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Abstract

A two-equation turbulence model, k—7 , has been used
for calculation of an 2D airfoil close to stall. The k —
7 model can be derived from the standard k — ¢ model
if the turbulent time scale 7 = k/e¢ is introduced. In
the present calculations damping functions based on
results from direct numerical simulations are used. The
requirements for the accuracy of the discretization of
the k — 7 model has been investigated. With a proper
discretization the k — 7 model has shown to be more
robust than an equivalent ¥ — ¢ model implemented in
the same code. The results from the k— 7 model agrees
well with experimental results and are as good or better
than other calculations using the k& — ¢ model on the
same test case by other groups. Some results using the
Baldwin-Lomax model are also presented.

Introduction

The k¥ — ¢ model has become a standard turbulence
model in a great variety of computational fluid mechan-
ics (CFD). It was originally developed for calculation
of high Reynolds number flows far from influence of
solid walls. The region close to walls was treated by
wall functions were the law-of-the-wall was assumed to
be valid. This approach is well suited for calculations
were the velocity profiles are close to the fully devel-
oped logarithmic profile found in boundary layers etc.
However, for more complicated flows, or when an accu-
rate solution in the vicinity of the wall is needed, e.g.
for calculation of skin friction or heat transfer, it is nec-
essary to compute also the region close to the wall. In
order to be able to this with the k£ — ¢ model a number
of low-Reynolds number extensions has been suggested,
see e.g. Patel, Rodi & Scheuerer [8]. Different modi-
fications has been tested in various extensions to the
standard k — ¢ model where the most important are
the definition of a boundary condition for ¢ and intro-
duction of damping functions in the ¢ equation. Also
various extra terms which give a contribution close to
the wall only has been tested.

Copyright © 1954 by ICAS and AIAA. All rights reserved.

A way of coming around the lack of a physically
correct boundary condition for ¢ was suggested by
Speziale, Abid & Anderson [11] by introducing the tur-
bulent time scale 7 , defined as 7 = k/e. If ¢ is sub-
stituted in the standard k¥ — € model one gets a new
two-equation model for £ and = which has the advan-
tage of having a physically correct boundary condition
at solid walls.

Although it was some years ago the ¥ — 7 model was
suggested it has not been used extensively. An expla-
nation for this is probably that the discretization of the
terms in the 7 equation is critical and with some stan-
dard techniques it may give severe numerical problems.
However, with a careful discretization the & — 7 model
may have some advantage over the k& — ¢ model.

The k& — 7 model has been used here for calculation
of the 2D airfoil A at low Mach numbers. For this test
case accurate measurements and a number of calcu-
lated results are present as it was one of the test cases in
the BRITE/EURAM project EUROVAL, Haase et al.
[3]. In this test case the airfoil A was used for predic-
tion of stall. Experimental data are available for several
Reynolds numbers and angle of attacks. From the cal-
culated contributions it was shown that algebraic and
two-equations models in general have difficulties to cal-
culate the flow field correctly close to stall. Only with
an algebraic Reynolds stress model (ASM) the separa-
tion close to the trailing edge may be predicted, David-
son & Rizzi [2]. A probable explanation for this may be
that the effects of stream line curvature and the normal
Reynolds stresses not can be predicted correctly by the
eddy viscosity based models. However, the ASM mod-
els or other Reynolds stress algebraic models, e.g Shih,
Zhu & Lumley [10] requires a two-equation model as a
base. It may anyhow be fruitful to use the £ — r model
for this test case, although a correct prediction of the
stall conditions may not be anticipated. As this may
serve as a first step in the development of a such a
model based on the k£ — r model.
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Equations

The compressible Reynolds averaged Navier-Stokes
equations, which not presented here, see e.g. Hirsch
[4] for a reference, are solved together with the k —
r model. Some results will also be presented using the
Baldwin-Lomax model, Baldwin & Lomax {1] of which
the presentation also is left out.

k — 7 model

The k—7 model, suggested by Speziale, Abid & Ander-
son [11] can be obtained from the standard k— ¢ model,
Wilcox [12], by a variable transformation. If the tur-
bulent time scale 7 (= k/¢), is introduced in a low
Reynolds number & — ¢ model the following equations
are obtained after some manipulations.
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where f; and fp are damping functions and C.;, Ces,
o and o, are model constants, which all are equivalent
to the functions and model constants in the k—¢ model.
The definition of the eddy viscosity also follows from
the variable transformation, i.e.

Tij =

pe = pCufukr

where C,, and f, are equivalent to the constant and
function from the k — ¢ model. In these equations
Speziale et al. [11] suggested that the Prandtl num-
bers o3 and o, should be equal in which case the last
term vanishes.

