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Abstract

Nowadays hypersonic flows are deeply studied be-
cause of their importance in perspective. After a phase
in which solely pure fluid dynamics at very high speeds
was studied, high temperature effects are now starting
to be taken into account. It is then important to extend
existing computational methods to these phenomena.

In the present work, a time-marching finite volume
method is employed for the computation of 2D nonvis-
cous flows with chemical and vibrational activity ef-
fects; air is modeled by a 5-species model.

For efficiency purposes, implicit methods should be
used; a method belonging to this class is presented here
along with some results showing the improvements in
efficiency it allows.

1 Introduction

Amongst modern research topics, large interest is
being paid to Hypersonic CFD as many long-term
projects for high-speed aircraft or re-entry vehicles are
being evaluated. Meanwhile, experiments in this field
are difficult and expensive to be carried on; CFD be-
comes thus an useful tool not only for the project de-
sign but also for the experiment design itself.

But, what actually is an hypersonic flow? This term
usually indicates a supersonic flow field in which it is
no more possible to neglect high temperature effects,
namely a flow field in which the following phenomena
show up:

e Vibrational excitation of polyatomic molecules

o Dissociation of polyatomic molecules

o Electronic excitation of all the mixture compo-
nents, up to ionization

Translational and rotational degrees of freedom are im-
plicitly assumed to be fully excited and in equilibrium
at any temperature; this is not a limitative assump-
tion as translational degrees of freedom are already
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excited immediately after the absolute zero and rota-
tional characteristic temperatures are, with a few ex-
ceptions [7], extremely low, while relaxation of these
degrees of freedom requires no more than one collision.

It is clear that there is no sharp border line between
supersonic and hypersonic flows, as the appearance of
these effects is smooth and starts at different Mach
numbers depending on the freestream conditions and
on the scale lenght of the considered body; anyway, for
Mach numbers lower than 3, the flow is in general not
hypersonic, while for Mach numbers higher than 5 it
usually is.

In the present work, electronic phenomena were
not considered, as they show up for temperatures
(< speeds) much higher than the other effects. In the
perspective of a gradual approach, it was then decided
to neglect them.

When air dissociates, a mixture composed by a large
number of species develops; but many of these compo-
nents are present in extremely low concentrations, so
that they can be neglected. As is done in much of the
literature, it was chosen here to represent the disso-
ciating air by a 5-components mixture. The species
considered are O, N, NO, O,, N..

2 The mathematics of
hypersonic flows

The hypersonic flow fields can be described by the
usual Euler (or Navier-Stokes) equations to which some
new equations must be added to take into account
high temperature effects. In the most general case,
one should add one differential equation for the den-
sity of any chemical component, one for the vibrational
energy of any component who can run into vibrational
excitation (i.e. one for each polyatomic molecule), one
for any species encountering electronic excitation and
one for the charged species diffusion!. Nevertheless,
many simplifications can be done. First of all, as al-
ready mentioned, phenomena involving electrons will

1Remark that electrons and ions are not cited in this list:
they are considered among the chemical species.
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not be considered in the present work; moreover, the
density of the mixture can be simply obtained as the
sum of the densities of the components, so that either
the equation for the mixture density (i.e. the continu-
ity equation) or one of the component equations can
be dropped out. In the present work it was decided to
keep the continuity equation because of the numerical
scheme employed (see sec.3). If we suppose that the
diffusion of the chemical species is neglectable?, it is
possible to impose the local conservation of the atoms
of one kind, which allows to obtain the concentration
of molecular oxygen and nitrogen from algebraic equa-
tions, so that we can drop one more differential equa-
tion. In conclusion, the whole chemical behaviour of
the system-can be described by just three differential
equations. The vibrational behaviour of the system
with our model should also be described by three equa-
tions as we have three polyatomic species; though, it
was shown that the vibrational relaxation fime of the
NO is always at least one order of magnitude lower
than the other two; it makes sense, thus, to assume
that the nitrogen monoxide is always in a condition of
vibrational equilibrium, so its vibrational energy can
be obtained by an algebraic evaluation.

