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UNSTEADY AERODYNAMIC EFFECTS OF TRAILING
EDGE CONTROLS ON DELTA WINGS
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ABSTRACT D - structural damping matrix
E - structural stiffness matrix
Effective control of combat aircraft at high angles- h - hinge moment coefficient
of-attack requires the Flight Control System to operate to i - complex identifier V(1)
higher frequencies and gains. This increases the possibility K - pressure amplitude ratio
of excitation of the structural modes. This paper detailsthe p - pressure (N/m?)
results of tests carried out on a rigid, 55° leading edge q - degrees of freedom column matrix
sweep delta wing, half model fitted with a half spanelevon r - wing root bending moment coefficient
operated through a closed loop control system. The effects s - wing semi-span (m)
of steady elevon deflections up to 40° angle-of-attack are S - wing area of model (m2)
described. The unsteady pressures resulting from elevon ST\ - elevon surface area (mz)
oscillations at frequency parameters up to a value t - time (s)
equivalent to the first wing bending mode of a typical u - control deflection matrix
combat aircraft have been measured. The effect of the V - freestream velocity (m/s)
elevon oscillation on the elevon itself and on the bending x - distance from apex along centreline  (m)
mode have been estimated by calculating the unsteady X - state equation matrix
hinge and root bending moments about the wing root. The y - spanwise distance from root (m)
lower surface, unsteady elevon effects were found to be Y - control influence matrix
independent of incidence and frequency parameter. The
amplitude of response of the weak vortex on the upper o - angle-of-attack (degrees)
surface of the wing reduced rapidly with frequency 1 - elevon angle (rads)
parameter. Above an incidence of 10° the vortex Vv - frequency parameter (0s/V)
breakdown was above the wing and led to a further p - air density (kg/m3)
reduction in the vortex response. The vortex response ¢ - phase angle (rads)
lagged the elevon motion, n} - angular velocity (rads/s)
Subscripts
NOMENCLATURE
h - hinge moment
A - inertia matrix m - mean
B - aerodynamic damping matrix o - amplitude
C - aerodynamic stiffness matrix r - root bending moment
C, - normal force coefficient trans - pressure transducer
Cp - pressure coefficient (p/‘/szZ) wing - wing tapping reading
q - elevon chord (m) (6] - component at this frequency
n - resulting from elevon oscillation
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** Senior Lecturer
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INTRODUCTION

Attempts to increase the manoeuvrability of
combat aircraft have involved the investigation of high-
angle-of-attack flight for delta wing configurations. For
effective control and manoeuvrability in this part of the
flight envelope, the nature of the unsteady aerodynamics
produced by the complex, attached flow and vortex
dominated separated flow must be understood. Knowledge
of the level of interaction with the aircraft structural modes
and control system dynamics is also essential. Various
researchers (Rossl, Orlik—Rﬁckemannz, Lang et. al? and
Williams et. al.4) have suggested the Flight Control System
(FCS) would need to operate to higher frequencies and
gains in order to provide a stable platform under these
extreme conditions, thus increasing the potential for
structural interactions.

Consider the classical flutter equation for a
flexible structure,

Aj +(D +pVB)j +(E +pV2C)q =0

Each matrix A, B, C, D, E, is formed from the various
rigid and flexible modes of the aircraft, as given in fig, 1.
The column matrix, q, represents the degrees of freedom
and each generalised mode displacement. The equation
could also be written in state equation form, as commonly
used in FCS analysis, i.e.

q =Xq +Yu

Here q would represent both displacements and first
derivatives as separate elements, and u the control
deflections.

Flexible
modes

Control
modes

Rigid
modes

>

Rigid
modes

Control —— R

modes /

Flexible
modes

N

Fig. 1 - flutter equation matrix.
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In fig. 1, X is the effect of the control modes
(typically rotation about its hinge axis) on the aircraft rigid
modes (e.g. pitch effect), whilst Y is the direct control
effect on itself and Z is the effect on the flexible modes,
the main one of interest for the present work being the first
wing bending mode. Elements R and S are the effects of
the rigid and flexible modes on the control and T is the
effect of the wing bending mode on itself.

The research programme, of which the work
reported here is a part, was designed to produce an
understanding of the unsteady aerodynamic interactions
occurring between the control surface and main wing
aerodynamics and to determine values for R, S, T and X,
Y, Z in fig. 1, at high angles-of-attack for a typical combat
aircraft wing geometry.