Close to the wall the leading order terms of the
7 equation are the constant part of the destruction
term and the part of the diffusion term representing
molecular diffusion.
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These terms and the leading order terms of the
k equation are exact. Which is a clear advantage over
the k — ¢ model. In the ¢ equation the turbulent diffu-
sion, viscous diffusion and the destruction terms have
leading order terms. Of these terms only the viscous
diffusion is exact, and the other two terms are mod-
eled. Hence, one can expect that the k — 7 model will
be able to reproduce the asymptotic behavior for £ and
T better than the k — ¢ model in the close vicinity of
solid walls.

The term Ceafz — 1 in the 7 equation corresponds
to the dissipation and destruction terms in the k and
¢ equations. Apart from the variation of f; close to
solid walls this term is constant. For homogeneous
and isotropic turbulence without any mean shear 7 will
increase with a constant rate regardless of the initial
state, i.e. regardless of turbulence level, anisotropic in
the Reynolds stress tensor etc. Further, if the value
of the constant C.y is taken less than unity 7 will in-
stead decrease with a constant rate. This decoupled
behavior from the physical processes is due to the ap-
proximation of the destruction term in the dissipation
equation where

2
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This behavior of the turbulent time scale is thus not a
specific feature of the k—r model. It is certainly present
also in the k — € model, although it is not obvious from
the equations in their original form.

Near wall treatment

In the present calculations the original damping func-
tions suggested by Speziale et al. [11] are replaced
by new functions. These new functions are deduced
from the asymptotic behavior of the exact terms close
to walls and from comparison with DNS data, Lind-
berg [6]. The DNS data used for the derivation of the
damping functions are from Mansour, Kim & Moin [7].
These DNS are performed at low Reynolds number not
high enough to give Reynolds number independent val-
ues for the model constants, Rodi & Mansour [9]. This
leaves some potential of further develop the damping
functions using more recent DNS. The damping func-
tions are expressed as functions of y*. This is a phys-
ically well motivated choice for flows without recircu-
lation etc. However, for separating flows, where the
friction velocity goes to zero, this may not be the best
choice.

The damping functions used in the present calcula-
tions are

1+ 2.05e=0-016w¥ =3 _ g ge=0-1+

fi =
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and the model constants have the following values:

Ca =144 Cer =1.92 o =136

o= 1.36 C.=10.09

Numerical method

The equations has been solved with a cell centered fi-
nite volume code, NSMB (Navier-Stokes Multi Block),
using explicit Runge-Kutta time stepping. The equa-
tions for the turbulent quantities has been solved si-
multaneously with the other variables also using the
explicit time stepping.

The transport equations has been discretized with
standard second order methods. Which requires that
node values are obtained from linear interpolation of
cell center values. In most cases this is adequate if a
fine enough mesh is used. However, k and 7 are both
~ y? close to solid walls and the discretization of the
k and 7 equations must be able to resolve this quadratic
behavior. The extra diffusion terms in the 7 equation
(third and fourth row in equation (2)) needs this spe-
cial attention. If the terms are treated as source terms
in a cell centered finite volume approach the gradient
of k and 7 in the cell center has to be calculated. The
usual way to calculate these gradients is to take the sur-
face integral over the cell volume which requires that
the value at the cell surfaces are known. If these val-
ues are calculated as the mean of the cell center val-
ues large discretization errors will occur close to solid
boundaries. If y = 2h at the first node (surface) at a
wall k and 7 are ~ 4h? there. However the mean of the
values in the first and the second cell is ~ 5h2. This
results in an error of 25%, as the gradients are multi-
plied with each other the total discretization error is
over 50%.

If third order interpolation, using the four points
around the surface, is used the error can be reduced
significantly. However, the usual boundary condition
for walls where the value in the ghost cell is set equal
to minus the value in the first interior cell can not be
used, as this assumes a linear profile. The values in the
first and second ghost cells have to be set so that the
third order polynomial is equal to zero at the wall.

The discretization of the viscous terms in the fourth
row of equation 2 is also important. In finite volume
approach the second order’ derivative is calculated as
the surface integral over the gradients of 7. At solid
walls the gradient is needed at the wall which requires
integration over the ghost cell. Also here the usual

boundary condition to put the ghost cell value to minus
the value in the first interior cell gives large errors. As
r is quadratic close to the wall the gradient should be
zero at the wall. In order to come around this problem
a second order polynomial through the two first cells
and the zero value at the wall was used to calculate the
value in the ghost cell.

A standard Jameson 2nd and 4th order artificial dis-
sipation has been used, Hirsch [4]. For the turbulent
equations approximately a tenth of the artificial dis-
sipation for the velocity was used, close to walls the
artificial dissipation was damped by multiplying with
an exponential function

1.0 — e—0-01y+?

