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Abstract

The spatio-temporal characteristics of many
complex fluid flows can often be described in terms of
the evolution of a relatively small set of coherent
structures, or modes, of the velocity field. This
simplified representation of the flow dynamics forms
the basis of an adaptive non-linear flow control scheme
for a class of unstable wake flows. An extension to the
method of proper orthogonal decomposition, which
accounts for the influence of external forcing, is used to
construct an appropriate set of modes from high-
resolution off-line measurements of the velocity field.
On-line estimates of the time-varying mode amplitudes
are derived from a modal filter based on a limited
number of velocity measurements. A feedforward neural
network, trained to emulate the observed modal response
of the flow to control forcing, is used in conjunction
with an adaptive neural network controller to minimize
flow fluctuation. The utility of the control scheme is
investigated using data for a low Reynolds number,
two-dimensional flow behind a circular cylinder
exhibiting vortex shedding. Successful feedback control
of a simplified model of the unsteady wake flow
demonstrates the feasibility of the control scheme.

Introduction

Active control of unsteady flow phenomena
attributable to flow instability has attracted much
interest in recent years. The potential benefits of
managing and controlling unsteady flows of this kind
that occur in engineering applications are known to be
significant. The design of an appropriate flow control
strategy depends, to some extent, on the nature of the
instability mechanisms responsible for the observed
flow behaviour and on the characterization of the system
to be controlled?-?. To date, attention has focused on
the control of convectively unstable flows, such as
boundary-layer flows®45), These flows are noise
amplifiers and have been controlled successfully using
linear control methods based on wave superposition
techniques. Feedback control of flows exhibiting
absolute instabilities, such as wake flows, is more
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difficult(®), Unstable flows of this kind are self-
excited, and persist in the absence of external
disturbances. They are characterized by regions of
instability and, in general, are not susceptible to linear
control. In addition, the complex spatial structure of
such flows limits the effectiveness of linear control
schemes based on point actuation and sensing
devices:#. Control schemes which address the inherent
distributed and non-linear nature of wake-like flows are
therefore of interest. Model-based flow control strategies
derived directly from the Navier-Stokes equations are
conceptually appealing. While some attempts have been
made to address the issues associated with the control of
non-linear evolution problems governed by partial
differential equations®, the complexity of many
engineering flow systems makes this approach
unsuitable for real-time applications.

For many dissipative fluid systems, organized
structures play an important role in the characterization
of the flow!®. The behaviour of such flows can often
be described in terms of the evolution of a relatively
small set of spatial modes which are, in some sense,
representative of the aggregate flow dynamics. This
observation permits a dramatic simplification in the
mathematical representation of flows of this kind.
Several investigators(10-11-12) have adopted this approach
in the characterization of stationary laminar and
turbulent flows. Identification of an appropriate set of
modes is based on the method of proper orthogonal
decomposition131415) in which the velocity field is
represented by a finite-dimensional basis corresponding
to local statistical maxima of the flow energy. The flow
dynamics is described by a reduced-order model derived
from a Galerkin projection of the Navier-Stokes
equations onto the optimal basis. An extension of the
method of proper orthogonal decomposition to account
for non-stationary flow behaviour resulting from the
influence of external forcing(16) offers scope for the
characterization of controlled flows by similar reduced-
order flow models. However, while the analytical form
of the reduced-order flow model is known for
autonomous flows, the structure of the reduced equation
set for controlled flows depends, intimately, on the
nature of the control process which, itself, may be
difficult to model. Nevertheless, the notional existence
of an 'optimal' reduced-order model of the flow in the



presence of a control is appealing. Recently, neural
networks!7-18) have been applied to non-linear control
problems(1%20) where analytical representation of the
system has proved difficult or impractical. For the flow
control problem, a neural network can be trained to
emulate the modal dynamics of the flow under the action
of an applied control, and an adjoining neural network
designed to control the flow. The principal advantage of
this approach is that it circumvents the need for explicit
representation of the reduced-order flow model.

The aim of this paper is to describe a neural
network flow control scheme based on a characterization
of the flow dynamics by the method of proper
orthogonal decomposition. A brief account of the
decomposition method for autonomous and non-
autonomous flows is presented. This is followed by a
description of a generic feedback flow control model
incorporating limited flowfield measurements.
Application of the control scheme to a prototype flow
control problem is then used to demonstrate the
feasibility of the approach.

