ICAS-94-10.4.1

INVISCID/VISCOUS COUPLING INCLUDING SHOCK INDUCED
SEPARATION IN TRANSONIC FLOW

H. Joona and L. Fuchs
Department of Mechanics / Applied CFD
Royal Institute of Technology
S-100 44 Stockholm, Sweden

Abstract

A direct iteration method for interactive Euler-
boundary layer calculations is presented. The inviscid
code is a 3D compressible Euler solver based on the
Finite Volume method, with multi stage Runge-Kutta
time stepping and with standard adaptive dissipation
of Jameson type. Multi-Grid and enthalpy damping are
used to speed up convergence. The viscous code is a
3D bondary layer code named SOBOL, which solves
the first and/or second order boundary layer equa-
tions. The coupling between these two codes is made
with transpiration boundary conditions. The method
is natural and efficient for attached flows. If shocks are
present, strong enough to cause separation, the method
fails since the boundary layer equations are no longer
valid. To deal with this problem a defect correction
technique is implemented into the coupled solver. In
regions of separated flow, the effective marching di-
rection in the boundary layer equations is always in
the local flow direction. The solution is driven towards
the Navier-Stokes solution iteratively. The method can
cope with reattached flows, ie separation bubbles. Nu-
merical results for shock induced boundary layer sepa-
ration in transonic flows past wings are presented. The
test case geometries are the RAE 2822 and the NACA
0012 airfoils for 2D flows, and the DLR F5 wing for
3D flows.

Introduction

During the past few years there has been a lot
of progress in the development of numerical proce-
dures for solving the flow field around aerodynamic
configurations. A major drawback with such solvers is
that they require large amounts of computational time
and storage. To use a Reynolds averaged Navier-Stokes
solver in an aerodynamic design process is very expen-
sive, even with modern super-computers. The main
reasons for this are that the viscous regions require
a large amount of grid points and the slow conver-
gence of the solvers. However, the viscous effects are
in many flow problems restricted to small regions close
to solid walls, ie in boundary layers. For attached or
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weakly separated flows, the high costs can be reduced
with a coupled Euler-Boundary layer approach. The
computational effort saved with such an approach is
considerable. The Euler code can use a much coarser
grid than the Navier-Stokes solver and the boundary
layer is solved in a single downstream march, since
the equations in the non-separated boundary layer are
parabolic. Moreover, higher numerical resolution can
be more easily achieved in the viscous regions with a
boundary layer solver than with a Navier-Stokes solver.
Inviscid/viscous coupling methods are very accurate
in flows without separation. If strong enough shocks
are present, separation may occur, and the coupling
method fails since the boundary layer equations are
no longer valid, and they cannot be integrated in the
"wrong” direction.

The objective here is to develop a direct iterative
method for interactive Euler-Boundary layer calcula-
tions, with emphasis on three-dimensional transonic
wing calculations. Transpiration boundary conditions
are used together with zero normal gradients of ve-
locity and enthalpy in the coupling process at non-
separated or mildly separated regions. A defect cor-
rection technique is introduced to boost the calcula-
tions towards the Navier-Stokes solution in separated
regions. For large separation regions the inviscid and
viscous solutions are matched at the boundary layer
outer edge. The airfoils RAE 2822 and NACA 0012
are used as two-dimensional test cases, and in three
dimensions the flow past the DLR F5 wing is com-
puted.

The Computer Codes

The Euler solver developed here is based on Jame-
son’s (%) method, extended to 3D Multi-Block configu-
rations. A cell centered Finite Volume space discretiza-
tion is applied, yielding second order accuracy in space
if the mesh is sufficiently smooth. The time march-
ing procedure is utilizing an explicit four stage Runge-
Kutta time stepping scheme with local time steps. To
capture discontinuities, like shock waves, a second or-
der artificial viscosity term is added. Also a fourth or-
der artificial dissipation term must be added to avoid
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odd/even oscillations. The Multi-Grid method is used
together with enthalpy damping to speed up the con-
vergence. The MG-cycle used here is the sawtooth cy-
cle.