The general form of the differential equations for the
evolution of the chemical species is an equation for the
concentration of the species:

(pyi)e + div(f/:Pyi) = wj (1)

where p is the density of the mixture, y; is the concen-
tration of the species 12, V the velocity vector and w; the
production of the species ¢ (in ;§§s-) We can rewrite
this equation as an evolution equation for the species
density just by developing the terms under differential

operators:
(p‘: )t -+ diV(Vp,' = Wy (2)

The equations for the vibrational energy have the
following form:

(pie})e + div(V pie}) = w} (3)

where €} is the vibrational energy per unit volume of
the species 7. This equation can also be given the al-
ternate form:

(e} )s + div(Vpey) = w’ (4)

This expression is to be preferred to the former one as it
allows to avoid the numerical problems that may show
up in zones where the concentration of the species 1 is
close to zero[2].

Reducing to 2D and expanding, the high tempera-
ture effects can be computed by the following set of

2The present work deals only with inviscid cases, for which
diffusion is rigourosly zero.

differential equations:

po, + (upo)z + (vpo)y = wo
pn, + (upn)e + (von)y = win
pno, + (uono)s + (VoNO )y = wNo (5)
(peh2)t + (pueh,)s + (Pveps)y = w2
(Ped2)t + (puelra)z + (pvelyz)y = Wi
Hypersonic flows introduce new phenomena into the
motion field; thus, it is necessary to add more simil-
itude parameters into the system. These parameters
have been identified in the Damké&hler numbers, which
are defined as follows:
p = JTED
TKV,i

where Trp represents a characteristic time of the fluid
dynamics {(e.g. 7Fp = T/%.:’ L is a characteristic body
dimension and V,, is the freestream velocity) and rxv
is a characteristic time of the high temperature effects,
e.g. the relaxation time of one of the chemical reac-
tions. Observe that any one of the high temperature
effects brings a Damkohler number, and that these
numbers can be very different from each other. An-
other important remark is that the Damkohler num-
bers vary inside the motion field. In the present work,
it was decided to typicize the different testcases with
a freestream Damkdéhler number (D), defined as fol-
lows: the fluid dynamics time is computed as previ-
ously described; for the chemical time, remark that the
Jacobian of the source vector (matrix Z/S in sec. 3.3)
has the dimensions of [s~1]. It is then straightforward
to choose the inverse of a number connected to this
matrix as the reference chemical time. One possible
choice for this number is the determinant to the power
m, and this was retained in the present
work; another possibility could be the maximum eigen-
value, and so on. The choice preferred here is such that
it will bring a value for Do, which is a sort of weighted
average. One more decision still has to be taken: in
which conditions to compute the Jacobian. An appro-
priate choice appears to the author to do this compu-
tation in the freestream total conditions, i.e.: absence
of O, N and NO, absence of vibrational energy, total
density, total pressure, total temperature, zero veloc-
ity.

3 The numerical method

In the present work, two dimensional chemically re-
acting flows are computed by a finite volume time
marching method. The code implementing this
method is an evolution of a conical code for perfect
gases developed at von Karman-Institute [9, 5, 10)].

3.1 Fluxes Evaluation

The flux computation is performed by a Van Leer
flux vector splitter adapted to high temperature flows
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as described in [3]. The only difference is in that, in-
stead of considering four evolution equations for the
chemical species and neglecting ‘the continuity equa-
tion, three evolution equations for the species were em-
ployed and the continuity equation was kept. As will be
more clear from section 3.3, this helped in optimizing
the efficiency of the method. Moreover, the eqnations
were reordered so as to have all the high temperature
ones grouped together. The splitting structure then
reads:

( po/p
pN/p
peno/p
€02
€Nz
1
(7 -1)ut2a-n.]/7
(- Dv+2a-ny] /5

£ /

= (6)

where

+M, +1\?
+ n
fm~:i:pa( 2 )

and

[(¥ - 1)\/u2+v2 :i:2a

2(9% -

ft = Z 2 (er +R9)

3.2 Source terms

Many different chemical and vibrational energy
source term models were implemented into the code,
but in the present work only the Park model [6] for
chemisiry has been used.

