GRADUATE AIRCRAFT DESIGN EDUCATION

Dr J P Fielding, MSc, PhD, CEng, FRAeS, MSaRS
Senior Lecturer, Head of Design Group
Acting Head of the Department of Aerospace Technology
College of Aeronautics
Cranfield University
Cranfield, Bedfordshire
England, MK43 OAL

<u>Abstract</u>

Cranfield believes that the best way to learn about Design is to do it!, and that group desian projects are powerful means of providing practical experience. This is not unique, but what is unique the practical detail achieved in the MSc course. Cranfield's approach is invest at least 3 man-months staff work by in preparation of each project, before it is presented to the This defines the students. aircraft's shape, aerodynamics and mass, and is equivalent to work done by Projects Offices in Industry. Students who wish to perform their own conceptual designs may do so for their individual research theses which are the other main activities of the MSc course.

Some 25 students allocated the responsibility for the design of a major part aircraft. the responsibilities take the form а major structural component, a flying control surface or a mechanical system such as fuel, or the flying control system. Reliability, Maintainability, performance and cost are overall design topics also studied students. This paper describes the design of an entry-level executive jet, as an example of the group design project.

The paper also describes the other elements of graduate education at Masters and Doctoral level.

Introduction

Aircraft design is synthesis of many disciplines, each of which must understood and correctly applied to achieve the correct balance essential for optimum performance. It always involves compromises between requirements οf the different disciplines involved, and the perspectives of the specialists concerned. Fig. 1 sketches of aircraft designs that might be produced by engineers from different disciplines. Α competent aircraft designer must know enough about those specialisations so that he or she will be able to balance arrive at a whole them to aircraft optimum design, rather than one that may be optimum from, say, a structural aerodynamic view-point. judgement required to achieve balance requires this practical design approach that the hallmark been has aircraft design teaching Cranfield since the Aircraft Design course was established one of the original Cranfield graduate courses.

This occurred in 1946, when the College of Aeronautics was

founded on a site some 50 miles north of London. The original College had it's own wellequipped airfield and fleet of research and teaching aircraft. These facilities formed the bed-rock of Cranfield's practical aeronautical activities and have been enhanced by the acquisition of progressively modern more aircraft and other facilities. Cranfield's original objective was to provide a World-class school of post-graduate aeronautical teaching research. The College expanded into many other areas engineering, science and management studies and received it's University Charter 1969, under the name in of Cranfield Institute of Technology. The name was again changed in 1993, to Cranfield University, to counter some mis-understanding in the UK, as to what was an Institute of Technology. The College of Aeronautics remains in existence as one of the major schools the on Cranfield Campus.

The title of the Aircraft Design course was changed to become "Aerospace Vehicle Design", to reflect expansion into the field of spacecraft design. The basic tenets of the aircraft design education process, however, remain those described by the Author's predecessor, Professor D Howe, in ref. 1, namely:-

- "a) the properly equipped designer must be able to achieve a correct balance between synthesis and analysis and so achieve an optimum result in the most economic manner.
- b) he must be aware of the importance of working through the task to the final details.

The need for a balanced outlook and almost intuitive approach to a problem has often given rise to the assertion that good designers are born, not made. There may be some truth in this but extensive training is essential in the context of a complex technology, and correct teaching can exploit the latent potential of design ability.

A student must have a broad and deep understanding of both theory and practice before he is capable of tackling design effectively. work expanding continuously frontiers of aeronautics imply that text books rapidly become outdated, even if they exist at all. Therefore the staff must find ways of keeping up to date and at the same time not lose sight of fundamentals and real practice. George Bernard Shaw once wrote that "those who can, but those who can't, do, teach". To instruct in design effectively one must both "do and teach" and ideally the student should "do" as well! course structure The environment at Cranfield have been built up to enable this to be achieved."

This philosophy has been proved to be sound, and has not changed since 1946, although the means of achieving those aims use modern tools, as will be shown later.