The viscous code is a 3D boundary layer solver
(SOBOL). It is used for laminar and turbulent com-
pressible flows including the effects of surface cur-
vature and external flow gradients. The turbulence
model used in the present work (within SOBOL) is
the Cebeci-Smith model. The discrete boundary layer
equations are solved with a space marching finite dif-
ference method of second order. SOBOL was originally
developed by Prof. F. Monnoyer. A more detailed de-
scription of the second order boundary layer theory

and the numerical aspects of SOBOL can be found in
(9 and (10),

Inviscid/Viscous Interaction

The interactions between the inviscid and viscous
parts of the flow can be divided into weak and strong
interaction regions. Weak interaction occurs for at-
tached boundary layers and strong interaction occurs
in those parts of the flow where the boundary layer
equations are no longer valid, ie where shocks and sep-
aration are located. The wake behind a wing is also
a region with strong interaction. Generally speaking,
an inviscid-viscous coupling approach should have this
in mind. In weak interaction regions the Euler equa-
tions should be coupled with the boundary layer equa-
tions, but in strong interaction regions there should be
an Euler/Navier-Stokes coupling. This of course puts
demands on the matching of three different solvers,
each on a suitable grid. The approach adopted here is
to retain the Euler and the boundary layer solvers in
both weak and strong interaction regions. In order to
account for separated flow effects the boundary layer
equations are driven in the strong interaction regions,
within an iterative process, toward the Navier-Stokes
solution.

The coupling procedure must also distinguish be-
tween flow cases with only weak interactions and flow
cases where strong interaction occurs. For a fully at-
tached flow case (weak interaction), the coupling pro-
cedure can be understood from the asymptotic match-
ing theory of VanDyke (!3), Since the boundary layer
code (SOBOL) solves both the first and second or-
der equations the procedure is as follows. First, the
initial fully converged Euler solution is computed in
the outer inviscid region, giving the first order Euler
solution. Then, the initial first order boundary layer
solution is computed, where the Euler solution from
the surface is used for the outer boundary condition.
This gives the equivalent inviscid source distribution
to be used for the second order fully converged Eu-
ler solution. Finally the second order boundary layer
is computed, where the driving Euler solution is given

on surface normals. If strong interaction occurs a dif-
ferent approach must be taken, since the first order
Euler solution may contain errors, eg the shock can be
located at a wrong position. The process adopted here
is to iterate between inviscid and viscous calculations.
A typical number of Euler time steps between every
viscous evaluation is 50-100.

Euler-SOBOL Interaction

The inviscid flow field is affected by the displace-
ment effect of the boundary layer. The displacement
thickness 6* is defined from the relation that the mass
flux in the presence of the boundary layer is equal to
the mass flux in an inviscid flow terminating at 6* in-
stead of terminating at the wall. Lighthill (® pointed
out that the boundary layer displacement effects on the
inviscid flow can be modeled by a distribution of mass
sources on the physical body surface. The strength
of the sources is given by the displacement thickness
growth as

(pun)w = %(peueé*) (1)

where subscripts w and e denote the wall and the
boundary layer outer edge respectively, p is the den-
sity, u, is the normal velocity and s is the tangential
coordinate along the surface of the body. Imposing a
distribution of sources on the surface produces a dis-
placement of the inviscid streamlines which is equiva-
lent to adding the displacement thickness to the phys-
ical body. The advantage of using equation (1) in an
iterative coupling process is that the computational
grid for the inviscid calculations remains unchanged
as compared to the inviscid case. The sources appear
as solid surface boundary conditions in the inviscid
solver.

Specifying only a mass source for the Euler calcu-
lations may result in a thin vortical region near the sur-
face. Consequently, momentum- and enthalpy sources
should also be specified at the surface. Another ap-
proach (Whitfield et al. (14)) is to use reflection bound-
ary conditions enforcing the normal derivatives of the
velocity and enthalpy to zero at the surface, ie

Buy _ OH _
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The pressure is obtained by extrapolating from the
inside of the computational domain. Equations (1) and
(2) together with the pressure define the conditions at
the surface.