The work presented in this paper was designed to
obtain the steady and unsteady pressures resulting from
steady trailing edge elevon deflections and from elevon
oscillations (up to frequencies equivalent to a typical first
wing bending mode for delta wing, combat aircraft across
a wide range of incidences). These results give an
indication of the characteristic responses of the flow types
experienced on these wing geometries. The actual influence
of the elevon on the various modes can be calculated by
multiplying the unsteady pressures from the rigid model
tests by the relevant mode shape, thus giving the matrix
terms X, Y, Z in fig. 1.

Other components of the programme will
determine the unsteady pressures associated with the
bending mode itself, and the effect on the elevon, to
determine elements S and T from fig. 1. The level of
structural excitations predicted from the solution of the
flutter equation for elevon rotation and wing bending
modes, i.¢. just elements S, T and Y, Z, will be compared
with the response to elevon oscillations of a model with
both degrees of freedom present. This will evaluate the
accuracy of the classical flutter equation at high angles-of-
attack where the flow is naturally very unsteady and large
scale interactions can occur.

This research is supported by the Science and
Engineering Research Council and British Aerospace
Defence Ltd., Military Aircraft Division, Warton, UK.

EXPERIMENTAL DETAILS

Pressure Tapped Half Model

A 55° leading edge sweep, rigid half wing was
constructed with 157 unsteady pressure tappings in - the
upper surface (fig. 2). The model had a 0.3m semi-span,
root chord of 0.528m, with a leading edge bevel on the
lower surface of 22° normal to the leading edge. Bach
tapping was formed by laying a stainless steel tube in the
surface of the wing, the tapping being formed by drilling



perpendicularly into the end. Each tube was connected to
a port on a multi-barrel Scanivalve® unit via a 1m length
of VYL-040% Scanivalve tubing.
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Fig. 2 - pressure tapping locations and section of model.

Using this form of tubing system introduced a
dynamic calibration effect between the pressure at the
surface of the wing, Pwing’ and the statically calibrated
pressure signal at the transducer within the Scanivalve®,
Pirans 1€+
if Pwing = Posin(ot)
then,

Pirans = K.posin(ot + ¢)

where K is the amplitude ratio and ¢ is the phase angle.
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Fig. 3 - typical tubing dynamic calibrations.
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The theoretical predictions of Bergh and
Tijdemans’6 were originally used to determine this
dynamic calibration, however, they did not predict the
effect with sufficient accuracy. Indeed, supposedly identical
tubes in the model were found to have different measured
dynamic calibrations, as shown in fig. 3. It was thus
necessary to calibrate each tube system individually using
test apparatus capable of producing oscillatory pressures.
Using this technique, the effect of the local static pressure
and local flow velocity over the tapping could not be
allowed for. By performing wind-on check calibrations,
these effects were found to be within the repeatability of
the results. The estimated accuracy of the dynamic
calibrations are £3% in phase and +5% in amplitude.

The model was fitted with two equal size trailing
edge control surfaces. The inboard elevon was held fixed
at 0°. The outboard control was constructed using a foam
core with carbon fibre skin, thus producing a stiff, low
inertia elevon. The control was actuated by a Pitman®
brushless d.c. motor and controller, through a closed loop
control system, giving an angle demanded by a PC (see fig.
4). The control angle, 1, was measured at the root of the
elevon using a Hall effect sensor, rather than from the
encoder used for feedback in the control system.

Permanent
magnet mounted

onwing sensor
4mm diameter
actuation rod
- - o -
Brushless
I Elevon PC I d.c. motor
requested angle
motor
angle
amplifier Pitman engloder
gains servo
- amplifier feedback

Fig. 4 - elevon actuation system.



Wind Tunnel Mounting Arrangement

The model was tested in the University of Bath,
2.13m x 1.52m, Low Speed Wind Tunnel. Due to the
tunnel boundary layer, the model was supported away from
the ceiling of the tunnel using a circular splitter plate (fig.
5). By mounting the model to a rotating balance plate
above the tunnel, it was possible to adjust the angle-of-
attack, o, to %90°. The lowest natural frequency of the
model when supported from the balance was 65Hz. No
significant structural excitation of the rigid wing was
measured during the tests.

main balance/turntable support
\ turntable for incidence variation
AN -
1 o 1
6 component tunnel
balance ceiling
= Ty =
motor .
encoder rotating
13 i | roof and
/ ) e =t W e e = e, support
i
Brushless d.c.
motor . s
circular splitter plate
with rounded
leading edge
aluminfum wing securing bracket
isolated from splitter plate and bolts

Fig. 5 - half model mounting arrangement.