If the artificial dissipation not was damped it was of
the same order as the viscous terms and. the shape of
the mean velocity profile was distorted.

Transition from laminar to turbulent flow was forced
at #/c = 0.12 on the suction side and at #/c = 0.3 on
the pressure side of the airfoil. The source terms and
the eddy viscosity was multiplied by a factor which was
zero in the laminar part and varied linearly to unity in
the transition region. As free stream conditions k& =
0.001 % U and 7 was given a value so that the eddy
viscosity was 0.1% of the molecular viscosity.

The calculations were performed using a C-mesh
with 352x64 elements, it was the same mesh as the
partners in EUROVAL.

Results

The results presented here are produced using the
present k — 7 model and to some extent the Baldwin-
Lomax model. In the same code used for these calcula-
tions an equivalent k — ¢ model, with the same damp-
ing functions etc., is implemented. As the k — 7 and
k — ¢ models are mathematical identical they should
give the same result except close to solid surfaces where
the boundary conditions differ. However, they are not
identical from a numerical point of view and the expe-
rience with the two models shows that the & — 7 mode
is more robust. It was no problem with starting the
k — 7 model from free stream conditions using differ-
ent free stream values for k and p;. Hence it was not
necessary to start from a Baldwin-Lomax calculation
or to freeze the mean field for the first iterations as re-
ported by some of the partners in EUROVAL, Haase et
al [3]. The k — ¢ model in the present code required a
free stream value of u; around ten times the molecular
viscosity and also a smaller CFL number. A large eddy
viscosity in the free stream does probably not influence
the results to a large extent though the velocity gradi-
ents are small there, hence also the Reynolds stresses.
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The experimental data used for comparison are the
results from ONERA, France, used in one of the
tasks in the BRITE/EURAM programme EUROVAL,
Kourta [5]. In these experiments lift, drag, pressure dis-
tribution etc were measured for a cord Reynolds num-
ber Re = 2 x 10% — 5 x 105, M = 0.15 and for angles
of attack between a = 7° and o = 15°. In the exper-
iments the transition point was fixed on the pressure
side of the airfoil to /¢ = 0.3 but free on the suction
side.

In the EUROVAL project several partners partici-
pated and calculated the test case using algebraic, two-
equation and ASM turbulence models. The integral
results from the present calculations are presented in
table 1 together with the EUROVAL results.

a=T72° o= 12.3° a=13.3°

C Cy C Cy G Cq
B-L | 1.03]0.016 | 1.52 | 0.025 | 1.568 { 0.027
k—7 1099|0018/ 1.50 | 0.026 | 1.59 | 0.028
Exp | 1.03 | 0.016 | 1.46 | 0.024 | 1.52 | 0.031
min | 1.02 | 0.012 | 1.60 | 0.016 | 1.64 | 0.017
max | 1.07 | 0.013 | 1.60 | 0.016 | 1.69 | 0.021

Table 1: Lift and drag coefficients, B-L: Baldwin-

Lomax model, & — 7: present k¥ — 7 model, Exp: Ex-
periments EUROVAL, min/max: lowest/highest value
from partners in EURQOVAL using the k& — ¢ model

The integral values are better predicted with the
present k& — 7 model than by the partners in EUROVAL
except for the lift coefficient for the lowest angel of at-
tack. In this case the forced transition in the calcula-
tions may be too early compared to the free transition
in the experiments which may influence the result.
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-4 ¥ Experiment —- .

0 o

0.6 0.8 1
x/c

Figure 1: C, calculated with k& — 7 model for o = 13.3°
and Re = 2 x 10° compared with the EUROVAL ex-
periment

The pressure distribution calculated for « = 13°,
figure 1, closely follows the experimental data except at
the trailing edge. In this region the flow has separated
in the experiment but not in the calculations.
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Figure 2: C} calculated with & — 7 model for o =
7.2° and Re = 2 x 10° compared with the EUROVAL
experiment
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Figure 3: C; calculated with ¥ — 7 model for o =
13.3° and Re = 2 x 10® compared with the EUROVAL

experiment

The friction coefficient on the suction side of the pro-
file, figures 2 & 3, closely follows the experiments for
the lower angel of attack, &« = 7°, where no separa-
tion occurs. For o = 13° the flow separates around
z/c = 0.8 in the experiments but is attached in the cal-
culations, which is seen more clearly in the velocity pro-
files below. The transition from laminar to turbulent
flow is obtained by linearly increase the source terms
and eddy viscosity between z/c = 0.07 and z/c = 0.17
which also were used by the EUROVAL contributions.
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The choice of transition point does indeed influence the
result which calls for reliable transitions models for use
in practical calculations where the transition point is
unknown.

ing is adequate with the first point located at yt < 1.
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Figure 4: Mean velocity on the suction side of the pro-

file scaled with free stream velocity U, at x/c=0.4 and
a=172°

y/c
0.05 T T T

0.04 ¢

k-t model
Experiment -

0.03 r .

