 |23.424| 32.06 |48.186|82.944

0.6 |12.79 {16.694 |25.806|35.414{53.463192.899

0.8 13.658| 17.94 |27.976|38.528{58.431|102.78

1 114.014|18.178{29.321}40.382(61.391107.94

1.2 113.549|17.849 {28.439|39.328| 61.02 |106.77
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Fig. 3a Frequencies for b/a= 1.0, 0.8 and 0.6
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Fig. 3b Frequencies for b/a = 0.5, 0.4 and 0.3

Table 4. The values of A for plates with exponentially
varying thickness.

b/a
1 0.8 0.6 0.5 04 0.3

0 110.205/13.226{20.363|27.815]41.588{70.292

0.2 |11.027(14.295] 22.04 [30.11445.121|77.094

0.4 [12.905/16.825] 26.04 |35.764|54.046|94.106

0.6 115.233120.13 {31.547)43.704|66.8561119.07

0.8 | 15.51 121.013|33.846{47.253|73.391{129.13

1 |11.651/16.649{28.964| 42.03 [67.639|105.48
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Fig. 4a. Frequencies for b/a= 1.0, 0.8 and 0.6
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Fig. 4b. Frequencies for b/a = 0.5, 0.4 and 0.3

CONCLUSIONS

The fundamental frequency of an elliptic plate
with parabolically varying thickness attains its
highest value when the taper parameter P is
around 1.0 (see Figure 3a-b), while this is
achieved when the taper parameter y is around
0.8 for plates with exponentially varying
thickness (see Figures 4a-b). It is interesting to
note that the increase in fundamental frequency is
between 37 % and 53 % for parabolically
varying thickness, while it is between 52 % and
80 % for exponentially varying thickness.
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