Characterization of Stationary Flows
Modal Decomposition of the Velocity Field

Proper orthogonal decomposition is a method for
the characterization of an ensemble of data by an
‘optimal’ orthonormal basis corresponding to local
statistical extrema of the ensemble. To identify an
appropriate basis for the unsteady velocity field, it is
helpful to search for a fixed set of orthogonal vectors
(compatible with the spatial representation of the
velocity field) which has a structure statistically typical
of an ensemble of velocity field measurements taken at
different times(10.13),

The discretized velocity field is represented as the
sum of the mean (time-average) flow and a time-varying
part, expressed as a concatenated vector of local
Cartesian velocity components. For a two-dimensional
flow, the discretized velocity field is expressed in the
form

V)=V +V() m
where
v(x,,¥,1)
v(x,,¥,,1)
V= @
V(X Ypst)
and
Ve (X, ¥;510)
V(xi’yi’t)z{v.(x. y. t)} 3)

Selection of an 'optimal' fixed basis for V’(¢) entails
maximization, in some average sense, of the projection

¥ V(@) =y'V() @)
for each base vector .

To select an appropriate base vector from the ensemble
of velocity field measurements, the quantity

E{(y - V(1))*}=420 (5)

is maximized subject to the constraint (y-y)=1. It is

readily shown(13) that extremal ¥ correspond to
eigensolutions of the algebraic eigenvalue problem

Ry = 1y ©)

where
R=E{V(V' ()} 0

Here, R is the time-averaged spatial correlation matrix
of the ensemble of velocity field measurements. The
matrix eigenproblem defined by (6) yields an orthogonal
set of eigenvectors which characterizes the spatial
structure of the flow. The eigenvectors, or modes, can

be recognized as 'directions' in R?” along which the
variance of the discretized velocity field has local
maxima. The fraction of kinetic energy of the velocity
field captured by an eigenmode is proportional to its
associated eigenvalue. For dissipative fluid flows, most
of the system energy is captured by only a few dominant
modes of the velocity field. Consequently, modes
associated with small eigenvalues can be neglected, and
the velocity field characterized, approximately, by a
relatively small number of modes.

In general, solution of the eigenproblem (6) is a
difficult task if the number of measurement points, P,
is large - for flows comprising two space variables, the

problem is of order (2 X P)Z. The effective order of the
problem can be reduced, however, using the method of
'snapshots'(10.13),

For a sufficient number of time-sampled velocity
fields, V'(2,),k=1,...,M, the correlation matrix is
approximated as .

M
R=—3 Ve )V, ®
M k=1

The approximate correlation (8) is symmetric and non-
negative and, as such, its eigenvectors are of the form

M
1 :
v=- Y ARV O)

k=1
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where

A(k)=(¥-V'(1)) (10)
Substitution of relation (9) into the eigenproblem (6)
gives

CA=A 1y

where

1
Cie =27 (V8 V(1) (12)

and
A= (AQD),..., A(M))T

The eigenvectors of the matrix C are M-dimensional
and are used to form the eigenvectors of the correlation
matrix R via the relation (9). For an ensemble of M
realizations of a particular flow, there exist M
eigenvectors of the correlation matrix R.

The mode index is arranged such that the
eigenvalues decrease monotonically with increasing
index number. In practice, many of the modes can be
neglected. The N most significant modes are used to
reconstruct the flow velocity field; that is,

N
V)=V + EA,»(t)wi

i=1

(13)

where

A=y V(@) (14)
The modes developed by the method of proper
orthogonal decomposition are optimal, in that they
capture more energy, for a given N, than any other
expansion.

Mode Evolution and Reduced-Order Flow Models

Evolution equations for the mode coefficients,
A; (1), are obtained from a Galerkin projection of the
governing flow equations. In the absence of external
forcing, the Navier-Stokes equations for incompressible
flow can be written, symbolically, as(10.12)

%:N(V) inQ (15)
V.V=0 inQ

subject to appropriate boundary conditions on dQ.

The modes are, by construction, incompressible and
satisfy the boundary conditions. Projection of the
Navier-Stokes equation onto the space spanned by the
eigenmodes,
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(\vi-(%,——N(V)))=O i=1...,N (16)

yields, by virtue of the mode orthogonality, a set of
non-linear ordinary differential equations (ODEs) for the
mode amplitudes, A;(r),

dA(t)

% an

=F(A(®)

where
AW =(A@),...,Ay)T

In conjunction with the relation (13) and an appropriate
set of initial conditions, equations (17) provide a
succinct description of the spatio-temporal
characteristics of the flow for a fixed set of flow
parameters.