3.3 Time integration: the
LUSKE?®scheme

The implicit time integration procedure developed
by the author is typicized by the following features:
o Full coupling between high temperature effects
equations

o Weakened coupling between the fluid dynamics
equations

¢ Decoupling between the high temperature and the
fluid dynamics sections during the time integra-
tion

Let’s now analyze in detail the different sections of the
time integration.

3Lower-Upper Scheme for (K)emical Evolution.

Fluid dynamics

For this section a Jameson and Yoon LU-SSOR pro-
cedure is employed; the principles of the method, fully
described in [4, 11}, will hereafter be quickly recalled.
Consider the 2-D Euler equations in vector form:

W, +F:+Gy=0 (7)

where
W= (P, pu,pv,pE)T
F = u(p, pu + p, pv, pH)T
G = v(p, pu, pv + p, pH)T
and the most general form for a 1-stage time integra-
tion scheme:

AW,
81552 +n}:(FNUM -nAs)gtiy
B=1

4
+(1~1) Y (Fyum - nas)s = (8)

P=1

Here, AW, ; is the time variation of the solution at
the cell center 4, j and 7 is a parameter weighting the
numerical flux between the two time levels n and n+1:

= 0 is a fully explicit scheme and n = 1 a fully
implicit one; S is the cell surface and Asg are the cell
border lenghts (see fig. 1). If we introduce the inviscid

1L,d+1

B~ f=2
Aiuom

A=3
Byoipng

By
Bipsap

Figure 1: Computational cell and splitting of the Ja-
cobians

flux Jacobians and linearize, (8) becomes:

4
SAW); ;
(___E.).uz. + ,,Z;l [(Ans + Bny) As]s AW, = R,
9
where A and B are the flux Jacobians in the coordinate
directions and R; is the flux balance at time level n

for the cell 4, j. It is useful to indicate with A and B,
respectively, the Jacobians of the fluxes in the direction
normal to the cell faces f=1,3and 8 =2,4:

A= (An, + Bny)p=1,3
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B = (Any + Bny)p=2,4

It is possible to obtain a block triangular form of the
implicit operator as follows. First, the contribution of
the inviscid flux Jacobians at each cell face is split into
a positive and a negative part (see fig. 1):

(“iAW)H%,j = AL AW+ A7 AW,

Similar relations hold for the other faces. The Jaco-
bians A%, B% are constructed so that the positive
(negative) matrices have non negative (non positive)
eigenvalues. A better conditioned implicit operator is
obtained by increasing its diagonal dominance. For
that purpose, Yoon and Jameson proposed the follow-
ing splitting:

AT = Atval (10)
2
with

74 =ramax(| A4 |)

A4 are the eigenvalues of A and r4 is a constant of
order 1; similarly for B*. Furthermore, the compu-
tational efficiency of the method can be enhanced by
an overrelaxation technique, which is obtained by re-
defining A%, B* by the insertion of an overrelaxation
parameter:

x Azl :kzuI (11)
-5% = 9, multiplying all the terms by
¥, substituting and reorganizing, we obtain (a = n+9):

it =

Posing now in (9)

[I +a (A+ Asy — A7;Ass+ BfAsy+

—-B&Au)] AW, +a (—ﬁj’_l,jAssAW~_1,j+

--B?j:j_lAs.iAW.',j_l) +« (j;+1’jA81AWg+1,j+
~Bi1 A AW, 41 ) = 9R (12)

Let N, M*, M~ be the following matrices:

N=I+a [(A+ Asi— A Ass)
+(Byass = B0
M* =—A} | AssAWi 1 — Bf; | Ass AW, 5y
M~ = A5 ;A0 AWy j — B 1 A AW, 4y

If the variations of As across the cell are neglected
and AZ, Aj are the mean values, N becomes a scalar
matrix*:

N =[1+a(yaAj +18A%)]

4This terms indicates a diagonal matrix who is the identity
matrix multiplied by a scalar.