The initial Euler solution does not have to be
fully converged in the iterative coupling procedure de-
scribed above. In order to allow for a smooth intro-
duction of the equivalent inviscid sources a relaxation
procedure is adopted. Suppose that an Euler solution
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exists after iteration k, obtained with a source distribu-
tion (puy,)¥. The following boundary layer calculation
will give a new source distribution (pu,)¥+!. Before
starting to calculate a new Euler solution the sources
are updated, using an under-relaxation factor in the
range 0.5-1.

Coupling Method for Separated Flows

In the case of separated flows the coupling pro-
cess described above will be impossible since the un-
derlying assumptions behind the boundary layer ap-
proximation are invalid. Furthermore, the boundary
layer marching methodology is unstable. This implies
that the equivalent source distribution in the separated
regions cannot be computed. In SOBOL, the sources
are extrapolated to such separated regions. Thus, the
boundary layer solver has to be modified to cope with
the stability and with the accuracy problems. The first
difficulty is remedied by using locally an ”upwind”
scheme and downstream/upstream marching in the
separated region. When the marching is done in the
”wrong” direction, the local variable is not updated,
that is the corrections at ”wrongly” advanced nodes
are set to zero. If one will not use locally up- and
downstream marching, one may introduce an auxil-
iary variable @ = (p,]| v' |,| v? |,| ©® |,¢€), where
a = (p,v1,v2,v3¢€) is the usual set of dependent vari-
ables, that is the density, velocity vector components
and internal energy. For the variable q there are no
stability difficulties and a downstream marching will
always be done in the correct ”time-like” direction.
This single directional marching is equivalent to the
forward /backward marching approach, and therefore
we describe in more detail the uni-directional march-
ing scheme. When using the auxiliary variable {, one
may describe the defect correction algorithm in the
following way: '

e Step 0.

Solve the basic problem

SOB(q) = 0 (3)

where SOB denotes the modified discretized op-
erator in SOBOL solving the boundary layer
continuity-, momentum- and energy equatious.
Regions where boundary layer separation is de-
tected are marked and the following ”booster”
technique is applied iteratively in the regions that
are extended up- and downstream of the separa-
tion bubble.

e Step 1.

Generate the auxiliary variable q.

e Step 2.

Compute the defect Rg by

5= SOB(q") - NS(q") (4)
where the superscript n denotes the iterative step.

NS denotes the Navier-Stokes operator evaluated
with second order central differences.

e Step 3.

Solve, by space marching
SOB(§"*') = RS (5)
e Step 4.

Compute the correction

Aq=g"" - @ (6)
- Aq ifG@>0
q‘{ ~Aq f§<0 ™

e Step 5.

Update the dependent variables
(-ln+1 — ‘—ln + ﬂq (8)

Steps 1 to 5 are repeated until convergence is attained.
The convergence criterias are

RMS[NS(q™)]

RMS(NS(@)] < © ®
RMS [NS((v!)")]
RMS[TERM] ~ (10)
1 8, &t
TERM = — > (h575) (11)

TERM is the second normal derivative of v! in the
z'-momentum equation and z! is the streamvise coor-
dinate direction. Typical values for €; range between
10-2 and 10~1, and for € between 10~4 and 10~3. Dur-
ing the iterative process, the region on which steps 1 to
5 are being employed may be increased or decreased,
depending on the solution. When the iteration steps 1
to b converge (@"+! = @"), relations (4) and (5) imply
that NS(q) = 0, ie one obtains a local Navier-Stokes
solution. The process is started by defining an initial
separation region with an initial solution, which simply
is the last upstream boundary layer solution adjusted
to the outer inviscid flow.