Course Structure

Figure 2 shows a summary of the Cranfield graduate aircraft design courses, the main one being the 12-month MSc Course in Aerospace Vehicle Design. This is an intensive course and requires a high input-standard in terms of prospective students' qualifications and experience. The usual entry is a good-class honours degree in Aeronautical or Mechanical Engineering, preferably with a

number of year of post-graduate experience. Indeed, average students' age is in the late 20's. Many students have degrees in such subjects as Physics, Maths or Computing and wish to convert aeronautical engineering These students can course. attend the preliminary year course (PY) and then progress onto the 12-month MSc course. The preliminary year course is by some used qualified aeronautical graduates, or students with relevant engineering diplomas. Preliminary year students usually form the core of the design team in the MSc year.

An MSc course option in Structural Design also exists. This differs from the General Design option in that students follow lectures and perform research most relevant to that subject. Rather than participating in the group design project, а extensive individual research topic is performed and examinations are taken on the lecture material.

increasing number of students are following the PhD Some of these are recruited after completing the MSc course, but the majority directly from other Universities, or from Government or Industrial Establishments. Most of the PhD students are members of the Conceptual Design Research group and activities include:-

- i) The development of multivariate design synthesis and optimisation methods for canard delta, agile fighter, A/STOVL, UMA, Supersonic Transport and laminar-flow aircraft.
- ii) Multi-disciplinery preliminary design methodologies for conventional transport

- and blended wing/body
 aircraft.
- iii) Investigation of configuration aspects of advanced airframe systems.
- iv) The development of
 methods to improve the
 r e l i a b i l i t y ,
 maintainability and
 survivability of civil
 and combat aircraft.

Other PhD students are studying topics in the structural design areas, particularly in the use of composite material structures.

<u>Lecture Courses and</u> <u>Laboratory Work</u>

The Preliminary Year

The preliminary year intended as an introduction or refresher in aeronautics, and is pitched at the final year undergraduate level. There are lecture courses in areas such as Maths, Computing, Structural Analysis, Aerodynamics, Aeronautical Engineering, Electronics, etc. These are augmented by laboratory work and the most important feature - individual design projects. Students will complete three progressively more complex design projects during the They will year. perform conceptual and detail designs, which are then stressed, and reports produced. The first project might be a relatively simple mechanism, the second a fuselage frame and the third a complete flying control surface. Students are taught, and use, Computer Aided Design computer structural analysis tools.

The MSc Year

The lecture programme is carried out over two, ten-week terms, in parallel with the group design project, (see below). The lecture syllabus has a large mandatory core, with some options, depending on student interests. The total lecture hours vary between 240 and 300 hours in the following subjects:-

i) General and Project Design

Design for Operation including noise, V/STOL,
Airports, Reliability,
Maintainability and
Weapon Systems
Initial Aircraft Design
Design of Major Components
Computer Aided Design
Loading Actions

ii) Structural Aspects
Aerospace Structural
Considerations
Structural Stability
Finite Element Methods
Structural Optimisation

Fibre Reinforced Plastics Fatigue and Fracture Structural Dynamics Aeroelasticity

- iii) System and Allied Areas
 Aircraft Systems
 Control Engineering
 Aircraft Avionic Systems
- iv) Additional Subjects
 Aircraft Accident
 Investigation
 Fixed Wing Aircraft
 Performance
 Theory of Flight

The final topic is another unique feature of Cranfield Courses. Students are given lectures in aircraft performance, flight mechanics and flight test methods, and then complete 8 flight tests in the College's own specially-

equipped Jetstream aircraft (fig. 3). The theoretical knowledge is thus reinforced by flying in the aircraft during the flight-test manoeuvres and is then further reinforced by on-board flight acquisition, and subsequent analysis. The latter activity has been recently enhanced by incorporation Cranfield-designed on-board computerised data acquisition and display system.

Students, however, only act as flight-test engineers, they do not actually fly aircraft. This deficiency has been remedied by student light flight aircraft test experiments in the College's 2seat Beagle Pup aircraft. Each student undertakes two flights in the two-seat aircraft. Cranfield pilot demonstrates and tutors the student in level flight, climbs, turns descents. The student then flies the aircraft second flight and conducts a simple flight test experiment, either associated performance or flight dynamics.