0.02 p ]

0.01 ¢

0.00 *
0.0 0.4

0.8 1.2 1.6

U/Uo

Figure 5: Mean velocity on the suction side of the pro-
file scaled with free stream velocity U, at z/c = 0.4
and o = 13.3°

The mean velocity profiles at z/c = 0.4, figures 4 &
5, are predicted fairly good. The sharp outer edge of
the boundary layer is not reproduced in the calcula-
tions. Mainly because of the calculation grid which is
quite coarse in this region. In figure 4 there are about
four grid points between y/c = 0.005 and y/c = 0.01.
Hence, the rapid change in the velocity gradient is
smeared out. However, at the airfoil surface the spac-
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Figure 6: Mean velocity on the suction side of the pro-
file scaled with free stream velocity at z/c = 0.93 and
a=17.2°
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Figure 7: Mean velocity on the suction side of the pro-
file scaled with free stream velocity at /¢ = 0.93 and
a=13.3°

Further down stream, figures 6 & 7, the mean veloc-
ity at o = 7° is still predicted reasonably, although the
edge of the boundary layer is even more smeared out.
For the higher angle of attack, o = 13°, where the flow
is separated in the experiments the calculated velocity
is positive at the wall. In this case the curvature ef-
fects may be important and this can only be captured
by an algebraic or full Reynolds stress model. This is
also confirmed by the EUROVAL results where only
the ASM contribution gave a correct velocity profile at
this location.
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Moreover, the damping functions used in the present
k — 7 model are based on y*. At the separation point
the friction velocity is zero and hence y% is zero along
a line normal to the wall. This may lead to unwanted
effects. In this case a damping function based on e.g.
the turbulent Reynolds number Re; = pk?/pue is more
adequate.

The Baldwin-Lomax model gives results in quite
good agreement with the experiments. It is well suited
for calculations where the flow is not far from equilib-
rium, e.g. for low angles of attack. As pointed out be-
fore higher angles of attack requires some sort of ASM
models and therefore the presentation of the Baldwin-
Lomax results are limited here. More results from cal-
culations with the Baldwin-Lomax model can be found
in Kourta [5].
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~0.05 k-t model —— b
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-0.10 + 4
C ~~~~~~~~
-0+ W 1
-0.20 - . -
-0.2 0.2 0.6 1.0

U/Uo
Figure 8: Mean velocity along a line perpendicular to
the free stream velocity scaled with free stream velocity
at z/c = 1.05 and o = 7.2°, where y = 0 is located at
the leading edge in lab. coordinates

The velocity field in the wake, figures 8 & 9, follows
the same lines as close to the trailing edge. The wake
is smeared out and the recirculation zone seen in the
experiments is not reproduced by the calculations.

The turbulent kinetic energy compares fairly well
with the experiments, figure 10 shows a typical exam-
ple. The calculated %k is somewhat higher than the
experimental value but the location of the maximum is
correct.

Conclusions

Calculations of the airfoil A has been performed for
Re =2 x10% M = 0.15 and o = 7° ~ 13° using the
k—7 model. The experience with the model shows that
if the discretization of the k and 7 equations is accurate

y/c

—0.10 T T

-0.15 | k-t model — /; .
Experiment ——/./

—0.20F = 1

~0.25 F TS .

-0.30 ' ' Ly

~0.2 0.2 0.6 1.0

U/Uo
Figure 9: Mean velocity along a line perpendicular to
the free stream velocity scaled with free stream velocity
at z/c = 1.05 and a = 13.3°, where y = 0 is located at
the leading edge in lab. coordinates

and is able to correctly handle the quadratic behavior
of k and 7 close to solid walls the model is more robust
than an equivalent k—¢ model, using the same damping
functions. The results indicates that the model predicts
lift and drag coefficient in with comparable or better
agreement with experimental data than the £—¢ models
used by the contributions to EUROVAL, Haase et al.
[3]. An explanation for the better agreement may be
the new damping functions. These damping functions
are based on comparison with DNS data. They may
though be further improved for calculation of separated
flows. For a correct prediction of the airfoil stall a
more advanced model has to be used, e.g. an algebraic
Reynolds stress model. The present calculations shows
that the k — 7 model is a good candidate to serve as a
base for such a model.
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