1472



The interaction with the Euler field is now treated
in two ways. For thin separation bubbles equivalent
sources are used in the usual way. But if the separation
bubble is thick, ie the viscous region is thicker than the
first Euler cell at the wall, the viscous solution must
be ”frozen” in the Euler cells. The matching between
the inner (viscous) and the outer (inviscid) solutions
takes place at the physical edge of the viscous region,
which is resolved also by the Euler grid. The boundary
conditions for the Euler calculations are then evaluated
using Riemann invariants.

The main advantages of this coupled SOBOL-
Euler with local Booster-SOBOL-Euler solver (ESB)
compared to a (comparable) Navier-Stokes solver are
the following:

1. Accuracy

e The ESB procedure results in a boundary layer so-
lution when this approximation is valid and a local
Navier-Stokes solution otherwise, both computed in a
mesh with high local resolution.

2. Computational efficiency

e The computational efficiency can be estimated by
comparing the Euler solver with a similar Navier-
Stokes solver (items a-c below), and by comparing the
Euler solver with the ESB solver (items d-e below).
The subject of interest is to estimate the time rela-
tions between the different solvers to reach a steady
state solution.

a) The extra amount of work for the Navier-Stokes
solver is to compute the viscous fluxes. This can be
roughly estimated as 3-4 times more operations than
the sum of the operations to compute the convective
and dissipative fluxes.

b) A severe restriction for the Navier-Stokes solver is
the maximum allowable time step limited by the vis-
cous fluxes, cautiously estimated to be 5 times smaller
than the Euler time step.

c) The Multi-Grid convergence rate is poor on grids
with high aspect ratios (typical for Navier-Stokes).
Furthermore, the Navier-Stokes grid accomodates a
considerably larger number of grid points as compared
to the Buler grid (at least 2 times more). Summing up
items a-c gives a rough estimate that the Euler steady
state is reached 30-40 times faster than the Navier-
Stokes steady state.

d) When comparing the ESB solver with the Euler
solver it is illuminating to study the convergence his-
tory plot in Figure 19. The converged Euler solution
is here obtained after 509 work units, while the ESB
solution is reached at 716 work units.

e) Looking again at Figure 19 one can note that one
ESB coupling consists of 50 Euler time steps plus a

SOBOL-Booster evaluation. For this case, the CPU
time relation between the SOBOL-Booster calcula-
tions (including the interpolations between the Euler
and SOBOL meshes) and the 50 Euler time steps is
0.3. The total amount of SOBOL-Booster calculations
is 11, ie the total viscous work corresponds to 165 Eu-
ler time steps. In other words, the total ESB work is
equivalent to 716 + 165 = 881 Euler work. Compar-
ing item d above, the Euler solver is (in this case)
881/509 = 1.73 times faster than the ESB solver. For
a general case with large separation the factor is not
likely to be more than 3.

In summary, the ESB solver is estimated to be at
least one order of magnitude faster than a compara-
ble Navier-Stokes solver.

e The ESB solver requires considerably less memory
storage, since the Booster requires only local storage
of the full viscous solution, whereas at non-separated
regions the full boundary layer solution is not stored.

o Simpler adaptivity in determining the size of the re-
gion where an iterative solution has to be computed.

The method is mostly suitable to situations where
there are localized and limited separation bubbles and
otherwise larger regions with unseparated flows for
which the boundary layer theory is a good approxi-
mation. Such flows occur in many practical aeronauti-
cal situations, eg wings, wing/body combinations and
cascades. Even in case where one has massive sepa-
ration, the modified boundary layer approach can be
used as an efficient solver. The function of the Booster
is similar to a preconditioner or a smoother, depend-
ing on the context in which it is being used. It is close
in character to a Reduced Navier-Stokes (RNS) solver.
A more detailed description of the ESB procedure is
given by Joona (6).

Computational Results

The described ESB coupling approach has been
tested on two-dimensional airfoil configurations and a
three-dimensional test wing configuration. The com-
puted set of 2D results involved two different airfoils,
the RAE 2822 supercritical airfoil and the classical
NACA 0012 airfoil. The computations were performed
on three-dimensional straight wing sections, since the
computer codes were developed for 3D flows. Periodic
boundary conditions were used at the wing root and
tip to obtain two-dimensional results. Full 3D calcu-
lations were performed on flows around the DLR F5
wing.

