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Abstract

As a new step to investigate the behaviour of
TVD schemes in the calculation of viscous
boundary layer, 2—D N —S equation has been
solved with the 2—D flat plate laminar bound-
ary layer and the interaction of oblique shock
wave/2 — D flat plate laminar boundary layer
as test cases. It has been found that the original
2nd order NND scheme (Non-oscillatory, Non-
free-parameter, Dissipative scheme, a kind of
TVD scheme) is not suitable for the solution of
boundary layer since it over-estimates the skin
friction, even though it is very efficient to cap-
ture shock wave. The authors attribute this
phenomenon to the improper numerical dissipa-
tion of the original NND scheme. By modifying
the minmod terms of original scheme, a 3rd or-
der improved NND scheme is obtained, which
yields much better results than that of 2nd order
NND scheme.

Introduction

From early 1980s, the solution of Euler e-
quation developed in two directions, namely the
central schemes (eg, Jameson’ s central
scherhes) and TVD schemes. The emergence of
TVD schemes proposed by Harten, Yee®, Os-
" Copyright © 1994 by ICAS and AIAA. All rights reserved,

her and Chakravathy‘® are basically a milestone
of numerical solution of Euler equation. In
China, the representative work is the NND
scheme™® developed by Prof. Zhang H.X. of
CARDC (China Aerodynamics Research and
Development Center). Large amount of numer-
ical works have shown that the NND scheme
(virtually a TVD scheme) is both accurate and
efficient for the solution of inviscid supersonic |
and hypersonic flows, which may include com-
plex shock waves and expansion waves“-%:%7,
In resent years, the application of NND
scheme has been extanded from inviscid flows
to viscous flows around complicated configura-
tions. However, at the very beginning, the ob-
jective to develop NND (or TVD) scheme is
just to capture shock waves in a flow field, not
to calculate viscous boundary layer; Numetical
experiences have also told us that not all the
methods suitable for inviscid flows are still suit-
able for viscous flows. As mentioned in Refer-
ence 8 that the improper numerical dissipation
of upwind discretization may deteriorate the so-
lution of viscous shear layer., Thus, as a basic
research, the problems of 2—D flat plate lami-
nar boundary layer and interaction of oblique
shock wave/2 —D flat plate laminar boundary
layer are studied here by solving the N—S e-
quation in LU-SGS (Lower-Upper-Symmetric-
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Gauss-Seidel) approach. The results show that
the original 2nd order NND scheme is not suit-
able for bounday layer calculation, yet the re-
sults could be greatly improved if the NND

scheme is modified to 3rd order accurate,

Numerical Approach

Governing Equation

The governing equation here is the nondi-
mensionalized 2 —D Navier-stokes equation in
conservative form,

JE  dF 1 (JE,, dF,

Pl A i vt w ) B
where Q is conservative variable, E and F are
inviscid flux in & and n directions respectively,
while E, and F, are viscous flux in £ and n di-

rections respectively.

Solution Procedure

LU-SGS Approach Eq. (1) is solved in the LU
— SGS approach®19, whose final discretized

equation is written as.

LDT'UsQi+! = —R} 2
where
L=pl—At, ;—B-,
D=pl
U=pl+AL; ;j+Bi+1
p=k * [p(A)+p(B)]
. JE 9F 1/(3E, K OF
R=rd—— | =
9§+3n Re<a§+an)
. . JE dF
Here I is unity matrix. A=-—, B=—,
Yy aQ’ Q P

(A) and p(B) are their spectral radius respec-
tively. k is a constant greater than one. A and
B are approximately split as.

_ Ak + p(A)I

Ai:
2

B4k « p(B)]
2

The solution is performed by sweeping from

Bt =

the bottom-left corner of computational domain
to the upper-right corner and back to the bot-
tom-left corner. It is noted that the discretiza-

tion of 3:]—3—1—-3-5 in R is the main point of this

dE
paper.