Test Parameters

All the results presented were for a tunnel speed
of 30m/s, giving a Reynolds Number of 2.02x10° per
metre. Tests were performed for a=1+40°, negative angles
giving the lower surface pressures. The pressures for steady
elevon deflection angles of N=0° and +£10° were measured.

The unsteady aerodynamics resulting from elevon
oscillations at various frequencies were measured. These
tests can be related to the actual aircraft by matching the
frequency parameter values, v=ws/V. Since the flexible
mode of interest was the wing first bending mode (usually
the lowest frequency, wing structural mode, giving v=1.5
for a typical combat aircraft) it was necessary to oscillate
the elevon through a range of v=0.32 - 1.65. This equates
to a maximum elevon oscillation frequency of 25 Hz at
model scale. All oscillations were about a mean of n=0°,
with amplitude of 5°.
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ANALYSIS OF UNSTEADY PRESSURES

Assuming a sinusoidal oscillation of the elevon, n(t),
where,

n) = ngsin(wt) +ny,

and considering only the pressure component at this
frequency, Cpm(t), then

Cpm(t) = Ci,osin(mt +0) + Cpm

A complex Fast Fourier Analysis of both the elevon angle
and the unsteady pressure produces resuits of the form

W =/ +ig

nv) =n'w) +in” W
A transfer function between the unsteady pressure
component and the elevon at frequency parameter, v, can
be formed, i.e.

C
P _ .
-ﬁ-(v) = CPT\(V) + 1Cp 1,‘(v)
where v = o8
v
or in polar form:
C Cp
—L2(v) = —sin(9)
n 0
C
where Po = |C 2, Cp%
o Py U
C
¢ = tan_l_ﬂ
CPTI

Hence, the pressure amplitude is non-dimensionalised with
elevon oscillation amplitude, (Cpolno), with a phase angle,
0, between pressure and elevon.

A program was written to produce the required
analysis. It applies the dynamic tube calibrations and
performs a Fourier Analysis on both the elevon angle and
the unsteady pressure coefficient. By dividing the complex
FFTs, the transfer function is obtained. A flowchart of the
program is given in fig. 6.

Rather than present values for the elements in the
matrix of fig. 1, this paper shows values for the unsteady,
aerodynamic hinge moments acting on the elevon and for
the unsteady aerodynamic, rigid wing, bending moment
about the wing root calculated by integrating the surface
pressures as defined below:



Integrating over the elevon,
S

n
|
hy) = —— [ C, (x -x) d
i 231%'([ o F
Sn
- [ Coptx = m) dag
0

Zhen
or in polar form,

hn(v) = h, sin(¢y,)

and over the whole wing and elevon,
S

S
1 "1
(V) =——1 C, ydA + i— | C .y dA
) 23c-([ pnY IZSc-([ Py
or in polar form,

rn(v) =r, sin(¢,)
All the unsteady results will be presented in polar form.
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ILoad a block of data - 5 pressures, elevon angle, speed l‘—

Apply static calibrations

Subtract wind-off zeroes, tunnel static pressure
correction and non-dimensionalise with dynamic press.

Write means
to file il

Calculate complex FFT | FFT_BIN.C
for elevon angle

JFor each of the five pressures je

I Calculate complex FFT FFT_BIN.C
Correct phase angle of FFT for

acquisition board effect

Correct FFT for tubing effect TUBE_REG.C

Y

Calculate Transfer function at elevon]
oscillation frequency

next pressure
next block of pressures/elevon data

A
< STOP )

Fig. 6 - flowchart of data analysis program.

The use of a half model implies symmetry of
elevon motion and aerodynamic response about the wing
root, and hence the mode considered is symmetric elevon
deflection with resulting symmetric vortex response. It is
known, however, that significant asymmetry of steady
vortex breakdown location can occur at high angles-of-
attack. The use of a half model can not allow for this

effect.

STEADY PRESSURE RESULTS

Before considering the unsteady pressures it is
important to establish the steady flow phenomenon and the
effects of fixed elevon deflections.

The upper surface pressures at 0=10°, 12.5°, 15°,
20°, 27.5° and 35° are presented in fig. 7.
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Fig. 7 - upper surface, steady pressures.
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The location of the vortex suction on the wing can
be seen from the strength of the pressure levels in fig. 7.
As o. increases, so the suction and hence vortex sirength
increases. Above 0:=12.5°, the vortex suction towards the
trailing edge begins to diffuse in the y direction and
decrease in strength, suggesting the vortex burst is over the
wing. The burst point continues to move towards the apex
as o increases. Eventually the vortex is no longer evident
on the wing and the pressures resemble those present on
the leeward side of a bluff body (0=35°)

By integrating the steady pressure results at fixed
angles-of-attack and elevon angle, n=0°, the normal force
coefficient, Cy, given on fig. 8 was obtained. The wing
stalls at 0=28°, when the vortex burst is at the apex of the
wing.