RAFE 2822

The RAE 2822 wing profile has been studied ex-
perimentally by Cook et al. (). The chosen compu-
tational test cases are Casel and Casel0, keeping the
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notation from (), defined in Table 1. The angle of at-
tack was corrected for wall interference as suggested

by Firmin and Cook (2,

Experiment | Computation
Casel | M., | 0.676 0.676
o 2.40° 1.98°
Re | 5.7-10° 5.7-108
Casell | Mo | 0.750 0.750
o 3.19° 2.70°
Re | 6.2-10° 6.2 - 10°

Table 1: Definition of the flow cases for the RAE
2822 profile. M is the free stream Mach number, «
is the angle of attack and Re is the Reynolds number
based on chord length c.

Casel

This is a fully attached flow case. The Euler cal-
culations were performed on a 129x33 O-mesh with
17 span stations. Three Multi-Grid levels were used.
SOBOL was solved on the Euler surface mesh (129x17)
with 64 points on each boundary layer normal. Transi-
tion to turbulence was set at chord station &/c = 0.11
as indicated in the experiments. The Cebeci-Smith tur-
bulence model was used. The convergence history is
shown in Figure 1. An inviscid solution was first ob-
tained with a full Multi-Grid (FMG) cycle consisting of
50+504-300 time steps. The boundary layer was calcu-
lated and the equivalent source distribution was then
used to compute the viscous solution with 300 time
steps using the saw tooth cycle on the finest Multi-
Grid level. In Figure 2 the inviscid and viscous pressure
distributions are compared to experimental data. Both
computations are close to experiments except near the
trailing edge. As expected, the coupled calculation im-
proves the pure inviscid solution. The skin friction co-
efficient is shown in Figure 3 and the displacement
thickness in Figure 4.

Casel0

This case has also been studied in a computa-
tional workshop described by Holst (¥, where a num-
ber of Navier-Stokes and inviscid-viscous calculations
are presented. It is a ”difficult” flow case for which
some contributors obtain separation and some do not.
The experimental evidence in Cook et al. (1) indi-
cates separation to be located somewhere between
z/c > 0.50 and z/c < 0.90. A more precise location
is not stated. The same O-mesh was used as in Casel.
The inviscid solution was obtained with 504504300
time steps and the viscous with 14 couplings times 50
time steps. The Euler convergence history is shown
in Figure 5. The messy Euler convergence is probably
due to the fact that the Booster is never converged
during the first couplings and no reattachment of the
boundary layer is obtained. However, the procedure is

forced to continue and reattachment is eventually ob-
tained. A thin separation bubble is developed between
z/c = 0.605 and 0.763. The boundary layer separates
again at z/c = 0.944. No Booster calculations are tried
at this location during the last 4 couplings, since in
order to succeed the Booster marching should extend
into the wake. The inviscid and viscous pressure distri-
butions are shown in Figure 6. The computed shock is
located downstream from the experimental position.
The ESB calculations agree with Navier-Stokes cal-
culations that use the Cebeci-Smith turbulence model
presented in Holst (*). The skin friction is shown in Fig-
ure 7 and the displacement thickness in Figure 8. 6 is
underestimated when compared to experiments. From
the velocity profiles in Figures 9-12 one can see that
also the boundary layer thickness is underestimated.
The separation bubble is very thin and the matching
of the boundary layer to the inviscid flow is quite sharp.