A Generic Flow trol Model

on-Stationary Flow Behaviour

The generation of the eigenvectors of the velocity
correlation produces a relatively small set of modes
which characterizes the large scale spatial structure of
the flow. An implicit assumption incorporated in the
construction of the eigenmodes is that the flow is
statistically stationary which is not a reasonable
assumption for a flow subject to time-varying
forcing19), Transient, or forced flows, will, in general,
contain richer spatial structures than statistically
stationary flows. Nevertheless, a set of modes can be
formed from an average of the correlation matrices from
several transient or forced time-series.

The averaged correlation matrix (which is the
counterpart of the matrix C in (12)) is formed from a
set of Q transient time-series, each comprising M
velocity field realizations; that is,

Q
> Vit V' t))

m=1

Ek{ = —_— (18)

oM

The 'non-stationary' modes derived from the eigenvectors

of C capture less energy than stationary modes as a
result of the averaging process in (18) and the
corresponding approximation of the velocity field is
sub-optimal. Consequently, a greater number of non-
stationary modes is necessary to characterize a forced or
transient flow than a stationary flow(19,

Since the non-stationary eigenmodes retain their
orthogonality properties and automatically satisfy the
flow boundary conditions, the effect of a control (which
may involve boundary or interior control) is to modify
the form of the reduced-order model describing the
evolution of the mode amplitudes.



The reduced-order model appropriate to a flow subject to
an external control is of the general form,

dA(f)
dt

=G(A®D),u() (19

Here, u(?) represents a time-dependent, possibly multi-
variable, control.

Emulation of Forced Flow Using Neural Networks

Explicit representation of the reduced-order
model (19) is generally not possible. The functional
form of G depends, implicitly, on the nature of the
external control and is generally unknown. The discrete-
time mapping between the applied control and the modal
amplitudes can, however, be emulated by a neural
network which can be trained with experimental data.
Analytic determination of the reduced-order model (19)
is therefore unnecessary. Historically, neural networks
have been used to approximate non-linear
mappings(1718), and to determine relationships between
sets of data, in situations where traditional modelling
methods have proved difficult to apply. Neural networks
are also applicable to the emulation of dynamical
systems, and they have been applied successfully to
predict the response of dynamical systems to control
inputs(19:20),

The basic processing unit of a neural network is the
neuron, shown in Figure 1. The neuron inputs are
weighted and summed and the resulting value is passed
to an activation function as an argument.

weights

)

Output
Activation function

(s)

Inputs

/

f(s)=s
linear

f(s) = tanh(s)
tan-sigmoid

Figure 1. Neuron Model.

A multi-layer feedforward neural network (or perceptron)
is formed by interconnecting layers of neurons
{Figure 2). If the network contains enough non-linear
neurons in its first two hidden layers, and has a linear
output layer, then the network can approximate any
non-linear function between its inputs and
outputs(! 719 A number of learning algorithms, which
adjust the network connection strengths, or weights,
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have been developed to train neural networks. One such
learning algorithm is the backpropagation method - a
supervised learning algorithm(!®) in which the error
between the network's output and the desired system
output is minimized by iterative calculation of the
equivalent errors of each of the neurons in the network.

Hidden Layers

Inputs Output Layer

Figure 2. Example of a Network Architecture.

Essentially, the multi-layer perceptron is a static
network and can be trained to approximate any algebraic
mapping. To accommodate neural emulation of the
mode-amplitude evolution, the reduced-order flow
model (19) is represented by an equivalent discrete-time
process described by a non-linear regressive model of
order p,

Alk+1)=T(AK), Ak =1),...,Ak - p),u(k)) (20)

If the output of a static network, trained to approximate
the process (20), is delayed and fed back to the network
input, then the network follows a discrete-time
trajectory and behaves like a dynamical system.
However, small errors in the network approximation of
(20) accumulate after each time-step, so that the
trajectory of the network output soon differs from that
of the actual system (which is governed by a
continuous-time differential equation). The relationship
between present and past system states, and the future
(one-step) state, is, however, predicted accurately if the
network is supplied with the actual present and past
system states. The neural emulator then has the form of
a one-step predictor,

Ak+1) =T (A(k),A(k=1),...,A(k - p),u(k)) (1)

which is trained to minimize the error measure

"A(k +1)—Ak+ 1)"2 22)

In this way, a neural emulator is trained to estimate the
future state of the fluid system (described by the mode
amplitudes), given the present system state and the
control input.