Hence, equation (12) can be factorized as follows:
[(N4+aM*)N"I(N+aM™)| AW =9R (13)

so that we can obtain the solution without any matriz

inversions through the following two-sweep process®:

AW* = N"!(INR —aM?) =9R —aN"'M*

AW = N} (AW* —aM")

High temperature effects

An hybrid LU procedure is employed in this section.
Consider the system of the high temperature effects
equations (5); it is obviuosly possible to write it in
vector form as follows:

Wi+ F;+Gy=Q (14)

where

(pO’ PN,PNO) P302, peNz)
Fa = u(p03 PN, PNO»Peoz; peNz)T
G'a = v(PO: PN, PNO, Peoza peN&I)

(“’vaN,wNO;sz’wNz)

Discretizing and putting in implicit form yields:

r +ntl
4

Z (Fnum . nA.‘I)I3 - 8; ;0 +

- -n

Z (Fnum . nAs)ﬂ - Si’jn
B=1

=0 (15)

Observing that Q™! ~ Q" + 22A¢t, 28 ~ S8 AW

and thus Q**! ~ Q" + £ AW, it is possible to lin-
earize the source term and obtain:

4 -
aFu\xm
|3 (G

p=1

AL

i— nAs) AW+
7 At g

a0

~Sii g

n4l
AW] = ’R?,j +8:;0"  (16)

or, posing R}; +5;,;0" = K

4

AW OF yum
Sii— At +17 Z(—a-w—-*-nAs) AW+
B=1 B
a n+1

5Remark that, N being a scalar matrix, the factorization is
unique.
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Again, we linearize the fluxes and get:

I+nz (Ang + Bny) As], +

At =
N "
Sij BW} AW = K7, (18)
or (a, ¥ as previously):
4
I+ [(An, + Bny)As], +
B=1
N "
_.as,',j 5_W—} AW = ﬁlci,j (19)

As in the case of the LU-SSOR method, we split the
contribution of the flux Jacobians at each cell face into
a positive and a negative part. Defining A%, B as
in the fluid dynamics section, expanding equation (19)
afier splitting and reorganizing the terms, we obtain:

[1+e (480~ A7; A + B Ay — By Aset

a0
S‘y] 3W

_B‘Tt'j_lAsgAWa,j_O +a (x’ig‘+1,jA31AWi+1,j+

)] AW, + o (—4f; ;Ass AW,y 5+

—é;j+1A52AW;,j+1) = 19sz (20)
If we introduce the following formalism:
an
Z=-Sizw
N = A};Asy— A7 ;As3 + B jAsy — B Asy
Mt = -—A:'_“AsgAW‘_l,, B‘J ,A34AW,, 1

we see that (20) becomes:
= [I+a(N+2)+aM* +aM~] AW = 9K?; (21)
And finally, imposing J = I + a(N + Z),

[J+aM*t +aM~] AW = 9K?; (22)

The matrix multiplying vector AW can be factorized
as follows:

[J+aM* +aM~] ~ (T +aMt)I"Y(J +aM")
(23)
We get then to the lower/upper decomposition that
reads®:
AW* =9K}; —aJ 1M

AW =J 1 (AW* - aMt)

SRemark that matrix J is not a scalar matrix, so that there
is another way of performing the decomposition that, in prin-
ciple, is not identical to the present one. Though, that version
was tested and was observed to bring no noticeable differences
neither in results nor in performances. Then it was decided to
implement the present form mainly for reasons of coherence with
the fluid dynamics section.

3.4 Peculiarities and fine-tuning

The code offers the opportunity to freeze the matri-
ces employed in the computations for some timesteps.
This is important because the evaluation of these ma-
trices, and in particular of the ones used for the high
temperature section, is extremely expensive. Unfortu-
nately, some test cases do not sustain this trick, thus
imposing a step-by-step evaluation of the Jacobians.

In many cases, the high temperature shock is so
strong that, if inserted steeply, it can cause the code
to fail. Then, it was made possible to relax the inser-
tion of high temperature effects over N steps. This is
obtained by multiplying the source terms by a factor

4.8
whose value is (@ﬂl:—s—"l‘igl + ;%,-6) if STEP < N,

400x (1-N)
1if STEP > N.
3k ok o ok ke o o ofe S ok 3k ke ok e e ok 3 ok 5k

The method just described allows a cost effective
solution of the full system, as will be shown in section 4.
Remark that, would four species evolution equations
be used, the dimension of the matrices to be inverted
for the LU high temperature section would increase to
6 x 6, which would have a non-neglectable effect on
the CPU time required for one iteration.