These flying activities are expensive, but are part of the course and contribute significantly to the development of a well-rounded design engineer.

Individual Research Investigations

These may be theoretical and/or experimental and are drawn from a range of topics related to the course and suggestions by the staff, sponsor or students themselves. Members of staff are appointed as research supervisors for each student within a few days of the start of the academic year. There is a close relationship between student and supervisor, reflected by the average student/staff ratio of around 9:1.

The experimental research is aided by the aircraft, some 20 wind-tunnels, an extensive structural test laboratory, metal-work workshops and a composite component fabrication laboratory.

There is a powerful computer facility with networked PCs, workstations and main-frame computers.

The research investigations comprise 45% of the MSc students', final marks and are assessed by research theses.

Topic areas are similar to those performed by the conceptual design research group, mentioned above, but extend to conceptual design, structural design, fracture and fatigue, composite structures and advanced airframe systems.

The MSc Group Design Project

Background

The Cranfield group project is unique by virtue of the amount of preparatory work done by staff before work is started by the students. All other known design projects start with the students being given aircraft specification. the They then perform a conceptual design, leaving little time available for detailed design. With the Cranfield method, this work is done by the staff, thus enabling the students to start much further down the design process. They thus have an opportunity to get to grips with preliminary and detail design problems, and become much more employable in the process. The Cranfield project method also allows students to use modern design tools such as CAD, finite elements, laminate analysis aerodynamic and modelling. The group design project is undertaken by all the aerospace vehicle students and is a major feature of the MSc course, accounting for

half almost of the final assessment. Each year the students work in teams on the design of a project aircraft. substantial part of the airframe, system, а installation or performance aspects is allocated to each student as his or her responsibility.

The aircraft chosen as the subject for the work are representative of types of current interest to industry. They usually incorporate some feature which extends the bounds of existing practice, as an applied research activity. This excites the interest, enthusiasm and ingenuity of the students and forces the staff to keep up to date.

Civil and military aircraft are investigated in alternate years, so that the whole of the is catered for. industry Recent examples of design projects included large small business-jets, a number of medium-sized jet transports 500-seat short-haul and Fig. 4 shows the airliner. project programme for the last aircraft, the A-90 which is typical of all projects. Military aircraft included basic and advanced trainers, close-air support aircraft, an tactical advanced fighter, supersonic strike V/STOL military aircraft and transports. Fig. 5 shows a typical drawing from the T-91 maintainability CAD trainer The 1986/7 project saw model. the design of a 2-stage to orbit space launcher, which is shown in Fig. 6 and described in Ref. 2.

The remainder of this paragraph gives a brief description of the E-92 executive jet project, as an example of a civil aircraft project.

Project Background It was decided to design an executive jet in 1992/3, as such aircraft have an important role to play the World market aircraft. The need for executive aircraft has been satisfied by designs ranging from piston aircraft, to large high-subsonic aircraft such as the Gulfstream IV. Cessna and Swearingen recognised the need for entry-level executive jets by the development of their Citationjet and SJ-30 designs. Their aim was to produce new aircraft with a purchase price similar to that of the turboprop Beech King Air, but with greatly enhanced speed comfort. These designs were made possible by the advent of the cost-effective, quiet and fuel-efficient Williams/Rolls FJ44 engine. The Cranfield Design was pitched between the Citationjet and SJ-30 in terms performance, but utilise significant amounts of advanced composite materials in its construction. This should lead to lower mass despite the more generously sized cabin interior.

The Design Specification

Interior Layout -There should be provision for 5-6 passengers with comfort standards equivalent to airline First Class passengers. aircraft should be capable of single - pilot operation, but a co-pilots seat is required. There should be beverage, baqqaqe and toilet accommodation superior to the SJ-30. The fuselage should have a door capable of loading a spare engine.