logerr

AN
RN

D
\\~

0 200 400 600 800 work

Figure 1. Convergence history for RAE 2822 Casel.
err is the rms-error of the Euler continuity equation
residues.
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Figure 2. Pressure coefficient C, for RAE 2822
Casel. EXP are experimental data from Cook et al.
(. Eu is the inviscid Euler solution and ES is the
coupled Euler /boundary layer calculation.
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Figure 3. Friction coefficient ¢; on the upper side of
the wing, RAE 2822 Casel. EXP are experimental
data from Cook et al. () and ES is a coupled Eu-
ler/boundary layer calculation.
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Figure 5. Convergence history for RAE 2822 Casel.
err is the rms-error of the Euler continuity equation
residues.
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Figure 7. Friction coefficient, ¢;, on the upper side of
the wing, RAE 2822 Casel10. EXP are experimental
data from Cook et al. (1),
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Figure 4. Displacement thickness 6* /¢ on the upper
side of the wing, RAE 2822 Casel. EXP are experi-
mental data from Cook et al. (1) and ES is a coupled
Buler/boundary layer calculation.
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Figure 6. Pressure coefficient C, for RAE 2822
Casel0. EXP are experimental data for CaselQ in
Cook et al. (1),
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Figure 8. Displacement thickness 6*/c on the upper
side of the wing, RAE 2822 Casel0. EXP are exper-
imental data from Cook et al. (V).
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Figure 9. Velocity profiles on the upper side of the
wing, RAE 2822 Casel(. EXP are experimental data

from Cook et al. () located at 2/c = 0.574. The ESB
calculation is located at z/c = 0.584.
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Figure 11. Velocity profiles on the upper side of the
wing, RAE 2822 Casel0. EXP are experimental data
from Cook et al. () located at /¢ = 0.750. The ESB
calculation is located at z/c = 0.736.

NACA 0012

Two flow cases were studied for the NACA 0012
profile. They are defined in Table 2. The experimen-
tal data and the a-corrections due to wind tunnel wall
interference are given by Harris (3), The Euler calcu-
lations were performed on a 129%x33 O-mesh with 17
span stations. Three Multi-Grid levels were used to
speed up the convergence. SOBOL used the same sur-
face mesh, ie 129x17 nodes, and 64 nodes in the sur-
face normal direction. The Cebeci-Smith turbulence
model was used in all calculations. Transition was set
at x/c = 0.053 on the upper side, and at z/c = 0.375
and z/c = 0.309 for Case A2 and A3 respectively on
the lower side.
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Figure 10. Velocity profiles on the upper side of the
wing, RAE 2822 Casel0. EXP are experimental data
from Cook et al. () located at z/c = 0.650. The ESB

calculation is located at z/c = 0.644.
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Figure 12. Velocity profiles on the upper side of the
wing, RAE 2822 Casel0. EXP are experimental data
from Cook et al. () located at z/c = 0.900. The ESB

calculation is located at z/c = 0.904.

Experiment | Computation
Case A2 | M | 0.55 0.55
o 9.86° 8.34°
Re | 9-10° 9.0 -10°¢
Case A3 | My | 0.799 0.799
a 2.86° 2.26°
Re |9-10° 9.2 -10°

Table 2: Definition of the flow cases for the NACA
0012 airfoil. M, is the free stream Mach number,
is the angle of attack and Re is the Reynolds number
based on chord length c.



Case A2

This is a very interesting flow case. The angle of
attack is about one degree below the maximum lift
value. In Figure 13 the pressure distributions from an
ordinary Euler-boundary layer coupling and from an
ESB coupling are compared. The basic Euler-boundary
layer coupling indicates separation at z/c = 0.181,
ie at the foot of the shock resulting in extrapolated
sources in a region covering approximately 80 % of the
upper surface. When the Navier-Stokes Booster is ac-
tivated an initial separation region is obtained. As the
coupling iterations proceed the separated region be-
comes smaller until it vanishes. The shock has moved
upstream a distance z/¢ = 0.03 towards the experi-
mental shock. This case has also been tested in Holst
(4) with indications of a small separation bubble imme-
diately after the shock. The Booster results were ob-
tained by 504-50-+200 inviscid time steps and 10 x 50
viscous time steps.

By raising o to 8.5° a larger separation region
is obtained. A detail at the trailing edge is shown in
Figure 14. The Booster procedure should extend into
the wake but this was not the case here. This case
demonstrates that the method is capable to predict
flows with larger separated regions.