If the method was applied to more complex gas mod-
els, the size of the matrices to be inverted would in-
crease with the numbers of equations and the CPU
time would then rapidly grow to unacceptable levels.
In such cases, it appears then a proper workpath to
break the set of high temperature effects equations
into two parts, the first, to be solved with the present
method, including the "most critical” ones, which will
be the ones with lower relaxation times in order to skip
stiffness problems (see section 4), and the second, in-
cluding the remaining equations, to be solved with less
time-consuming methods.

4 Results and discussion

Two test cases will be presented hereafter. In both
testcases only chemical activity effects were considered.
From the numerical viewpoint, this means only that
the last two rows and columns in the matrix J (see 3.3)
will be 0 except for the diagonal terms which will be
nonzero.

All the computations were performed on a DEC
3000/500 Aipha computer.

Testcase 1: Diverging Nozzle

This is a quasi 1-D testcase. It was run as a pre-
liminary testcase and to underline the peculiarities of
the interaction between fluid dynamics and non equi-
librium phenomena. A 12 x 51 cylindrical grid was
employed (fig. 2). Remark that, given the geometry of
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the flow, only one computational cell in the transversal
direction would have been sufficient. The opening an-
gle of the nozzle is 45° and its lenght twice the radius
of the inlet section. For the typical lenght required in
the computation of the Damkohler number, the nozzle
lenght is taken.

N
RN

QRS
R

{ vi [RE|
SRR AR A AR R R R AR AR NRRER AL

Figure 2: Computational grid for testcase 1

The inlet conditions are: Mo=12.0 , T%=7450 K
and p®=7.22 -10° Pa. The imposed outlet static pres-
sure is Pout=5.67 -10% Pa, causing the shock to be po-
sitioned at 30% of the nozzle in the absence of high
temperature effects.

The baseline lenght considered was of 2.5 cm (test-
case 1.1), corresponding to a freestream Damkdhler
number of about 150. The lenght was then increased
by multiples of 10.

Figs. 3 to 7 show the distribution of the O, N and NO
concentrations on the nozzle axis for some significant
testcases.

Observe the evolution of these quantities from the
frozen values of fig. 3 through the different nonequilib-
rium situations to the equilibrium values of fig. 7. The
frozen conditions are put in evidence by the fact that
the concentration of chemical species is very close to
the freestream conditions. This happens because the
fluid dynamics characteristic time (permanence time)
is very low, so that the chemical reactions have no time
to develop within the nozzle. This situation is typical
of low Damkéhler number flows. On the other side,
we have equilibrium situations when the fluid dynam-
ics time is much larger than the activity characteristic
time (high Damkdhler number) so that the chemical
reactions adapt to the evolution of the environment
very quickly. In these cases the change from freestream
conditions to full dissociation is obtained within a few
cells. Remark the typical peak in the NO concentra-
tion distributions. This configuration appears because
in the initial zone behind the shock there is still a high
percentage of molecular oxygen, that can be involved

in an exchange reaction with molecular nitrogen which
brings to a nitric oxyde production larger than the
one caused by the association reaction involving atomic
oxygen and nitrogen. When, later, O, concentration
becomes low, the NO concentration of equilibrium im-
posed by the latter reaction is reached.

Table 1 presents, along with the freestream
Damkohler number, some quantities that can help in
a quantitative evaluation of the distance from equi-
librium: the position of the [NO] peak,the maximum
concentration of atomic oxygen and the outlet tem-
perature. It can be observed that changes in these
quantities are very strong in the first cases but become
neglectable in the last ones, indicating that equilibrium
is closely approximated.