Performance - The following figures are based on ISA, sea level conditions.

i) The high speed Mach no. = 0.75

- ii) NBAA, IFR range with 3 passengers and 1 crew should be greater than 1800 miles (3245km)
- iii) Max operating altitude =
 43,000 ft (13.1km)
- iv) FAR take-off balanced
 field length to be less
 than 3300ft (1005m)
- v) FAR landing distance at max landing mass to be less than 2600ft (792m)

Cost - The acquisition cost
shall be no more than \$3.5M US
in 1994.

Group Project Programme The design process started with the conceptual design of aircraft by members of staff, in early 1992. This work was summarised in Reference 3 which was given to 25 students in October of that year. structures student was given responsibility for the detail design, stressing and fatigue analysis of components such as the forward fuselage, outer wing, tail, etc. Some students designed airframe systems such fuel, flying controls, engine installations, More global design tasks were performed by other students in areas of flight deck layout, avionics installation, reliability and maintainability, aerodynamic performance and estimation.

The project was managed to a demanding eight-month programme by means of weekly project meetings, where students reported progress, received advice and instructions for subsequent work. The most important function of these meetings was that of a forum where design conflicts were resolved.

One of the dangers of individual responsibility is that of parochialism. student designing, say, portion of fuselage learns a great deal about that, to the exclusion of the rest of the aircraft. The group project meetings qo some way reducing this problem in that aspect of the whole aircraft design is discussed in turn in project meetings. There were some very lively discussions about interfaces, particularly in the forward fuselage area. Fig. 7 shows a computer aided design (CAD) model of this very crowded A suitable compromise area. was agreed between students responsible for fuselage structure, rudder pedals, nose landing gear, electrical power, avionics and flight - deck layout.

The knowledge gained during lectures, project meetings and discussions with members of staff was augmented by information from aircraft manufacturers. (See Fig. 8 for project inputs).

Vital information on the project engine was given by Rolls-Rovce and realistic information was received from avionic systems manufacturers. An extremely useful group visit was made to Luton airport, where MAGEC's aircraft maintenance was examined. This visit was followed by one to British Aerospace, Chester. high-lights were close The examinations of the BAe 800 and 1000 production lines and those of the Airbus wing assemblies.

The programme ended in May, 1993 with the submission of detailed project theses, which contain descriptions of the designed components, supporting analyses, drawings, CAD plots, and Finite Element results.

The students made a verbal presentation of their work to a group of external examiners and

Industrialists.

The design was also used by Flight Dynamics students, who successfully the aircraft's simulated handling characteristics. This activity presages further of integration teaching activities. It is hoped that, in the future, students will be able to "fly" the project design in Cranfield's Flight Simulator, during the design evolution, so that handling characteristics will be part of a "Closed-loop" design process.

<u>Description of the Final</u>
<u>Design</u> The aircraft was designed using state-of-the-art materials, the majority of the structure being made from aluminium alloys, with some composite components.

Figure 9 shows a shaded image of the Computer-generated surface model of the project. The surface model was generated using EDS Unigraphics software.

modestWing - A forward combined with advanced laminar flow wing sections enable Mach numbers int the region of 0.75 to be achieved. The aspect ratio is 8.0 and is sufficient there the wing tankage in fuselage at spec. payload for a range of 1800N miles with The high aspect reserves. ratio improves fuel burn and airfield performance. Double-Slotted Fowler flaps, moderate wing loading, spoilers and the high aspect ratio give adequate field performance.

The absence of slats, the forward sweep wing, the aerofoil sections and small chord should allow a significant percentage of natural laminar flow.

The particular laminar-flow section used has a very high zero-lift pitching moment. This was aggravated by the initial fuselage shape, giving significant trim drag, which

would negate the effects of the drag reductions from laminar flow. The fuselage was reshaped to limit this effect, but it is unlikely that Cranfield will use the section again. The wing structure was designed by two teams, one with a composite, and one with metal construction.

Finite-element models were made using the NASTRAN system and showed that the modest forward-sweep of the wing did not result in aeroelastic problems.

Fuselage - The cross-section is generous for this class of aircraft, with a recessed aisle to give more headroom to move round the cabin. The baggage/toilet compartment is behind a privacy bulkhead, above the wing carry-through structure.