NND Scheme The discretization of convective

terms is written as:

JE = =
ey _‘““1" (EH-*E —-Ei_

_ ,  ®
%~ A

B

where

o~

Eyl=E%1,4+E3le

rof-

E# . =Ef +—minmod(AE-  , AE4 1)

ot

)
Ef =B — 3 minmod (\E7 3, MER §)
5
AE# | =4, —E#
the limiter is defined as

0 x,y<0
minmod(x,y)=3x |x|<|y|
y |x|>1y]

It could be verified that this is a 2nd order
TVD scheme and is very efficient for flows in-
cluding shock and expansion waves. It is evi-
dent that the scheme degeherates into 1st order
upwind scheme when the limiter is taken to be

zero.

Improved NND Scheme In order to reduce the
numerical dissipation of NND scheme, a high

order scheme is obtained by modifying those

limiter terms of Eq. (4) and (5).
Ef L =Ef + [ (1 -0V +1+K0A] « EF

'2'y
(7
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B pa=Em— 5[ 1=V +1+H0A]E
(®)

Here

VE =minmod (AE* 1,8 + AE} L)

AEF =minmod (B « AEL 1, AE% 1)

VE;nr—minmod('_\Eﬁ% B« AEZ L)

AEG =minmod (B » AE31,AEZ3)

3—k

B=T=xk
if k=1/3, the scheme is 3rd order accurate.
The new scheme is called improved NND
scheme and it is similar to those MUSCL-type
high order upwind schemes.

Numerical Results and Discussion

The main purpose of this paper is to check
the behaviour of NND scheme in boundaty lay-
er calculation. Both the original 2nd order
NND scheme and the improved 3rd order NND
scheme are applied to the following test cases.

The first case is 2 — D flat plate laminar
boundary layer. Computational domain is
shown in Fig. 1, in which 31 grid points are
evenly distributed in x direction and 41 in y di-
rection, clustering near solid wall with min-
mum normal spacing of 0. 001. Free stream
conditions are M..=0. 5 and Re=10000. The
inflow boundary conditions are iso-entropy,
constant total pressure and zero vertical veloci-
ty; At upper and outflow boundaries, the static
pressure is specified as the free stream value
while other variables are extrapolated. Non-slip
condition is applied on solid wall.

Fig. 2 shows the skin friction with original
NND scheme, which is greater than the Blasius
solution.

Accordingly, velocity profiles in

boundary layer are compared in Fig. 3, show-
ing that the profile of numerical solution is
much more flat near the wall than that of Bla-
sius solution, Fig. 4 and 5 are results of 3rd or-
der NND scheme, which show the great im-
provement of the solution.

The second test case is the interaction of
obligue shock wave/2 — D flat plate laminar
boudary layer, as shown in Fig. 6. Free stream
conditions are M..= 2, 0, Re=0. 296 X 10°,
shock impingement angle is 32. 585 degree. 61
grid points are evenly spaced in x direction
while 61 clustering in y direction with minmum
normal spacing of 0. 0003 at solid wall. All of
the conservative variables are extrapolated at
outflow boundary and the solid wall is adiabatic
and non-slip,

The skin friction with 2nd and 3rd order
NND schemes are shown in Fig. 7 and 8 respec-
tively, where the most important phenomenon
is the absence of flow separation in the result of
2nd order NND scheme in Fig, 7 (no negtive
skin friction), which agrees with the first test
case that this scheme over-estimates the skin
friction. Fig. 9 and 10 are the iso-pressure
countors corresponding to Fig. 7 and 8 respec-
tively. Numerical experiments have shown that
satisfactory results could be obtained if the dis-
cretization in y direction is 3rd order accurate,

regardless of 2nd or 3rd order in x direction,

Conclusions

Based upon these numerical studies. it has
been found that the original 2nd order NND
scheme may over-estimate skin friction at a sol-
id wall and result in unreliable study of viscous

flows, even though it is very efficient to cap-
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ture shock waves. The authors would attribute
this deterioration of numerical results to the im-
proper numerical dissipation and introduced a
3rd order NND scheme by modifying limiter
terms of the original scheme. Numerical experi-
ments have shown better results using this im-
proved scheme in normal direction, regardless
of 2nd or 3rd order in streamwise direction.
However', theoretical explanation to these con-
clusions has not been systemetically completed ,

thus it remains to be an open problem.
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Fig. 8 Skin Friction with 3rd Order NND Scheme

Fig. 7 Skin Friction with 2nd Order NND Scheme
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