T.C.| Dw [NO] peak | max. | max.
position [0] T
1.1 150 Outside .0558 | 7219
1.2 1500 Outside .1232 | 6853
1.3 15000 57% .1737 | 6388
1.4 | 150000 37% .2140 | 5316
1.5 1.5E6 35% .2263 | 4566
1.6 1.5E7 35% .2265 | 3977
1.7 1.5E8 35% .2265 | 3604
1.8 1.5E9 33% .2265 | 3545

Table 1: Quantitative results for testcase 1

Remark that the peak of NO is steady from testcases
1.5 to 1.7 and then moves in testcase 1.8. Moreover, in
the last cases the peak value reduces, while one would
expect a constant peak and a self similar shape in all
the cases. This happens because the number of compu-
tational points is constant for all the testcases, so that
in the last ones the NO evolution amplitude shrinks to
just one cell and we have a loss of resolution.

0.060
0.050
0.040
0.030
0.020
0.010
0.000 SRR

0.000 0.005 0.010 0.015 0.020 0.025
x (m)

Figure 3: Species concentration, testcase 1.1
It is interesting to observe that the code based on

the time integration scheme proposed in the present
report allows full computation over a very wide range
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Figure 4: Species concentration, testcase 1.2
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Figure 5: Species concentration, testcase 1.3
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Figure 6: Species concentration, testcase 1.5
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Figure 7: Species concentration, testcase 1.8

of Damkohler numbers. On the contrary, all previous
works reported of numerical instabilities that inhibit
other schemes from computing near-equilibrium val-
ues with nonequilibrium methods. As a consequence,
specific computations are usually required for equilib-
rium flows. This implies of course a problem much
heavier than the simple requirement of two different
codes, as the range to which a particular testcase be-
longs is often unknown a priori . The wide efficacy
of the present scheme is then to be considered a ma-
jor improvement; the cause of this efficacy is presently
being studied and will be discussed more deeply in a
follow-on article. Another remark to be done is that
equilibrium was not actually reached, as for extremely
large values of Do, numerical instability was observed
also on this code; this is correct as it is theoretically
impossible to compute a fully equilibrium flow with
nonequilibrium methods’. What actually happens is
that the present method allows to approach much fur-
ther the equilibrium situation before giving up. Any-
way, the difference is so small that, from a practical
point of view, it can be stated tlat the equilibrium is
reached.

Testcase 2: Blunt Body

The body considered here is a half cylinder followed
by a slab.

This is a fully 2-D testcase and has been performed
for a more thorough testing of the method. The test-
case is quite hard as it implies a bow shock of different
strenght depending on the position around the body
and a strong expansion interacting with the shock it-
self. The chemical evolution is therefore much more
complex than in the previous testcase; indeed, temper-
ature faces a sharp increase (at thie bow shock location)
followed by a fluid dynamics driven reduction (expan-
sion) which interacts with the reduction driven by the

"Indeed, a fully equilibrium flow is just an idealization as the
full relaxation requires an infinite time to be obtained.
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chemical reactions themselves. Again, many testcases
were run with the same geometrical configuration, but
with a scale factor of 10 between a case and the fol-
lowing. Test conditions were the following: freestream
mach number 12.2, freestream static pressure 43 Pa,
freestream static temperature 266 K, no incidence. Ta-
ble 2 shows the body dimensions for the various sub-
cases run along with some quantitative results display-
ing once more the capability of the scheme to handle
problems characterized by a wide field of Damkohler
numbers. The radius of the bodies is in meters, the
shock position is the distance of the bow shock from
the body nose expressed as a fraction of the body ra-
dius. For comparison, a pure fluid dynamics and an
equilibrium computation were also performed on the
same geometry (testcases 2.0 and 2.11, respectively)

T.C. | Body Do Shock | max.
radius position T
2.0 - - 0.396 8140
2.1 0.005 341. 0.35 7878
2.2 0.05 3.41E3 0.29 7555
2.3 0.5 34.1E3 |  0.249 | 6860
2.4 5. 341E3 0.224 | 5716
2.5 50. 3.41E6 0.215 4784
2.6 500. 34.1E6 0.212 4306
2.7 5.E3 341.E6 | 0.2116 | 4129
2.8 50.E3 | 3.41E9 | 0.2114 | 4129
2.9 | 500.E3 | 34.1E9 | 0.2114 | 4129
2.10 5.E6 341.E9 | 0.2114 | 4129
2.11 - - 0.2114 | 4129

Table 2: Quantitative results for testcase 2

It is evident that the cases with very small body
dimensions are very close to the pure fluid dynamics
case (frozen cases) while in the upper end of the com-
putational field changes between two testcases become
neglectable (flow is tending to equilibrium).