Modal Filterin

Neural emulation of the reduced flow model relies
on the input of the mode amplitudes measured from the
actual flow. A linear neural network can be trained to
output the mode amplitudes given a velocity field
measurement of the flow. The linear network emulates
the projection (14). However, there may exist situations
where only a partial set of velocity field data is
measurable.

An incomplete velocity field measurement is
represented by a vector of the form,

Vi) = 23)

That is, V" (#) is a vector of the same dimension as

V*(tk) The non-zero entries in V*(tk) are the

measurable velocity components which include the
contribution from the mean flow velocity. The

projection of V*(tk)-V* onto the modal basis results

in a set of M simultaneous equations for the M
unknown modal amplitudes at each time point,

M
V)=V w) =Y A )
i=1

for j=1,---,M (24)

Here, \|t;-k is a vector, compatible with V*(tk) whose
non-zero entries correspond to those of ;. In this case,

(W; W)= 3.

In principle, the system of linear equations (24) can
be solved by a standard algebraic technique.
Alternatively, a single layer linear neural network can be
trained to estimate the mode amplitudes given a partial
velocity field, v (1), k=1,2,..., as an input, and the
actual mode amplitudes (calculated by either a full
projection or direct solution of (24)) as a training
reference. The linear network is computationally fast so,
once trained, performs well in estimating the mode
amplitudes from an incomplete velocity field. The
velocity at each measurement point is accompanied by a
measurement error. However, this error becomes less
significant as the number of measurement points
increases. If a set of modes that adequately characterizes
the flow (with little error) is developed off-line using
full velocity field information, then the modal
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amplitudes can be determined on-line from an
incomplete velocity field measurement.

Design of an Adaptive Controller

The neural emulator provides a method of
estimating the dynamical response of the fluid (in terms
of the mode amplitudes) to a control input. The
emulator forms the basis for the design of a neural
control algorithm®1%20), The current mode amplitudes
are input to a controller neural network, which provides
a control output to the emulator and the actual fluid
system. The response of the fluid system to the applied
control at the next time step is predicted by the neural
emulator. The error between the predicted response and
the control goal is the predicted control system error.
However, the error at the controller output (rather than
the emulator output) is needed to train the controllerd?.
Because the emulator is a neural network, the predicted
control system error can be backpropagated through the
emulator (with the emulator weights held fixed) to give
an equivalent error at the controller output. This
equivalent error is used to adjust the controller weights
so that the control system error is reduced at the next
time step(!%:29), This control strategy is shown,
schematically, in Figure 3.

/ Error backpropagation :
]
Alk) Control | u(k) :
Network Emulator } +
Network R >
y r A+ goal
E
Mode Adk)
Amplitude
Filter
Flow
Figure 3. Neural Flow Control Scheme.
A Prototype Flow Control Problem
Basic Flow Model

To illustrate the utility of the aforementioned
control scheme, a numerical simulation of the control of
the unsteady velocity field of a low Reynolds number
two-dimensional flow past a circular cylinder was
undertaken. The cylinder flow was chosen as a prototype
flow because of the spatial and temporal complexity of
the downstream vortex street that forms as a result of a
near wake absolute instability7:12),



Simulated velocity data for an uncontrolled
stationary flow at Re=100 was generated by means of a
finite-volume solution of the two-dimensional
incompressible Navier-Stokes equations. The
computational domain, comprising 6600 cells, extended
approximately 35 cylinder diameters in the downstream
flow direction and 10 cylinder diameters in the transverse
direction. Outflow boundary conditions were specified as
a zero gradient for all flow variables normal to the
boundary. After some experimentation, the time-step
adopted for simulation was 600 steps per cycle of
vortex shedding oscillation. This arrangement yielded a
satisfactory Strouhal number for the flow. Orthogonal
decomposition of the limit cycle velocity field data
produced a set of modes, whose structures were similar
to the vortex structures in the wake. An ensemble of
twenty realizations of the velocity field taken from a
single flow transient was used for orthogonal
decomposition resulting in twenty mode/eigenvalue
pairs. The spatial structures (contours of velocity
magnitude) of the first four most energetic modes for the
prototype flow are shown in Figure 4. The higher order

modes are omitted because their eigenvalues are very

small, and so they contribute little to the flow energy
The modal distribution of energy is shown in Figure 5.

Figure 4. Spatial Structure of the First Four
Circular Cylinder Modes, Developed at Re=100.
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Figure 5. Circular Cylinder Mode Energies.