The interior is shown in Fig. 10. The environmental and flying control system components run under the seat arm-rests and under the floor.

The toilet compartment is rather restricted for large passengers, and some re-design will be necessary. The fuselage structure is of the conventional aluminum semimonocoque type. Fig. 11 shows an exaggerated - deflection finite - element model of the forward fuselage. The passenger door and emergency exit doors cut-outs required reinforcements maintain to structural continuity. rear pressure bulkhead also acted as the wing rear-spar pick-up. The area aft of the bulkhead was the primary equipment bay. The environmental control system hydraulics and electrical power systems were designed considerable detail. These systems occupied the equipment bay, together with a rear fuselage fuel tank and space provision for an optional auxiliary power unit. The main landing gear retracts under the forward part of the equipment bay and the engine pylon front spar passes through it. The baggage compartment is under the rear part of the equipment bay.

Powerplant - The aircraft uses a pair of rear fuselage mounted Williams/Rolls-Royce FJ44 engines. They are mounted high on the fuselage to minimise wing interference effects.

The engine nacelles use easily-opened panels to ease engine maintenance. The engine pylon front spar passes through the fuselage to limit fuselage frame bending moments, whilst the lower-loaded rear spar is broken at the fuselage side, to facilitate equipment-bay access.

Tail Unit - The aircraft utilises a cruciform tail arrangement. This takes the tailplane above the jet efflux and increases its moment arm, due to the sweepback of the fin. This arrangement does not have as severe "rolling due to sideslip" effect as does the high Tee arrangement.

The fin was designed to be constructed of carbon-fibre composite material. component was analyzed by using Cranfield's laminate analysis subsequently programs and checked using finite-elements. simple dynamic fin-tail showed that analysis redesign would be necessary to improve dynamic structural stability. The tailplane was in conventional designed aluminium alloys and utilised a machined centre-box.

The high speed of the aircraft led to the use of mechanical assistance to the flight control system. Setback hinges and either servo or balance tabs are used on the elevator, rudder and ailerons.

Landing gear - Single wheels are fitted to each main leg

which retract and inboard into the fuselage fairing. Several alternate retraction schemes were investigated, making use of the kinematics module of the CATIA CAD system. The nose leg uses twin wheels and retracts forwards into the fuselage nose. The layout of the units can be seen in the general arrangement drawing, Fig. 12.

Predicted Performance - The mass targets had been set using an empirical mass estimation The correlation program. between the targets predictions very is good, considering the fact that the E-92 is very small, relative to the empirical data base used in the program. Fig. 13 shows the predicted payload-range for the This was produced aircraft. after considerable analysis, the production of aerodynamic computer models consideration of the effects of intake efficiency, bleed and power off-takes. It shows that the aircraft could meet the range targets at a high-speed cruise Mach number of slightly 0.72 and considerably exceed it at Mach 0.58. calculations used pessimistic power off-takes and neglected the expected drag benefits of natural laminar flow.

The predicted FAR landing distance was 80 ft. better than the target of 2,600 ft.

The maximum weight take-off balanced field length was predicted to 3,750 ft, which was a considerable degradation, relative to the target of 3,300 ft. The target could be reached by improvements to the flap system or a slight increase in engine thrust.

The target acquisition cost of \$3.5 million, U.S. should be achieved on the basis of a production run of 300 aircraft. The direct operating cost should be \$4.45 U.S. per aircraft nautical mile.

E-92 Project Conclusions - The design program fulfilled its main aim of providing a powerful means of educating aircraft designers. The use of a challenging project was a means of investigating many of the problems areas of executive aircraft and produced some good detailed design work.

The aircraft that was designed showed considerable promise but required further work to confirm the performance predictions, and to evaluate its operating costs more fully.

The use of a modestly sweptforward wing is a viable
solution for this class of
aircraft in both layout and
aerodynamic terms. The
configuration placed
considerable demands on the
ingenuity of the main landinggear designer, but a good
solution was produced.