Observe that theoretical analysis suggests that the
maximum temperature should always be almost the
same as in the equilibrium computation if chemical re-
actions are considered because in the stagnation point
equilibrium conditions must be reached [8]. But this is
connected to phenomena happening to a much smaller
scale and it is not surprising that the code was not
able to catch this behaviour. Presently the only known
method to observe stagnation point equilibrium is a
data postprocessing method based on integration along
the computed streamlines.

Figs. 8 and 9 present the results of these testcases
in graphical form by the O concentration fields; fig. 10
presents a comparison of the pressure fields for test
cases 2.0, 2.3, 2.9 and 2.11. The shift in the shock lo-
cation shown in table 2 is quite evident. This shift ap-
pears as the introduction of chemical reactions reduces
the amount of energy available for the fluid dynamics

Figure 8: O concentration isolines, testcases 2.1 to 2.5
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re isolines, (a) testcase 2.0, (b) test-

isolines, testcases 2.6 t0 2.10  Figure 10: Pressu
case 2.3, (c) testcase 2.9, (d) testcase 2.11
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Figure 9: O conce
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evolution.

It is interesting to observe that testcase 2.10 was the
last that it was possible to run, and that the last cases
required an increase in the number of steps through
which the chemical reactions introduction was to be
relaxed. This supports the statement made in the pre-
vious subsection, namely that LUSKE does not reach
actual equilibrium but just approaches it much more
closely than other methods.

In order to state the performance of the method
under the standpoint of efficiency, testcase 2.6 was
run also with a previous generation time integration
scheme. The comparison scheme employs a simple for-
ward Euler scheme for the fluid dynamics section and
the chemical convection terms, and an implicit time
discretization of the source terms. It is therefore to
be classified as a half-implicit method. This methods
does not allow Jacobian freezing, so that, for the sake of
completeness, the case was run also with LUSKE and
unfrozen Jacobians. Efficiency results of the three runs
are presented in table 3. Remark that the advantage
of Jacobian freezing is not much evident; this happens
because the present testcase required unfrozen Jaco-
bians up to quite a large number of iterations. Though,
the advantage of LUSKE over the previuos method re-
mains impressive.

Integration | Steps | Mean CPU | CPU | Time
procedure per step time | ratios
Half implicit | 26949 1.35 36381 1
LUSKE 3356 1.675 5621 | .1545
w/o freezing
LUSKE 3356 1.38 4635 .128
(frozen)

Table 3: Comparisons for test case 2.6: steps and CPU
time required for reaching convergence level -1.5

For comparison, fig. 11 presents the O concentration
maps for the two schemes, and fig 12 shows the con-
vergence histories in the three cases of table 3 (the two
LUSKE runs are indistinguishable).

In conclusion, it is important to remark that the
half-implicit method was also tested on other testcases,
but showed to be not able to compute testcases from
case 2.7, which underlines once more the efficacy im-
provement offered by LUSKE scheme.

5 Conclusions

A novel scheme for chemically and vibrationally
active flows was developed. Testing of this scheme
showed excellent behavior regarding both efficiency
and efficacy. The 2D code implementing this scheme is
intended to be used for computations on double ellipses
to build up a better understanding of complex hyper-
sonic phenomena, and extended so as to include lami-

Figure 11: O concentration isolines, testcase 2.6, (a)
half-implicit method, (b) LUSKE scheme
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Figure 12: Convergence histories, testcase 2.6, half-
implicit method versus LUSKE ‘scheme
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nar viscosity effects. Further extensions of the scheme
could eventually lead to cheap computations of fully
three-dimensional active flows.
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