The reduced-order flow model derived from the
orthogonal decomposition of the velocity field is
represented by a set of quadratic ordinary differential
equations for the mode amplitudes

dA,

25
t

The constant coefficients in (25) are formed from the
various inner products in (16). Several of the
coefficients, however, rely on the calculation of spatial
derivatives of the velocity field and modes. Errors in the
evaluation of the spatial derivatives resulting from
irregular sampling of the velocity field lead to
inaccuracies in the model coefficients. To overcome this
difficulty, the model structure defined by equation (25)
is assumed and the coefficients identified from a time-
series of the modal amplitudes A;(z,), k=1...n
derived from the projection operation defined by
equation (16). Estimates of the time-derivatives of the
mode amplitudes at the sampled times are obtained by
means of a cubic spline fit to the mode amplitude
histories. The projection operation for the mode
amplitudes acts, essentially, as a noise filter, so that the
mode amplitude histories are generally quite smooth,
and their numerical differentiation is therefore
straightforward.

Substitution of the resulting derivative and
amplitude values in equation (25) yields a set of nM

equations for the (M +M*+1M*(M+1)) unknown

coefficients, from which least squares estimates of the
coefficients are obtained (the system of equations
corresponding to the first four modes is presented in the
Appendix). The asymptotic limit cycle behaviour
predicted by the reduced-order flow model is shown in
Figure 6. The amplitude and phase of the modal
response predicted by the reduced-order model compares
well with the mode amplitude response calculated
directly from the projection (16) (the reduced-order
model captures approximately 99.9% of the kinetic
energy of the original CFD flow model).
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Figure 6. Limit Cycle Behaviour of ODE Model.

Simulation of Adaptive Flow Control

The numerical generation of a large ensemble of
transient flow velocity fields (in order to develop non-
stationary modes applicable to a forced flow) is
computationally prohibitive. In addition, training a
neural network emulator with the backpropagation
method involves many cycles through the (possibly
large) training data set of forced velocity fields. To
facilitate a simple exposition of the flow control
strategy developed in earlier sections, an ad hoc model
of a controlled flow is presented in which it is assumed
that the modes developed from a single unforced flow
transient are similar in structure to the true non-
stationary modes developed from a large ensemble of
forced flow transients. To maintain consistency with the
flowfield boundary conditions embodied in the original
stationary modes determined for the unforced flow, the
control is assumed to derive from a time-varying point
source of strength u(¢) in the interior of the flow
domain. The effects of such a control are modelled
qualitatively by the addition of an appropriate source
term in the Navier-Stokes equations; that is,

ov

o in Q

=N(V)+Uu(t) (26)

subject to appropriate boundary conditions on JQ.

The corresponding reduced-order flow model derived from
the Galerkin projection of equation (26) is then of the
form

A M M M
K = t N i 5 3 .

=k +;ckA, +§j§=;ck AA; + (- O)u(t) (27)
This simple model of the control input/mode amplitude
interaction was used to investigate the behaviour of the
neural control scheme. Approximation of the temporal

evolution of the flow dynamics was achieved by
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integration of the equation set (27) subject to specified
initial conditions. Although somewhat artificial, reduced
models of this kind are believed to be capable of
modelling the main qualitative features of the flow
dynamics.

To train the neural emulator for the flow system,
the network was presented with the current system state,
A(t,), sampled from the output response of (27), and a

uniformly distributed random burst signal as a control
input. To simulate the effect of measurement
uncertainty, noise was added to the sampled system state
components. A three layer network of four tan-sigmoid
neurons in the first hidden layer, eight tan-sigmoid
neurons in the second hidden layer and four linear output
neurons provided an adequate approximation of the
input/output relationship for the flow. The network
performed well in predicting the system states when
totally different control forces were applied. Numerical
experimentation suggested that the largest sample
interval for an acceptable level of accuracy was
0.02Tghed (where Tghed is the period of vortex
shedding). As can be seen in Figure 7, the emulator
predicted the four mode amplitudes during a random
forcing period with reasonable accuracy.

Mode amplitudes

Non-dimensional time t/TShed

==== Neural prediction
~ Simulated system state

Figure 7.Neural Emulator Performance During
Random Forcing Cycle.