1.5
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-0—=@
.qv“'"_'—"
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Fig. 8 - normal force curve.

Fig. 9 shows the variation with x of C min At
these o.. From these results and surface flow visualisation,
the following characteristics of the flow were determined.
The vortex breakdown location appears on the wing
between 0=10°-12.5°, The relative weakness of the vortex
(compared to more highly swept wings), as shown by the
Comin Values, makes it difficult to accurately locate the
position of the burst, Slender body theory predicts that, for
an unburst vortex, the suction under the vortex should
increase at each location with o At o=12.5°, the Cpmm
values in fig. 9 display a 'kink' at x=400mm, and suggests
this as the location of the burst point on the wing surface.
In front of this point the value becomes more negative,
whilst towards the trailing edge, i.c. under the burst portion
of the vortex, the value increases to the value present at
0=10°. The surface contours also begin to diffuse in the y-
direction at this value of x (fig. 7). A similar analysis at
0=15° suggests the burst point is at x=260mm, The
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variations in C .. closer to the apex is due to a lack of
pressure tappings in this region.

0 100 200 300 400 500

X {mm)

Fig. 9 - peak vortex suction variations.

Fig. 10 shows in more detail the vortex burst
effect on the pressure distributions, by considering the row
of tappings at x=375.5mm. For 0=12.5°, the suction peak
under the primary vortex is stronger than at a=10° and is
slightly inboard of it. At @=15°, the vortex burst is in front
of this station, resulting in a much lower suction level and
a broader peak. Above 0=20°, it is difficult to locate the
burst point, but it appears to continue to move closer to the
apex.

-2.0 I
Main wing, x = 375.5mm
-18 o aE10° [y
M /V/ZA
“10 if

Upper / ~v.
C surface ° Q.Y
-0.5 A /

x..-—""X:;: o
~8./
0.0 b ! =3 o e R~ ~Q-
9Lower - '9'&335 B9
Surface

0.0 0.2 0.4 0.6 0.8 1.0

Y/ Siocal

Fig. 10 - pressure distributions for burst and unburst vortex.



The lower surface pressure contours at o=10°, 15°
and 20° are given in fig. 11. These are as expected for
fully attached flow, although the vortex on the upper
surface appears to have an effect on the pressure
distribution over the lower surface of the elevon.
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Fig. 11 - lower surface pressure contours.

The effect of elevon deflection on the surface
pressures can be seen from fig. 12(a) to (). These show
the incremental pressures, AC_/Am, for a mean elevon
angle, N=0°. Counsider first the upper surface. At a=10°, a
positive deflection causes increased suction under the
vortex (AC_ is negative under the suction peak associated
with the vortex). These change could be associated with
either a change in the vertical position of the core of the
vortex or from modification of the vortex strength. It is not
possible to accurately locate the core from the results,
using for example the half width technique (Greenwe117)
since the attached flow contribution is substantial. Near the
hinge line, the elevon appears to cause a large effect on the
attached flow as well as on the vortex.

As o increases, the elevon effect on the upper
surface reduces. Movement of the burst point at o=15° can
be seen from the clustering of the contours at x=250mm.
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As the burst point moves over a tapping in response to a
change in m, there is a sudden change in Cp, particularly
near the suction peak and this produces the pattern seen on
fig. 12(b). The elevon does not produce as large an
incremental loading on the burst portion of the vortex as
for the unburst vortex, e.g. compare results at x=400mm
for o=10° and 15°.

(a) upper surface, o=10° (b) upper surface, a=15°

500 500 R
400} A 00} /)
4 / /
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(c) upper surface, 0=20°
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Fig.12 - incremental pressures for steady elevon deflections



For the lower surface, the effect of A7 is localised
near the hinge line and elevon and the incremental
pressures are constant with o,

Spanwise integration of the incremental pressures
to give the incremental longitudinal loadings, further
demonstrates these points (fig. 13). The lower surface
loading is constant with o, whilst the upper surface reduces
under the burst portion of the vortex, but is constant with
o. for the unburst portion. Again, the change in burst point
location with 1 is illustrated by points 1 (0=15°) and 2
(0=12.5°) on the figure.
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Fig. 13 - spanwise integration of incremental pressures.