The Results of Cranfield's Design Education Process

the Student entry to Cranfield course is of a very standard and post-graduate concentrated courses add significant value to the graduates' education and design experience. The group projects and associated studies provides a realistic environment in which students learn how to design practical components, work as teams and present their results orally, and in written theses. theses from a typical project contain some 200 engineering drawings, in total, produced by traditional and CAD methods. Some 30 project theses are published, each year giving some 4000 pages of description and analysis, in addition to a similar number of individual MSc research thesis.

Students are given "handson" experience in computer techniques, such as CAD, Finite Element Analysis, Composite Materials Analysis as well as a range of dedicated analysis programs. They have flown as flight test engineers in the College's Jetstream aircraft, and have themselves flown the Beagle Pup aircraft. They have researched up-to-date aeronautical technologies such as fibre-optics, all-electric and aircraft, advanced materials. These activities provide information of use to other members of the aerospace community.

The students' individual research thesis work, at Masters and Doctoral level, provide significant applied research in aircraft and structural design. These are published, and provide new ideas for the industry.

The major output, however, the output of highlyskilled, rounded design engineers who reach high positions, World-Wide, in the Aircraft Industry, Airlines, Academia, Air Force and Government Regulatory and Research Departments.

The lecturing, group-project and research activities are very demanding faculty of members' time and require very low student/staff ratios. extensive laboratory, computing, and flying activities are also expensive, but the positive results of Cranfield's design education speak for themselves.

There are many Chief Designers who are Cranfield Aircraft Design Alumni. The Cranfield approach, started in 1946, continues and is continually being improved.

References

1. Howe, D., "An Established Approach to the Teaching of Aircraft Design".

AIAA Paper, AIAA - 75 - 1046, originally presented in 1975, but

reproduced in "Perspectives in Aerospace Design" compiled by Conrad F. Newberry, published by American Institute of Aeronautics, inc, 1991. ISBN 1-56347-010-1.

- Fielding, J. P., "Project Designs of Alternative Versions of the SL-86 2-Stage Horizontal Take-off Space Launcher". ICAS-90 Congress, Stockholm, Sweden, September 1990.
- 3. Fielding, J. P. and Smith, H., "Entry-Level Executive Jet E-92. Project Specification", DAeT 9200. College of Aeronautics, Cranfield University, July 1993.

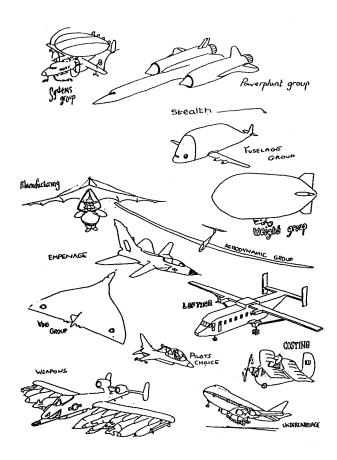


FIGURE 1 - Aircraft That Could be Produced by Specialists with Differing Design Priorities

INPUT
BACHELOR GRADUATES IN AERO.
OR
MECH. ENG. (HIGH GRADE)
TO MSC YEAR OR
BACHELOR HONOURS GRADUATES
IN MATHS, PHYSICS, COMP.
SCIENCE
OR ORDINARY DEGREES
OR DIPLOMA IN MECH.
OR AERO. ENG.
TO PRELIM. YEAR (PY)

GRADUATE COURSES
MSc-PRELIM.YEAR (PY)
MSc-AEROSPACE VEHICLE
DESIGN
MSc-OPTION IN STRUCTURAL
DESIGN
PhD-AEROSPACE VEHICLE
DESIGN

OUTPUT
GENERAL DESIGN ENGINEERS
SPECIALIST DESIGN ENGRS.
STRUCTURAL DESIGNERS
RESEARCH ENGINEERS
ACADEMICS, CHIEF DESIGNERS
IN THE FOLLOWING
ESTABLISHMENTS:MANUFACTURING INDUSTRY,
GOVERNMENT ESTABLISHMENTS,
EDUCATIONAL ESTABLISHMENTS,
AIRLINES, ARMED FORCES,
AIRWORTHINESS AUTHORITIES,
SOFTWARE COMPANIES