Case A3

This is a case with a large region of separation
from z/c = 0.57 to 0.83. The computations started
also here with an inviscid solution of 504504200 time
steps followed by a viscous solution of 10 x 50 time
steps. The Euler convergence is shown in Figure 15.

The C,-distributions from an Euler-SOBOL cou-
pling and from an ESB coupling are shown in Fig-
ure 16. Once again the Boostered calculation moved
the shock closer to the experimental location. This
case is also studied in Holst (4). A large scatter in the
presented results indicates that the chosen turbulence
model has an important influence in the final results.
The ESB calculations agree with Navier-Stokes calcu-
lations that use the Cebeci-Smith turbulence model
presented in Holst (4), The skin friction coefficient is
shown in Figure 17. The flow separates just upstream
of the shock, reattaches at z/c = 0.83 and separates
once again at z/c = 0.956.

An attempt to predict a larger separation is shown
in Figure 18. Here M, = 0.7 and a = 6°. The solu-
tion is converged and stable. To get higher resolution
mesh refinement was introduced at the trailing edge re-
gion. This resulted in an unstable solution which can
be explained by the fact that the real physical flow
is probably time dependent due to vortex shedding at
this high angle of attack.
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Figure 13. Pressure coefficient C, for NACA 0012
Case A2. EXP are experimental data from Harris (3).
ES is a coupled Euler/boundary layer calculation.
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Figure 14. Detail of the NACA 0012 trailing edge
at Mo = 0.55 and o = 8.5°. Notice the shock at a
chord station of z/¢ = 0.2.
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Figure 15. Convergence history for NACA 0012 Case
A3. erris the rms-error of the Euler continuity equa-
tion residues.
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Figure 16. Cp-distributions for the NACA 0012 airfoil
Case A3. EXP are experimental data from Harris (3.
ES is a coupled Euler/SOBOL calculation.

Figure 18. Detail of the NACA 0012 trailing edge at
My, = 0.7 and o = 6.0°.

DLR F5 Wing

In Kordulla (7 the proceedings of a workshop on
three-dimensional Navier-Stokes calculations around
the DLR F5 wing are reported. The wing geometry
was designed as a 20° swept wing with an aspect ratio
of 9. The main portion of the wing consists of sections
similar to a NACA 6-Series airfoil designed for shock
free flow at M., = 0.78. The root section is formed
by a gradual change to a NACA 0036 airfoil with a
large fairing region simulating a wing-body junction.
A more detailed description of the wing is found in
Sobieczky (12), The free air test case computed here,
denoted B2 in Kordulla (V| is defined in Table 3. The
Reynolds number, based on root chord, is 3.6 - 106.

Initially, transition was specified using the curve
fit given by Sobieczky (!2), This analytical model for
the transition line is derived from wind tunnel visu-
alizations. The flow is fully turbulent from the wing
root out to ¥/Yspan = 0.07. In the remaining part of
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Figure 17. Friction coefficient on the upper side of
the NACA 0012 airfoil, Case A3.

the wing transition occurs mainly in the region from
z/C = 0.40 to z/C = 0.60. Here C denotes the local
chord. It was impossible to simulate this on the up-
per side, since the laminar boundary layer separated
far upstream of the specified transition line. Hence it
was decided to set transition at z/C = 0.05 on the
upper side. This makes it questionable to compare the
results with the Navier-Stokes data in Kordulla (7).
However, another workshop on this wing has been car-
ried out with wind tunnel simulations using the same
transition specification as here. That workshop data
are presented by Schwamborn and Rung (*1). The Eu-
ler calculations were performed on a 129x33x 33 OO-
mesh using 4 Multi-Grid levels. The boundary layer
was calculated on the same surface mesh 129x33 with
64 points in the normal direction. No boundary layer
calculations could be performed at the wing root sec-
tion due to the geometry there. The tip vortex result-
ing from the Euler calculations made it also impossi-
ble to calculate the boundary layer at the wing tip.
The region for the boundary layer calculations is from
Y/Yspan = 0.015 to y/yspan = 0.98. Free boundary
conditions were used at the lateral boundaries and the
equivalent sources were extrapolated to the remaining
sections of the wing. Once again, the Cebeci-Smith tur-
bulence model was used in all calculations.