UNSTEADY PRESSURE RESULTS

In order to determine the effects of the elevon
oscillation on the wing bending mode and the elevon itseif,
it is necessary to consider the variation of the resulting
unsteady pressures over the range of o and v tested. Any
variations with these two parameters would influence the
need for scheduling of the terms within the matrix in fig.
1. The following section discusses the upper and lower
surfaces separately though interaction between them does
occur,

Fig. 14 shows the amplitude (C o/M,) and phase,
¢, between the unsteady pressures and elevon motion, at
o=10°, for v=0.32, 0.98 and 1.65. By plotting (C oMy
the phase angles become easier to interpret, thh $=0°
being in phase and positive ¢ being a phase lead. The
amplitude of vortex strength oscillation is greatest under

the vortex peak and lags the elevon motion (¢ is negative).
The phase lag under the main vortex suction is nearly
constant with v. It is important to remember that the
instantaneous effective angle of the elevon, Mo is
dependent on both 1 and 1, since the angular velocity of
the elevon produces an aerodynamic angle, i.e. assuming
small angles,

(x - xp) (D

v

This causes the effective shape of the elevon to be curved
and the phase lead of M, compared with n(t) to increase
as v increases. For example, when v=1.65, N, leads n(t)
by 15°. Hence, the vortex lag relative to M., is actually
increasing with v although appearing constant with n(t).
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Fig. 14 - upper surface unsteady pressures, 0=10°
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At v=0.32, the unsteady pressure contours are
similar to the steady incremental values of fig. 12(a), i.e.
the gain is 1 (gain being the ratio between the unsteady
amplitude at v and that at v=0). The gain towards the apex
of the wing falls rapidly as v increases, i.e. the vortex
response to rapid elevon motion is reduced.

In fig. 14, at v=0.32, there is a region centred at
x=380mm, y=160mm, which extends towards the apex,
where the pressures lead the elevon by a significant
amount. This zone lies along the primary attachment line
of the shear layer from the leading edge separation forming
the vortex, and is due either to a delay in the effect of the
elevon motion on the lower surface shear layer being
transferred round to the surface or from the alteration in the
vortex position and strength above the wing.
Reconstruction of the total pressure levels (by adding the
mean to the unsteady component at the elevon frequency)
suggests there is a very slight lateral motion of the vortex
which lags the elevon motion. The region of phase lead is
also present to a lesser extent at the other frequency
parameters shown.

At a=15°, v=0.32 (see fig. 15), the dynamic burst
point motion can be observed from the amplitude contours
at x=300mm, and there is again a region of phase lead at
the primary reattachment point near the burst location.
Compared to the steady incremental loadings from fig.
12(b), the motion of the burst point is reduced in the
oscillatory case (gain less than 1 in this area) and the gain
for the unburst portion of the vortex is consequently much
lower than one. The gain reduces rapidly with increasing
o.. The phase under the vortex core is constant with v, as
was the case at a=10°. The region of phase lead tends to
consolidate at the primary attachment near the burst point
of the vortex. These trends are also present at higher a.

Summarising the vortex response, as the burst
point moves towards the apex the amplitude of the
unsteady pressures, associated with the vortex suction peak,
reduces rapidly (i.e. with increasing o). The lags compared
t0 N,ep 18 DOt dependent on the burst position.

Returning to fig. 14, at =10, the gain for the
region near the hinge line and on the elevon remains near
one throughout the range of v tested. At o=15 (fig. 15), the
unsteady amplitude on the elevon are also not affected
greatly by the reduced frequency, v within the range
considered, although the amplitude levels are lower than at
0=10°. The phase angles are similar for both angles-of-
attack and increase with v. The unsteady pressures on the
clevon do not follow the trends of the vortex response.
This suggests the elevon motion is having a significant
effect on the attached flow in this area, rather than on the
vortex itself.

Fig. 16 gives the lower surface unsteady pressures
for v=0.32 and 1.65. The amplitude is plotted as +(Cp0/n0)
since a positive deflection causes a positive increment in
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C... The effect of elevon oscillation is concentrated around
the hinge line. At v=032, the pressures are in phase with
the elevon and the amplitudes are similar to those for
steady elevon deflections (fig. 12(d)). At v=1.65, the
amplitudes are very similar to those at v=0.32, but the
pressures now tend to lead n(t). These lower surface trends
are repeated at other incidences.
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Fig. 15 - unsteady upper surface pressures, 0=15°
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Fig. 16 - lower surface unsteady pressures, 0.=10°.