FIGURE 2 - Cranfield Aircraft Design Courses

FIGURE 3 - Jetstream Flight Test "Classroom" Aircraft

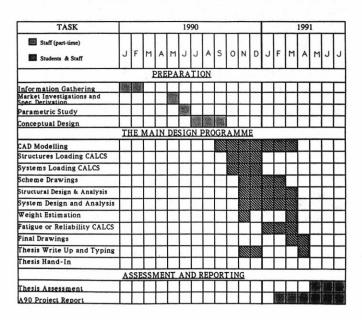


FIGURE 4 - The A-90 Programme Timescale

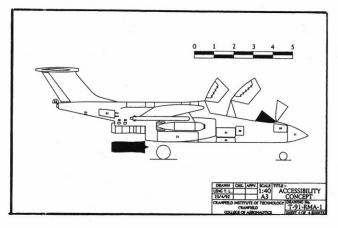


FIGURE 5 - T-91 Trainer - Some Maintainability Features

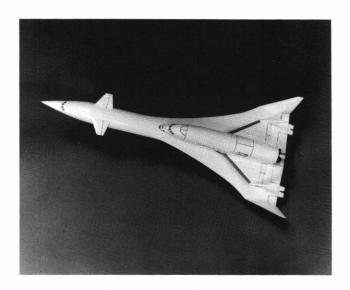


FIGURE 6 - SL-86 Space Launcher

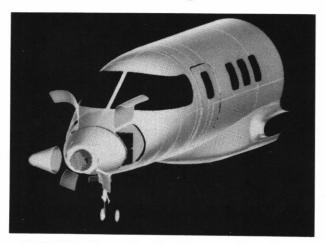


FIGURE 7 - E-92 Forward Fuselage

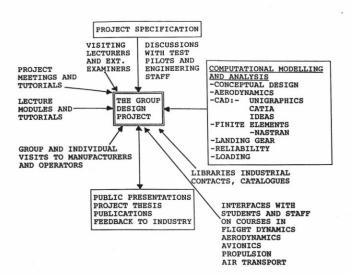


FIGURE 8 - Inputs into the Group Design Project

FIGURE 9 - E-92 Surface Computer Model

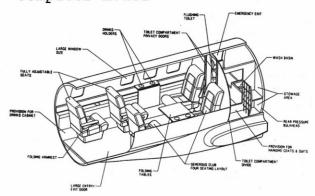


FIGURE 10 - Fuselage Interior

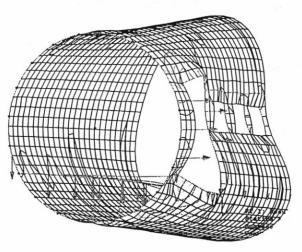


FIGURE 11 - Forward Fuselage Finite-Element Model

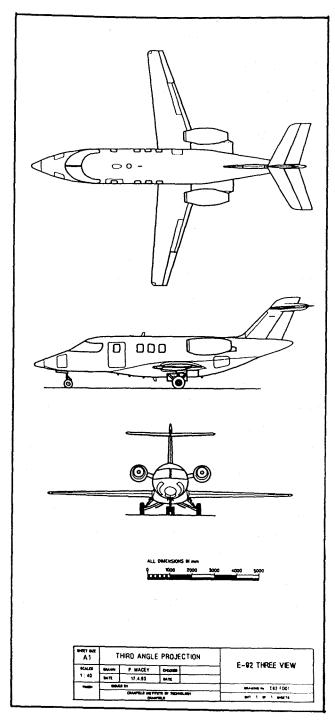


FIGURE 12 - E-92 General - Arrangement Drawing

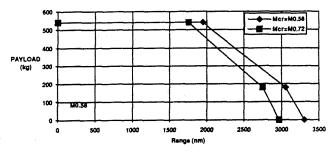


FIGURE 13 - E-92 Predicted Payload - Range Diagram