Definition | Computation
Case B2 | My 0.82 0.82
« 20 2°
Re/meter | 107 9.9.10°

Table 3: Definition of the computed case for the DLR
F5 wing. M., is the free stream Mach number, o is
the angle of attack and Re is the Reynolds number.



The inviscid solution was obtained with an FMG
consisting of 50+50+50+200 time steps and the vis-
cous coupling used 10 x 50 time steps. The Euler con-
vergence is shown in Figure 19. Figures 20 to 22 show
the Cp-distributions at three different span stations.
The experimental data are obtained from Kordulla
(). They are wind tunnel data, while the computed
case is in free air. The experimental data are shown
here as a reference. The calculated results are in good
agreement with the Navier-Stokes results presented in
Kordulla (), (with reservation to the transition line
definitions. ..). The most evident differencies are:

o There is a plateau in the experimental Cp-values
on the wing upper side just upstream of the shock.
This is interpreted as a laminar separation bubble.
All Navier-Stokes contributors except one predict
a suction peak in the plateau region at Sections 4
and 6. In the present calculation the flow is tur-
bulent here. A separation bubble begins just up-
stream of the shock for all three sections.

e The computed shock strengths are weaker at all
sections. The shock locations at Sections 6 and
8 are approximately a distance z/C = 0.05 up-
stream of the predicted locations in Kordulla (7,

e In the present calculation there is some wiggles
in the Cp-curves at the trailing edge. No such be-
haviour is observed in Kordulla (7). The wiggles
are probably caused by the Euler mesh, since it is
rather coarse at this region.

Separation occurs between z/C = 0.684 and
z/C = 0.767 at y/yspan = 0.191, between z/C = 0.661
and z/C = 0.748 at y/y,pan = 0.515, and between
z/C = 0.613 and «/C = 0.706 at y/yspan = 0.814.
The flow reattaches and separates again at the trailing
edge. On the lower side separation occurs at the inner
aft portion of the wing, hence no Booster calculations
are tried here.
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Figure 19. Convergence history for Case B2. err
is the rms-error of the Euler continuity equation
residues. The ESB procedure consists of 216 invis-
cid Euler work + 10 x 50 viscous Euler work. Eu is
a purely inviscid Euler computation of 716 work.
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Figure 20. Pressure coefficient C), for the DLR F5
wing at section 4. EXP are experimental data from
Kordulla (® at y/yspan = 0.205. The ESB results are
at y/ Yspan = 0.212. C' denotes the local chord length.
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Figure 21. Pressure coefficient C, for the DLR F5
wing at section 8. EXP are experimental data from
Kordulla (8 at Y/Yspan = 0.8. The ESB results are at
Y/Yspan = 0.796. C denotes the local chord length.
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Figure 22. Pressure coefficient Cy, for the DLR F5
wing at section 6. EXP are experimental data from
Kordulla (%) at y/y,pan = 0.492. The ESB results are
at ¥/Yspan = 0.491. C denotes the local chord length.
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Conclusions

Separated flows can be predicted with a direct it-
eration method for interactive Euler-boundary layer
calculations. The tool for this is to include a correc-
tion in the boundary layer operator so that in effect
one solves the Navier-Stokes problem. The method
works for both two- and three-dimensional transonic
flows around wing configurations. The computed test
cases imply that a better accuracy can be gained if the
method is extended to include wake flows.

The computational effort saved with the direct
inviscid-viscous coupling method is considerable (at
least an order of magnitude). Together with the ability
of predicting separation makes this method to be an
important tool for acrodynamic design purposes.

Further investigations must be performed with re-
spect to the influence of the presumed transition line
regions. The sensitivity to transitional flows and the
effects of using different turbulence models must be
investigated. These questions are equally open for the
coupled method presented here as for a full Navier-
Stokes solver.
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