UNSTEADY HINGE MOMENTS

The unsteady hinge moments can be used as a
measure of the diagonal control term in the matrices of fig.
1, i.e. the effect of elevon rotation on the elevon loads, Y.
The values, from integration of the unsteady pressure
results, incorporate the trends discussed in the previous
section, By performing this integration to give an overall
term, it is possible to determine the relative importance of
the characteristics of individual regions and pressures with
o and V. Although the hinge moment is only produced by
the pressures over the elevon, these are influenced by the
interaction with the rest of the wing. The hinge moments
are broken down into contributions from the upper and
lower surfaces.

Fig. 17 shows the hinge moments, in terms of
amplitude, ho, and phase, ¢h, in relation to the elevon
motion. The steady (v=0) incremental hinge moments are
shown for comparison. The lower surface contribution to
hinge moment is double that of the upper surface and

increases with o.. The h 1 values tend towards the steady
values. The phase, ¢y, increases linearly with v and is
similar for all o.
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Fig. 17 - unsteady hinge moments.

342



For the upper surface, ho’u reduces with o, but is
reasonably constant with v and again correlates with the
steady values. The ¢h,u are greater than ¢y 1 though the
trends are otherwise similar.

Combining the two surface effects, ho,t is constant
with o and v whilst phase increases with v but is
independent of incidence. This is largely due to the
dominant effect of the lower surface. The increase in h, ]
with o counteracts the reduction in ho,u. These trends in
unsteady hinge moment would require little scheduling in
an FCS system (for the range of o and v considered) and
could be easily represented in the matrices. The steady
results also give a good indication of the unsteady
amplitudes.

UNSTEADY ROOT BENDING MOMENTS

The unsteady root bending moments give an
indication of the effect on a wing bending mode due to
elevon rotation. Since the root bending at a point depends
on the 'y' location, the regions near the tip and elevon have
a large effect on the resuits, whilst those towards the apex
where both y and (Cpolno) reduce are of less importance.

The root bending moment results are again split
into the upper and lower contributions. The characteristics
of these results are very similar to the hinge moments. The
lower surface amplitude and phase (fig. 18) are
independent of o up to a=20° r, J being constant with v
whilst ¢r,l increases with v. For the upper surface, Tou
reduces with incidence whereas ¢r’u does not alter greatly
with o except at 0=35° where the vortex has broken down
completely leaving a bluff body type flow. Unlike the
hinge moments, the upper surface phase is less than that of
the lower surface, since the response of the vortex tends to
lag the elevon angle. This is partly countered by the large
phase lead on the elevon itself,

Both the upper and lower results tend toward the
steady incremental bending moment effects at low
frequency parameters.

These surface contributions combine to give a total
root bending moment of constant amplitude with v, but
which reduces with o (except at a=35° where the leeside
flow has changed significantly). The phase increases with
frequency parameter. The phase is lower than for the total
hinge moments since the pressures in front of the elevon,
which now contribute to the term, have an increasing
phase lag relative to the pressures on the elevon.
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CONCLUSIONS

For a 55° leading edge sweep wing, there is a
relatively weak vortex present over the upper surface which
bursts in front of the trailing edge for a)10°.

The gain of the vortex response to elevon
oscillation (ratio of amplitude of unsteady pressure
component to steady incremental results) reduces rapidly
with frequency parameter for both a burst and unburst
vortex. The phase lag also increases with v when compared
to the actual instantancous aerodynamic elevon angle,
which leads the structural angle.

The unsteady amplitude of the attached flow on
the lower surface is independent of both o and v, whilst
the phase lead increases with v.

These effects combine to produce constant
amplitude unsteady hinge moments (a measure of elevon
effect on itself) with an increasing phase angle with v. The
unsteady root bending moment reduces with incidence and
the phase angle increases with v, but at a rate lower than
the corresponding hinge moment results. The vortex
response affects the trends in the root bending moment
results, but less so the hinge moment results which appear
to be produced by the effect of the mode on the attached
flow for both the upper and lower surfaces. The amplitudes
of both the hinge moments and root bending moments
agree with the steady incremental moments.

These results give an indication of the likely effect
of the elevon rotation mode on any rigid roll or bending
modes. However, they only give an indication of the
structural excitation. The actual structural response depends
on the aerodynamic effect of the wing bending mode and
the resulting interaction between the two modes, i.e. the
other terms in the matrices of fig. 1.
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