The neural controller comprised a three layer fully
non-linear network. To simulate the inability of the
controller to exceed a physical control limit, gains were
added to the output to limit the control amplitude to a
certain range. A network with eight first layer neurons,
eight second layer neurons and one output neuron was
found to be adequate.in controlling the reduced-order
flow model. The desired performance objective of
reduced residual mode amplitude was achieved rapidly
after switching on controller learning. The 'on-line'
operation of the control scheme is depicted in Figure 8.
In order to ensure that the untrained controller did not
produce a large initial control which would have made



achievement of the control goal more difficult, the
initial weights were made very small, so that the initial
controller output was near zero.

Preliminary observations of the control system
performance indicate that the steady-state behaviour of
the control is periodic but not harmonic. The steady-
state mode amplitude/phase relationships of the modal
responses also indicate suppression of vortex shedding
in the reconstructed velocity field despite the persistence
of temporal fluctuations in the flowfield.

Mode amplitudes

Non-dimensional time UTshed

{Control on at 3T and off at 6T)

Figure 8. Performance of the Neural Controller.

Conclusions

The design of an active flow control strategy
necessitates the characterization of both the spatial, and
temporal, non-linear features of the flow. Proper
orthogonal decomposition provides an efficient means of
characterizing the spatial structure of the flow by an
orthogonal set of modes. The modes generated by the
decomposition method satisfy the flow boundary
conditions. Modifications to the boundary conditions
introduced by a control are automatically accounted for
using 'non-stationary' modes derived from a transient
flow generated by the control. Temporal characterization
of the flow is possible using an reduced-order ODE
model to describe the evolution of the mode amplitudes.
In general, however, explicit representation of the
relationship between an applied control force and the
mode amplitudes is difficult to realize.

Neural networks are readily applicable to systems
where analytical determination of the system model is
difficult or impractical. A neural network, exposed to
appropriate experimental data sets of
control input/mode amplitude histories can be trained
to emulate the required input/output relationship
between the control and the fluid state (as represented by
the mode amplitudes). A second neural network can then
be trained to control the flow. Application of an
adaptive neural control scheme to a simplified model of
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a wake flow indicates the feasibility of the scheme.
More realistic simulations, however, involving the
generation of data for neural network training by CFD
methods, are likely to be computationally intensive. It
is expected that future research effort will focus on
experimental implementation of the control scheme and
the development of an adaptive neural network modal
filter which performs the dual role of mode estimation
and filtering under variation of flow parameters.
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Appendix

Four Mode Reduced-Order Model of 2-D Cylinder Flow

dA 7/dt = -1.66290429E-04 + 2.50169474E-03A 1
+ 1.42487956E-014 + 5.18359463E-024 3
- 2.58162018E-0244 + 3.56429413E-034 JA;
+ 1.70567213E-024 JA7 - 2.67112058B-024 jA 3
+ 8.70818833E-024 JA4 + 1.49046298E-03A2A
- 8.42083454E-024043 + 1.57876233B-02444
+ 1.26628945E-024 343 + 2.42933636E-024 344
+ 1.58450628E-024 4A4 + 9.998E-03u(1)

dAo/dt = 2.90175296E-05 - 1.31744505E-014
+ 6.23852739E-0442 + 6.02492351E-03A 3
+3.63752811E-0244 + 2.57676693E-024 JA |
- 1.28802553E-024 ]A2 + 5.86899819E-024 JA 3
+3.70566031E-024 JA4 - 1.57004226E-024 42
+2.42364347TE-024243 - 9.81767262E-024 244
-7.09051882E-03A343 - 1.29932356E-024 344
+5.18047642E-03A4A4 + 9.866E-03u(t)

dA3/dt = 7.85160994E-04 - 8.40895701E-04A
- 5.52677989E-06A> - 3.47421084E-02A3
- 3.15618142E-01A4 + 2.29766347TE-024 JA |
+ 6.70135725E-044 JA2 + 2.52875366E-03A JA3
- 3.00029222E-024 jA4 - 2.42665864E-02A A
- 8.54086958E-034243 - 3.55181276E-024244
-9.76471889E-03A3A3 - 3.76874519E-0243A4
+3.24691326E-03A4A4 + 6.0577E-03u(t)

dA 4/dt =5.538038 10E-05+2.65916998E-04A |
+7.16616167E-0445 + 2.43268601E-014 3
- 2.92261771E-02A4 - 5.46440118E-034 jA]
- 3.81723387E-024 A2 + 9.67050500E-034 JA 3
+2.17240367E-024 jA4 - 3.2798055TE-03A24
+5.05461587E-024 243 + 3.35363453E-034244
+2.94750410E-0243A3 - 1.51851997E-0243A4
- 8.30075377B-03A4A4 + 6.6324E-03u(1)



